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The exp-function method is presented for finding the exact solutions of nonlinear fractional equations. New solutions are
constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The
fractional derivatives are described in Jumarie’s modified Riemann-Liouville sense. We apply the exp-function method to both
the nonlinear time and space fractional differential equations. As a result, some new exact solutions for them are successfully
established.

1. Introduction

Fractional differential equations (FDEs) are viewed as alter-
native models to nonlinear differential equations. Varieties
of them play important roles and serve as tools not only
in mathematics but also in physics, biology, fluid flow,
signal processing, control theory, systems identification, and
fractional dynamics to create the mathematical modeling of
many nonlinear phenomena. Besides, they are employed in
social sciences such as food supplement, climate, finance, and
economics. Oldham and Spanier first considered the frac-
tional differential equations arising in diffusion problems [1].
The fractional differential equations have been investigated
by many authors [2–4].

In recent decades, some effective methods for fractional
calculus appeared in open literature, such as the exp-function
method [5], the fractional subequation method [6–8], the
(G/G)-expansion method [9, 10], and the first integral
method [11].

The fractional complex transform [12, 13] is the sim-
plest approach; it is to convert the fractional differen-
tial equations into ordinary differential equations, mak-
ing the solution procedure extremely simple. Recently, the
fractional complex transform has been suggested to con-
vert fractional-order differential equations with modified

Riemann-Liouville derivatives into integer order differential
equations, and the reduced equations can be solved by sym-
bolic computation. The exp-function method [14–20] can be
used to construct the exact solutions for fractional differential
equations. The present paper investigates the applicability
and efficiency of the exp-function method on fractional
nonlinear differential equations. The aim of this paper is to
extend the application of the exp-function method to obtain
exact solutions to some fractional differential equations in
mathematical physics and biology.

This paper is organized as follows. In Section 2, some
basic properties of Jumarie’s modified Riemann-Liouville
derivative are given. The main steps of the exp-function
method are given in Section 3. In Sections 4–6, we construct
the exact solutions of the fractional-order biological pop-
ulation model, fractional Burgers equation, and fractional
Cahn-Hilliard equation via this method. Some conclusions
are shown in Section 7.

2. Modified Riemann-Liouville Derivative

In the last few decades, in order to improve the local behavior
of fractional types, a few local versions of fractional deriva-
tives have been proposed, that is, Caputo’s fractional deriva-
tive [21], Grünwald-Letnikov’s fractional derivative [22],
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the Riemann-Liouville derivative [22], Jumarie’s modified
Riemann-Liouville derivative [23, 24]. Jumarie’s derivative is
defined as

𝐷
𝛼

𝑡
𝑓 (𝑡)

=
1

Γ (1 − 𝛼)

𝑑

𝑑𝑡
∫

𝑡

0

(𝑡 − 𝜉)
−𝛼

[𝑓 (𝜉) − 𝑓 (0)] 𝑑𝜉, 0 < 𝛼 < 1,

(1)

where 𝑓 : 𝑅 → 𝑅, 𝑡 → 𝑓(𝑡) denotes a continuous (but not
necessarily first-order-differentiable) function. We list some
important properties for the modified Riemann-Liouville
derivative as follows.

(1) Assume that 𝑓(𝑡) denotes a continuous 𝑅 → 𝑅 func-
tion. We use the following equality for the integral
with respect to (𝑑𝑡)𝛼:

𝐼
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜉)
𝛼−1

𝑓 (𝜉) 𝑑𝜉,

𝐼
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝛼 + 1)
∫

𝑡

0

𝑓 (𝜉) (𝑑𝑡)
𝛼
, 0 < 𝛼 ≤ 1.

(2)

(2) Some useful formulas include

𝑓
(𝛼)

[𝑔 (𝑡)] =
𝑑𝑓

𝑑𝑡
𝑔
(𝛼)

(𝑡) , (3)

𝐷
𝛼

𝑡
𝑡
𝛾
=

Γ (1 + 𝛾)

Γ (1 + 𝛾 − 𝛼)
𝑡
𝛾−𝛼

, (4)

∫ (𝑑𝑡)
𝛽
= 𝑡
𝛽
. (5)

(3) Let 𝑢(𝑡) and V(𝑡) satisfy the definition of the modified
Riemann-Liouville derivative, and let 𝑓(𝑡) be an 𝛼-
order-differentiable function:

𝐷
𝛼

𝑡
(𝑢 (𝑡) V (𝑡))

= V (𝑡) 𝐷
𝛼

𝑡
𝑢 (𝑡) + 𝑢 (𝑡)𝐷

𝛼

𝑡
V (𝑡) ,

𝐷
𝛼

𝑡
𝑓 [𝑢 (𝑡)]

= 𝑓


𝑢
[𝑢 (𝑡)]𝐷

𝛼

𝑡
𝑢 (𝑡) = 𝐷

𝛼

𝑢
𝑓 [𝑢 (𝑡)] (𝑢



(𝑡))
𝛼

.

(6)

Function 𝑓(𝑡) should be differentiable with respect to 𝑔(𝑡),
and𝑔(𝑡) is fractional differentiable in (3).The previous results
are employed in the following sections.

3. Fractional Complex Transform and exp-
Function Method

We consider the following nonlinear FDE of the type

𝐹 (𝑢,𝐷
𝛼

𝑡
𝑢,𝐷
𝛽

𝑥
𝑢,𝐷
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢,𝐷
𝛼

𝑡
𝐷
𝛽

𝑥
𝑢,𝐷
𝛽

𝑥
𝐷
𝛽

𝑥
𝑢, . . .) = 0,

0 < 𝛼, 𝛽 < 1,

(7)

where 𝑢 is an unknown function and 𝐹 is a polynomial of
𝑢 and its partial fractional derivatives, in which the highest
order derivatives and the nonlinear terms are involved. In the
following, we give themain steps of the exp-functionmethod.

Step 1. Li and He [25, 26] suggested a fractional complex
transform to convert fractional differential equations into
ordinary differential equations, so all analytical methods
devoted to the advanced calculus can be easily applied to the
fractional calculus.The complex wave variable was as follows:

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) ,

𝜉 =
𝜏𝑥
𝛽

Γ (1 + 𝛽)
+

𝜆𝑡
𝛼

Γ (1 + 𝛼)
,

(8)

where 𝜏 and 𝜆 are nonzero arbitrary constants; we can rewrite
(7) in the following nonlinear ordinary differential equation:

𝑄(𝑈,𝑈

, 𝑈

, 𝑈

, . . .) = 0, (9)

where the prime denotes the derivation with respect to 𝜉. If
possible, we should integrate (9) term by term one or more
times.

Step 2. According to exp-function method, which was devel-
oped by He and Wu [14], we assume that the wave solution
can be expressed in the following form:

𝑈 (𝜉) =
∑
𝑑

𝑛=−𝑐
𝑎
𝑛
exp [𝑛𝜉]

∑
𝑞

𝑚=−𝑝
𝑏
𝑚
exp [𝑚𝜉]

, (10)

where𝑝, 𝑞, 𝑐, and 𝑑 are positive integers which are known to
be further determined and 𝑎

𝑛
and 𝑏
𝑚
are unknown constants.

We can rewrite (10) in the following equivalent form:

𝑈 (𝜉) =
𝑎
−𝑐
exp [−𝑐𝜉] + ⋅ ⋅ ⋅ + 𝑎

𝑑
exp [𝑑𝜉]

𝑏
−𝑝

exp [−𝑝𝜉] + ⋅ ⋅ ⋅ + 𝑏
𝑞
exp [𝑞𝜉]

. (11)

Step 3. This equivalent formulation plays a significant and
fundamental part for finding the exact solution of mathemat-
ical problems. To determine the values of 𝑐 and 𝑝, we balance
the linear term of highest order of (9) with the highest order
nonlinear term. Similarly, to determine the value of 𝑑 and 𝑞,
we balance the linear term of lowest order of (9) with lowest
order nonlinear term [27–29].

In the following sections, we present three examples to
illustrate the applicability of the exp-function method and
fractional complex transform to solve nonlinear fractional
differential equations.

4. Fractional-Order Biological
Population Model

We consider a time fractional biological population model of
the form [30, 31]

𝜕
𝛼
𝑢

𝜕𝑡𝛼
=

𝜕
2

𝜕𝑥2
(𝑢
2
) +

𝜕
2

𝜕𝑦2
(𝑢
2
) + ℎ (𝑢

2
− 𝑟) , 𝑡 > 0,

0 < 𝛼 ≤ 1, 𝑥, 𝑦 ∈ 𝑅,

(12)
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where 𝑢 denotes the population density ℎ(𝑢2 − 𝑟) represents
the population supply due to births and deaths, and ℎ, 𝑟 are
constants.

For our goal, we present the following transformation:

𝑢 (𝑥, 𝑦, 𝑡) = 𝑈 (𝜉) , 𝜉 = ]𝑥 + 𝑖]𝑦 −
𝑐𝑡
𝛼

Γ (1 + 𝛼)
, (13)

where 𝑐 and ] are constants and 𝑖2 = −1.
Then by the use of (13), (12) can be turned into an ODE:

𝑐𝑈

+ ℎ𝑈
2
− ℎ𝑟 = 0, (14)

where “𝑈” = 𝑑𝑈/𝑑𝜉.
Balancing the order of 𝑈 and 𝑈

2 in (14), we get

𝑈

=
𝑐
1
exp [− (𝑐 + 𝑝) 𝜉] + ⋅ ⋅ ⋅

𝑐
2
exp [−2𝑝𝜉] + ⋅ ⋅ ⋅

,

𝑈
2
=

𝑐
3
exp [−2𝑐𝜉] + ⋅ ⋅ ⋅

𝑐
4
exp [−2𝑝𝜉] + ⋅ ⋅ ⋅

,

(15)

where 𝑐
𝑖
are determined coefficients only for simplicity.

Balancing highest order of exp-function in (15), we obtain

− (𝑝 + 𝑐) = −2𝑐, (16)

which leads to the result that

𝑝 = 𝑐. (17)

In the sameway to determine the values of𝑑 and 𝑞, we balance
the linear term of the lowest order in (14):

𝑈

=
⋅ ⋅ ⋅ + 𝑑

1
exp [(𝑞 + 𝑑) 𝜉]

⋅ ⋅ ⋅ + 𝑑
2
exp [2𝑞𝜉]

,

𝑈
2
=
⋅ ⋅ ⋅ + 𝑑

3
exp [2𝑑𝜉]

⋅ ⋅ ⋅ + 𝑑
4
exp [2𝑞𝜉]

,

(18)

where 𝑑
𝑖
are determined coefficients only for simplicity. From

(18), we have

𝑞 + 𝑑 = 2𝑑, (19)

and this gives

𝑞 = 𝑑. (20)

For simplicity, we set 𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1, so (11)
reduces to

𝑈 (𝜉) =
𝑎
1
exp (𝜉) + 𝑎

0
+ 𝑎
−1
exp (−𝜉)

𝑏
1
exp (𝜉) + 𝑏

0
+ 𝑏
−1
exp (−𝜉)

. (21)

Substituting (21) into (14) and by the help of symbolic
computation, we have

1

𝐴
[𝑅
2
exp (2𝜉) + 𝑅

1
exp (𝜉) + 𝑅

0
+ 𝑅
−1
exp (−𝜉)

+𝑅
−2
exp (−2𝜉)] = 0,

(22)

where

𝐴 = (𝑏
−1
exp (−𝜉) + 𝑏

0
+ 𝑏
1
exp (𝜉))2,

𝑅
2
= ℎ𝑎
2

1
− ℎ𝑟𝑏
2

1
,

𝑅
1
= 𝑐𝑎
1
𝑏
0
− 𝑐𝑎
0
𝑏
1
+ 2ℎ𝑎

1
𝑎
0
− 2ℎ𝑟𝑏

1
𝑏
0
,

𝑅
0
= −2𝑐𝑎

−1
𝑏
1
+ 2𝑐𝑎
1
𝑏
−1

− 2ℎ𝑟𝑏
1
𝑏
−1

− ℎ𝑟𝑏
2

0

+ 2ℎ𝑎
1
𝑎
−1

+ ℎ𝑎
2

0
,

𝑅
−1

= −𝑐𝑎
−1
𝑏
0
+ 𝑐𝑎
0
𝑏
−1

+ 2ℎ𝑎
0
𝑎
−1

− 2ℎ𝑟𝑏
0
𝑏
−1
,

𝑅
−2

= ℎ𝑎
2

−1
− ℎ𝑟𝑏
2

−1
.

(23)

Solving this system of algebraic equations by using sym-
bolic computation, we get the following results.

Case 1. Consider

𝑎
1
=
𝑟𝑏
2

0
− 𝑎
2

0

4√𝑟𝑏
−1

, 𝑎
0
= 𝑎
0
, 𝑎

−1
= −√𝑟𝑏

−1
,

𝑏
1
=
𝑟𝑏
2

0
− 𝑎
2

0

4𝑟𝑏
−1

, 𝑏
0
= 𝑏
0
, 𝑏

−1
= 𝑏
−1
,

𝑐 = 2ℎ√𝑟,

(24)

where 𝑎
0
, 𝑏
0
, and 𝑏

−1
are free parameters which exist pro-

vided that 𝑏
−1

̸= 0. Substituting these results into (21), we get
the following exact solution:

𝑢 (𝑥, 𝑦, 𝑡)

=
𝑟𝑏
2

0
− 𝑎
2

0

4√𝑟𝑏
−1

exp(]𝑥 + 𝑖]𝑦 −
2ℎ√𝑟𝑡

𝛼

Γ (1 + 𝛼)
)

+ 𝑎
0
− √𝑟𝑏

−1
exp(−(]𝑥 + 𝑖]𝑦 −

2ℎ√𝑟𝑡
𝛼

Γ (1 + 𝛼)
))

× (
𝑟𝑏
2

0
− 𝑎
2

0

4𝑟𝑏
−1

exp(]𝑥 + 𝑖]𝑦 −
2ℎ√𝑟𝑡

𝛼

Γ (1 + 𝛼)
)

+𝑏
0
+ 𝑏
−1
exp(−(]𝑥 + 𝑖]𝑦 −

2ℎ√𝑟𝑡
𝛼

Γ (1 + 𝛼)
)))

−1

.

(25)

Case 2. Consider

𝑎
1
=

𝑎
2

0

4√𝑟𝑏
−1

, 𝑎
0
= 𝑎
0
, 𝑎

−1
= −√𝑟𝑏

−1
,

𝑏
1
= −

𝑎
2

0

4𝑟𝑏
−1

, 𝑏
0
= 0, 𝑏

−1
= 𝑏
−1
,

𝑐 = 2ℎ√𝑟,

(26)
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where 𝑎
0
and 𝑏
−1

are free parameters, which exist provided
that 𝑏
−1

̸= 0. Substituting these results into (21), we obtain the
following exact solution:

𝑢 (𝑥, 𝑦, 𝑡)

=
𝑎
2

0

4√𝑟𝑏
−1

exp(]𝑥 + 𝑖]𝑦 −
2ℎ√𝑟𝑡

𝛼

Γ (1 + 𝛼)
) + 𝑎
0

− √𝑟𝑏
−1
exp(−(]𝑥 + 𝑖]𝑦 −

2ℎ√𝑟𝑡
𝛼

Γ (1 + 𝛼)
))

× ( −
𝑎
2

0

4𝑟𝑏
−1

exp(]𝑥 + 𝑖]𝑦 −
2ℎ√𝑟𝑡

𝛼

Γ (1 + 𝛼)
)

+𝑏
−1
exp(−(]𝑥 + 𝑖]𝑦 −

2ℎ√𝑟𝑡
𝛼

Γ (1 + 𝛼)
)))

−1

.

(27)

5. Time Fractional Burgers Equation

We consider the one-dimensional time fractional Burgers
equation with the value problem [32]

𝜕
𝛼
𝑢

𝜕𝑡𝛼
+ 𝜀𝑢

𝜕𝑢

𝜕𝑥
− ]

𝜕
2
𝑢

𝜕𝑥2
= 0, 𝑡 > 0, 0 < 𝛼 ≤ 1, (28)

𝑢 (𝑥, 0) = 𝑔 (𝑥) , (29)

where 𝛼 is a parameter describing the order of the fractional
time derivative.The function 𝑢(𝑥, 𝑡) is assumed to be a causal
function of time.

For our purpose, we introduce the following transforma-
tions:

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) , 𝜉 = 𝜆𝑥 −
𝑐𝑡
𝛼

Γ (1 + 𝛼)
, (30)

where 𝜆 and 𝑐 are nonzero constants.
Substituting (30) into (28), we can show that (28) reduced

into the following ODE:

−𝑐𝑈

+ 𝜆𝜀𝑈𝑈


− 𝜆
2
]𝑈

= 0, (31)

where “𝑈” = 𝑑𝑈/𝑑𝜉.
Integrating (31) with respect to 𝜉 yields

−𝑐𝑈 +
𝜆𝜀

2
𝑈
2
− 𝜆
2
]𝑈

+ 𝜉
0
= 0, (32)

where 𝜉
0
is a constant of integration.

By the same procedure as illustrated in Section 3, we can
determine values of 𝑐 and 𝑝 by balancing terms 𝑈2 and 𝑈 in
(32). By symbolic computation, we have

𝑈

=
𝑐
1
exp [− (𝑐 + 𝑝) 𝜉] + ⋅ ⋅ ⋅

𝑐
2
exp [−2𝑝𝜉] + ⋅ ⋅ ⋅

,

𝑈
2
=

𝑐
3
exp [−2𝑐𝜉] + ⋅ ⋅ ⋅

𝑐
4
exp [−2𝑝𝜉] + ⋅ ⋅ ⋅

,

(33)

where 𝑐
𝑖
are determined coefficients only for simplicity.

Balancing the highest order of exp-function in (33), we have

− (𝑝 + 𝑐) = −2𝑐, (34)

which leads to the result that

𝑝 = 𝑐. (35)

Similarly, to determine the values of 𝑑 and 𝑞, we balance the
linear term of the lowest order in (32):

𝑈

=
⋅ ⋅ ⋅ + 𝑑

1
exp [(𝑞 + 𝑑) 𝜉]

⋅ ⋅ ⋅ + 𝑑
2
exp [2𝑞𝜉]

,

𝑈
2
=
⋅ ⋅ ⋅ + 𝑑

3
exp [2𝑑𝜉]

⋅ ⋅ ⋅ + 𝑑
4
exp [2𝑞𝜉]

,

(36)

where 𝑑
𝑖
are determined coefficients only for simplicity. From

(36), we obtain

𝑞 + 𝑑 = 2𝑑, (37)

and this gives

𝑞 = 𝑑. (38)

For simplicity, we set 𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1, so (11)
reduces to

𝑈 (𝜉) =
𝑎
1
exp (𝜉) + 𝑎

0
+ 𝑎
−1
exp (−𝜉)

𝑏
1
exp (𝜉) + 𝑏

0
+ 𝑏
−1
exp (−𝜉)

. (39)

Substituting (39) into (32) and by the help of symbolic
computation, we have

1

𝐴
[𝑅
2
exp (2𝜉) + 𝑅

1
exp (𝜉) + 𝑅

0

+𝑅
−1
exp (−𝜉) + 𝑅

−2
exp (−2𝜉)] = 0,

(40)

where

𝐴 = (𝑏
−1
exp (−𝜉) + 𝑏

0
+ 𝑏
1
exp (𝜉))2,

𝑅
2
= 𝜉
0
𝑏
2

1
− 𝑐𝑎
1
𝑏
1
+
1

2
𝜆𝜀𝑎
2

1
,

𝑅
1
= −𝜆
2
]𝑎
1
𝑏
0
+ 𝜆𝜀𝑎
1
𝑎
0
+ 𝜆
2
]𝑎
0
𝑏
1
− 𝑐𝑎
0
𝑏
1
− 𝑐𝑎
1
𝑏
0

+ 2𝜉
0
𝑏
1
𝑏
0
,

𝑅
0
= −2𝜆

2
]𝑎
1
𝑏
−1

+ 2𝜆
2
]𝑎
−1
𝑏
1
− 𝑐𝑎
0
𝑏
0
+ 𝜆𝜀𝑎
1
𝑎
−1

+ 𝜉
0
𝑏
2

0
− 𝑐𝑎
1
𝑏
−1

− 𝑐𝑎
−1
𝑏
1
+
1

2
𝜆𝜀𝑎
2

0
+ 2𝜉
0
𝑏
1
𝑏
−1
,

𝑅
−1

= 𝜆𝜀𝑎
0
𝑎
−1

+ 𝜆
2
]𝑎
−1
𝑏
0
− 𝜆
2
]𝑎
0
𝑏
−1

+ 2𝜉
0
𝑏
0
𝑏
−1

− 𝑐𝑎
0
𝑏
−1

− 𝑐𝑎
−1
𝑏
0
,

𝑅
−2

= 𝜉
0
𝑏
2

−1
− 𝑐𝑎
−1
𝑏
−1

+
1

2
𝜆𝜀𝑎
2

−1

(41)

Solving this system of algebraic equations by using sym-
bolic computation, we obtain the following results.
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Case 1. Consider

𝑎
1
=
𝑏
1
(𝜀𝑎
−1

− 4𝜆]𝑏
−1
)

𝜀𝑏
−1

, 𝑎
0
= 0, 𝑎

−1
= 𝑎
−1
,

𝑏
1
= 𝑏
1
, 𝑏

0
= 0, 𝑏

−1
= 𝑏
−1
,

𝜆 = 𝜆, 𝜀 = 𝜀, ] = ],

𝜉
0
=
𝜆𝑎
−1
(𝜀𝑎
−1

− 4𝜆]𝑏
−1
)

2𝑏
2

−1

, 𝑐 =
𝜆 (𝜀𝑎
−1

− 2𝜆]𝑏
−1
)

𝑏
−1

,

(42)

where 𝑎
−1

and 𝑏
−1

are free parameters which exist provided
that 𝑏

−1
̸= 0 and 𝜀𝑎

−1
− 2𝜆]𝑏

−1
̸= 0. Substituting these results

into (39), we obtain the following exact solution:

𝑢 (𝑥, 𝑡)

=
𝑏
1
(𝜀𝑎
−1

− 4𝜆]𝑏
−1
)

𝜀𝑏
−1

exp(𝜆𝑥 −
𝑐𝑡
𝛼

Γ (1 + 𝛼)
)

+ 𝑎
−1
exp(−(𝜆𝑥 −

𝑐𝑡
𝛼

Γ (1 + 𝛼)
))

× (𝑏
1
exp(𝜆𝑥 −

𝑐𝑡
𝛼

Γ (1 + 𝛼)
)

+𝑏
−1
exp(−(𝜆𝑥 −

𝑐𝑡
𝛼

Γ (1 + 𝛼)
)))

−1

.

(43)

Case 2. Consider

𝑎
1
= − (𝜀𝑎

2

−1
𝑏
2

0
− 2𝑎
−1
𝑏
2

0
𝜆]𝑏
−1

− 2𝜀𝑎
0
𝑏
0
𝑏
−1
𝑎
−1

+2𝜆]𝑎
0
𝑏
0
𝑏
2

−1
+ 𝜀𝑎
2

0
𝑏
2

−1
)

× (𝜀𝑎
−1

− 𝜆]𝑏
−1
)

× (4𝑏
2

−1
𝜆
2
]
2
)
−1

,

𝑏
1
= −𝜀 (𝜀𝑎

2

−1
𝑏
2

0
− 2𝑎
−1
𝑏
2

0
𝜆]𝑏
−1

− 2𝜀𝑎
0
𝑏
0
𝑏
−1
𝑎
−1

+2𝜆]𝑎
0
𝑏
0
𝑏
2

−1
+ 𝜀𝑎
2

0
𝑏
2

−1
)

× (4𝑏
3

−1
𝜆
2
]
2
)
−1

,

𝑎
0
= 𝑎
0
, 𝑎

−1
= 𝑎
−1
, 𝑏

0
= 𝑏
0
,

𝑏
−1

= 𝑏
−1
, 𝜆 = 𝜆, 𝜀 = 𝜀, ] = ],

𝜉
0
=
𝜆𝑎
−1
(𝜀𝑎
−1

− 2𝜆]𝑏
−1
)

2𝑏
2

−1

, 𝑐 =
𝜆 (𝜀𝑎
−1

− 𝜆]𝑏
−1
)

𝑏
−1

,

(44)

where 𝑎
−1
, 𝑎
0
, 𝑏
−1
, and 𝑏

0
are free parameters which exist

provided that 𝑏
−1

̸= 0 and 𝜀𝑎
−1
−2𝜆]𝑏

−1
̸= 0. Substituting these

results into (39), we get the following exact solution:

𝑢 (𝑥, 𝑡)

= − (𝜀𝑎
2

−1
𝑏
2

0
− 2𝑎
−1
𝑏
2

0
𝜆]𝑏
−1

− 2𝜀𝑎
0
𝑏
0
𝑏
−1
𝑎
−1

+2𝜆]𝑎
0
𝑏
0
𝑏
2

−1
+ 𝜀𝑎
2

0
𝑏
2

−1
) (𝜀𝑎
−1

− 𝜆]𝑏
−1
)

× (4𝑏
2

−1
𝜆
2
]
2
)
−1

× exp(𝜆𝑥 −
𝑐𝑡
𝛼

Γ (1 + 𝛼)
) + 𝑎
0

+ 𝑎
−1
exp(−(𝜆𝑥 −

𝑐𝑡
𝛼

Γ (1 + 𝛼)
))

× ( − 𝜀 (𝜀𝑎
2

−1
𝑏
2

0
− 2𝑎
−1
𝑏
2

0
𝜆]𝑏
−1

− 2𝜀𝑎
0
𝑏
0
𝑏
−1
𝑎
−1

+2𝜆]𝑎
0
𝑏
0
𝑏
2

−1
+ 𝜀𝑎
2

0
𝑏
2

−1
)

× (4𝑏
3

−1
𝜆
2
]
2
)
−1

× exp(𝜆𝑥 −
𝑐𝑡
𝛼

Γ (1 + 𝛼)
) + 𝑏
0

+𝑏
−1
exp(−(𝜆𝑥 −

𝑐𝑡
𝛼

Γ (1 + 𝛼)
)))

−1

.

(45)

6. Space-Time Fractional
Cahn-Hilliard Equation

We consider the space-time fractional Cahn-Hilliard equa-
tion [33]

𝐷
𝛼

𝑡
𝑢 − 𝛾𝐷

𝛼

𝑥
𝑢 − 6𝑢(𝐷

𝛼

𝑥
𝑢)
2

− (3𝑢
2
− 1)𝐷

2𝛼

𝑥
𝑢 + 𝐷

4𝛼

𝑥
𝑢 = 0,

(46)

where 0 < 𝛼 ≤ 1 and 𝑢 is the function of (𝑥, 𝑡). For the case
corresponding to 𝛼 = 1, this equation is related to a number
of interesting physical phenomena like the spinodal decom-
position, phase separation, and phase ordering dynamics.
Moreover, it becomes important in material sciences [34].
Nevertheless we notice that this equation is very difficult to
be solved and several articles investigated it [35].

Firstly, we consider the following transformations:

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) , 𝜉 =
𝑥
𝛼

Γ (1 + 𝛼)
−

𝑐𝑡
𝛼

Γ (1 + 𝛼)
, (47)

where 𝑐 is a nonzero constant.
Substituting (47) into (46), we can know this equation

reduced into an ODE:

−𝑐𝑈

− 𝛾𝑈

− 6𝑈(𝑈


)
2

− 3𝑈
2
𝑈

+ 𝑈

+ 𝑈


= 0, (48)

where “𝑈” = 𝑑𝑈/𝑑𝜉.
Integrating (48) with respect to 𝜉 yields

−𝑐𝑈 − 𝛾𝑈 − 3𝑈
2
𝑈

+ 𝑈

+ 𝑈

+ 𝜉
0
= 0, (49)

where 𝜉
0
is a constant of integration.

Here take notice of nonlinear term in (49), and we can
balance𝑈2𝑈 and𝑈 by the idea of the exp-functionmethod
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[14] to determine the values of 𝑝, 𝑞, 𝑐, and 𝑑. By simple
calculation, we have

𝑈


=
𝑐
1
exp [(−7𝑝 − 𝑐) 𝜉] + ⋅ ⋅ ⋅

𝑐
2
exp [−8𝑝𝜉] + ⋅ ⋅ ⋅

=
𝑐
1
exp [− (7𝑝 + 𝑐) 𝜉] + ⋅ ⋅ ⋅

𝑐
2
exp [−8𝑝𝜉] + ⋅ ⋅ ⋅

,

𝑈
2
𝑈

=
𝑐
3
exp [(−𝑝 − 3𝑐) 𝜉] + ⋅ ⋅ ⋅

𝑐
4
exp [−4𝑝𝜉] + ⋅ ⋅ ⋅

=
𝑐
3
exp [− (5𝑝 + 3𝑐) 𝜉] + ⋅ ⋅ ⋅

𝑐
4
exp [−8𝑝𝜉] + ⋅ ⋅ ⋅

,

(50)

where 𝑐
𝑖
are determined coefficients only for simplicity.

Balancing the highest order of exp-function in (50), we have

− (7𝑝 + 𝑐) = − (5𝑐 + 3𝑝) , (51)

which leads to the result that

𝑝 = 𝑐. (52)

Similarly, to determine the values of 𝑑 and 𝑞, we balance the
linear term of lowest order in (49)

𝑈


=
⋅ ⋅ ⋅ + 𝑑

1
exp [(7𝑞 + 𝑑) 𝜉]

⋅ ⋅ ⋅ + 𝑑
2
exp [8𝑞𝜉]

,

𝑈
2
𝑈

=
⋅ ⋅ ⋅ + 𝑑

3
exp [(2𝑑 + 6𝑞) 𝜉]

⋅ ⋅ ⋅ + 𝑑
4
exp [8𝑞𝜉]

,

(53)

where 𝑑
𝑖
are determined coefficients only for simplicity. From

(53), we obtain

(6𝑞 + 2𝑑) = (𝑑 + 7𝑞) , (54)

and this gives

𝑞 = 𝑑. (55)

For simplicity, we set 𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1, so (11) reduces
to

𝑢 (𝜉) =
𝑎
1
exp (𝜉) + 𝑎

0
+ 𝑎
−1
exp (−𝜉)

𝑏
1
exp (𝜉) + 𝑏

0
+ 𝑏
−1
exp (−𝜉)

. (56)

Substituting (56) into (49) and by the help of symbolic
computation, we obtain

1

𝐴
[𝑅
4
exp (4𝜉) + 𝑅

3
exp (3𝜉) + 𝑅

2
exp (2𝜉) + 𝑅

1
exp (𝜉)

+ 𝑅
0
+ 𝑅
−1
exp (−𝜉) + 𝑅

−2
exp (−2𝜉) + 𝑅

−3
exp (−3𝜉)

+𝑅
−4
exp (−4𝜉)] = 0,

(57)

where

𝐴 = (𝑏
−1
exp (−𝜉) + 𝑏

0
+ 𝑏
1
exp (𝜉))4,

𝑅
4
= 𝜉
0
𝑏
4

1
− 𝑐𝑎
1
𝑏
3

1
− 𝛾𝑎
1
𝑏
3

1
,

𝑅
3
= −3𝑎

3

1
𝑏
0
− 2𝑎
0
𝑏
3

1
− 𝑐𝑎
0
𝑏
3

1
− 𝛾𝑎
0
𝑏
3

1
+ 2𝑎
1
𝑏
2

1
𝑏
0

+ 3𝑎
2

1
𝑎
0
𝑏
1
+ 4𝜉
0
𝑏
3

1
𝑏
0
− 3𝛾𝑎

1
𝑏
2

1
𝑏
0
− 3𝑐𝑎
1
𝑏
2

1
𝑏
0
,

𝑅
2
= −10𝑎

−1
𝑏
3

1
− 6𝑎
3

1
𝑏
−1

− 𝑐𝑎
−1
𝑏
3

1
− 𝛾𝑎
−1
𝑏
3

1

+ 10𝑎
1
𝑏
2

1
𝑏
−1

+ 6𝑎
2

1
𝑎
−1
𝑏
1
− 2𝑎
1
𝑏
1
𝑏
2

0
+ 4𝜉
0
𝑏
3

1
𝑏
−1

+ 2𝑎
0
𝑏
2

1
𝑏
0
− 6𝑎
2

1
𝑎
0
𝑏
0
+ 6𝑎
1
𝑎
2

0
𝑏
1
+ 6𝜉
0
𝑏
2

1
𝑏
2

0

− 3𝑐𝑎
1
𝑏
1
𝑏
2

0
− 3𝑐𝑎
0
𝑏
2

1
𝑏
0
− 3𝛾𝑎

1
𝑏
1
𝑏
2

0
− 3𝛾𝑎

0
𝑏
2

1
𝑏
0

− 3𝑐𝑎
1
𝑏
2

1
𝑏
−1

− 3𝛾𝑎
1
𝑏
2

1
𝑏
−1
,

𝑅
1
= −3𝑐𝑎

0
𝑏
1
𝑏
2

0
− 3𝛾𝑎

0
𝑏
1
𝑏
2

0
− 2𝑎
0
𝑏
1
𝑏
2

0
− 𝑐𝑎
1
𝑏
3

0

− 𝛾𝑎
1
𝑏
3

0
− 3𝑎
2

0
𝑎
1
𝑏
0
+ 4𝜉
0
𝑏
1
𝑏
3

0
+ 2𝑎
1
𝑏
3

0
+ 3𝑎
3

0
𝑏
1

− 6𝑐𝑎
1
𝑏
1
𝑏
0
𝑏
−1

− 6𝛾𝑎
1
𝑏
1
𝑏
0
𝑏
−1

+ 22𝑎
0
𝑏
2

1
𝑏
−1

− 10𝑎
−1
𝑏
2

1
𝑏
0
− 3𝑎
2

1
𝑎
−1
𝑏
0
− 15𝑎

2

1
𝑎
0
𝑏
−1

− 12𝑎
1
𝑏
1
𝑏
0
𝑏
−1

− 3𝑐𝑎
0
𝑏
2

1
𝑏
−1

− 3𝑐𝑎
−1
𝑏
2

1
𝑏
0

− 3𝛾𝑎
0
𝑏
2

1
𝑏
−1

− 3𝛾𝑎
−1
𝑏
2

1
𝑏
0
+ 18𝑎
1
𝑏
1
𝑎
0
𝑎
−1

+ 12𝜉
0
𝑏
2

1
𝑏
0
𝑏
−1
,

𝑅
0
= −3𝑐𝑎

−1
𝑏
1
𝑏
2

0
− 6𝛾𝑎

0
𝑏
1
𝑏
0
𝑏
−1

+ 𝜉
0
𝑏
4

0
− 𝑐𝑎
0
𝑏
3

0

+ 28𝑎
−1
𝑏
2

1
𝑏
−1

− 28𝑎
1
𝑏
2

−1
𝑏
1
+ 8𝑎
1
𝑏
−1
𝑏
2

0

− 6𝑐𝑎
0
𝑏
1
𝑏
0
𝑏
−1

− 8𝑎
−1
𝑏
1
𝑏
2

0

− 3𝑐𝑎
1
𝑏
2

−1
𝑏
1
− 3𝑐𝑎
1
𝑏
2

0
𝑏
−1

− 3𝑐𝑎
−1
𝑏
2

1
𝑏
−1

− 𝛾𝑎
0
𝑏
3

0
− 3𝛾𝑎

1
𝑏
2

−1
𝑏
1
− 3𝛾𝑎

1
𝑏
2

0
𝑏
−1

− 3𝛾𝑎
−1
𝑏
2

1
𝑏
−1

− 3𝛾𝑎
−1
𝑏
2

0
𝑏
1
+ 12𝜉
0
𝑏
1
𝑏
2

0
𝑏
−1

− 12𝑎
1
𝑎
2

0
𝑏
−1

− 12𝑎
2

1
𝑏
−1
𝑎
−1

+ 12𝑎
1
𝑎
2

−1
𝑏
1
+ 12𝑏
1
𝑎
2

0
𝑎
−1
,

𝑅
−1

= −3𝑐𝑎
0
𝑏
−1
𝑏
2

0
− 3𝛾𝑎

0
𝑏
−1
𝑏
2

0
+ 2𝑎
0
𝑏
−1
𝑏
2

0

− 𝑐𝑎
−1
𝑏
3

0
− 𝛾𝑎
−1
𝑏
3

0
+ 3𝑎
2

0
𝑎
−1
𝑏
0

+ 4𝜉
0
𝑏
3

0
𝑏
−1

− 2𝑎
−1
𝑏
3

0
− 3𝑎
3

0
𝑏
−1

− 6𝑐𝑎
−1
𝑏
1
𝑏
0
𝑏
−1

− 6𝛾𝑎
−1
𝑏
1
𝑏
0
𝑏
−1

+ 10𝑎
1
𝑏
2

−1
𝑏
0
− 22𝑎
0
𝑏
2

−1
𝑏
1

+ 3𝑎
1
𝑎
2

−1
𝑏
0
+ 15𝑎
0
𝑎
2

−1
𝑏
1
− 12𝑎
−1
𝑏
1
𝑏
0
𝑏
−1

− 3𝑐𝑎
1
𝑏
0
𝑏
2

−1
− 3𝑐𝑎
0
𝑏
1
𝑏
2

−1
− 3𝛾𝑎

1
𝑏
2

−1
𝑏
0

− 3𝛾𝑎
0
𝑏
1
𝑏
2

−1
− 18𝑎
1
𝑎
−1
𝑎
0
𝑏
−1

+ 12𝜉
0
𝑏
2

−1
𝑏
0
𝑏
1
,
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𝑅
−2

= 10𝑎
1
𝑏
3

−1
+ 6𝑎
3

−1
𝑏
1
− 𝑐𝑎
1
𝑏
3

−1
− 𝛾𝑎
1
𝑏
3

−1

− 10𝑎
−1
𝑏
1
𝑏
2

−1
− 6𝑎
1
𝑎
2

−1
𝑏
−1

+ 4𝜉
0
𝑏
3

−1
𝑏
1
− 2𝑎
0
𝑏
0
𝑏
2

−1

+ 2𝑎
−1
𝑏
2

0
𝑏
−1

+ 6𝑎
0
𝑎
2

−1
𝑏
0
− 6𝑎
−1
𝑎
2

0
𝑏
−1

+ 6𝜉
0
𝑏
2

−1
𝑏
2

0

− 3𝑐𝑎
0
𝑏
0
𝑏
2

−1
− 3𝑐𝑎
−1
𝑏
−1
𝑏
2

0
− 3𝛾𝑎

0
𝑏
0
𝑏
2

−1

− 3𝛾𝑎
−1
𝑏
2

0
𝑏
−1

− 3𝑐𝑎
−1
𝑏
2

−1
𝑏
1
− 3𝛾𝑎

−1
𝑏
2

−1
𝑏
1
,

𝑅
−3

= 2𝑎
0
𝑏
3

−1
+ 3𝑎
3

−1
𝑏
0
− 𝑐𝑎
0
𝑏
3

−1
− 𝛾𝑎
0
𝑏
3

−1
− 2𝑎
−1
𝑏
0
𝑏
2

−1

− 3𝑎
2

−1
𝑎
0
𝑏
−1

+ 4𝜉
0
𝑏
0
𝑏
3

−1
− 3𝑐𝑎
−1
𝑏
0
𝑏
2

−1

− 3𝛾𝑎
−1
𝑏
0
𝑏
2

−1
,

𝑅
−4

= 𝜉
0
𝑏
4

−1
− 𝑐𝑎
−1
𝑏
3

−1
− 𝛾𝑎
−1
𝑏
3

−1
.

(58)

Solving this system of algebraic equations by using symbolic
computation, we obtain the following results:

𝑎
1
=
𝑎
2

0
√6

8𝑏
−1

, 𝑎
0
= 𝑎
0
, 𝑎

−1
= 𝑏
−1
√
2

3
,

𝑏
1
=

3𝑎
2

0

8𝑏
−1

, 𝑏
0
= −𝑎
0
√6, 𝑏

−1
= 𝑏
−1
,

𝑐 = 𝑐, 𝛾 = −𝑐, 𝜉
0
= 0,

(59)

where 𝑎
0
and 𝑏
−1

̸= 0 are free parameters.
From (59), substituting these results into (56), we obtain

the following exact solution:

𝑢 (𝑥, 𝑡)

=
𝑎
2

0
√6

8𝑏
−1

exp( 𝑥
𝛼

Γ (1 + 𝛼)
−

𝑐𝑡
𝛼

Γ (1 + 𝛼)
) + 𝑎
0

+ 𝑏
−1
√
2

3
exp(−(

𝑥
𝛼

Γ (1 + 𝛼)
−

𝑐𝑡
𝛼

Γ (1 + 𝛼)
))

× (
3𝑎
2

0

8𝑏
−1

exp( 𝑥
𝛼

Γ (1 + 𝛼)
−

𝑐𝑡
𝛼

Γ (1 + 𝛼)
) − 𝑎
0
√6

+𝑏
−1
exp(−(

𝑥
𝛼

Γ (1 + 𝛼)
−

𝑐𝑡
𝛼

Γ (1 + 𝛼)
)))

−1

.

(60)

7. Conclusion

In this paper, we have successfully developed fractional
complex transform with the help of exp-function method
to obtain exact solution of some fractional differential equa-
tions. The fractional complex transform and exp-function
methods are extremely simple but effective and powerful
for solving fractional differential equations. These methods
are accessible to solve other similar nonlinear equations in
fractional calculus. To our knowledge, these new solutions
have not been reported in former literature; they may be of
significant importance for the explanation of some special
physical phenomena.
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