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With respect to group decision making (GDM) problem with uncertain additive linguistic preference relations (UALPRs), we
investigate the efficient aggregation of the uncertain additive linguistic preference information. First, we introduce two measures
to assess the consistency level and the consensus level of uncertain additive linguistic preference information, respectively, and
study some of their desirable properties. Then, based on both the two measures, we propose a coinduced uncertain linguistic
ordered weighted averaging (IULOWA) operator, called the consistency and consensus coinduced uncertain linguistic ordered
weighted averaging (C2-IULOWA) operator, to aggregate individual uncertain additive linguistic preference information, in which
the consistency level and the consensus level synergistically serve as inducing variables and then guide the determination of the
associated weights. We have proved the collective uncertain linguistic preference information aggregated by the C2-IULOWA
operator that can maintain the fundamental properties of preference relation, such as indifference, reciprocity, and transitivity. By
using the C2-IULOWA operator, we develop a direct GDM approach with UALPRs. Finally, an illustrative example on the selection
of chief quality officer is used to demonstrate the effectiveness and rationalitly of the developed approach.

1. Introduction

In group decision making (GDM) problems, preference
relations are commonly used by decision makers (DMs)
to express their preference information based on pairwise
comparisons of alternatives.Three of themost common types
of preference relations are multiplicative preference relations
[1], fuzzy preference relations [2–7], and linguistic preference
relations [8–10]. Due to the complexity and uncertainty
involved in real-world decision problems and the inherent
subjective nature of human judgments, linguistic preference
relations can be more appropriate for capturing the lack of
precision in human behavior than others. Hence, decision
making based on linguistic preference relation has attracted
considerable research interests over the past decades [11–17].

However, sometimes, the DMs are willing or able to
provide only uncertain (or interval) linguistic information in

some particular situations because of time pressure, lack of
knowledge or data, and DMs’ limited expertise related to the
problem domain [18–24]. Xu [18] proposed the concept of
uncertain linguistic variable whose value is interval linguistic
information and developed the uncertain linguistic ordered
weighted averaging (ULOWA) operator and the uncertain
linguistic hybrid aggregation (ULHA) operator to deal with
multiple attribute group decision making problems. Xu [19]
defined the concept of uncertain additive linguistic pref-
erence relation (UALPR) and developed a direct approach
to GDM with uncertain linguistic averaging (ULA) and
uncertain linguistic weighted averaging (ULWA) operators.
Xu [20] introduced the concept of uncertain multiplicative
linguistic preference relation and the operational laws of
uncertain multiplicative linguistic variables and then pro-
posed the uncertain linguistic weighted geometric mean
(ULWGM) operator, uncertain linguistic ordered weighted
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geometric (ULOWG) operator, and induced uncertain lin-
guistic ordered weighted geometric (IULOWG) operator to
deal with GDM problems. Gao and Peng [21] presented a
novel quantified SWOT analysis methodology with uncer-
tain linguistic preference relations, interval fuzzy preference
relations, and interval multiplicative preference relations.
Chen et al. [22] developed a new compatibility for the
UALPRs and utilized it to determine the optimal weights
of experts in the GDM. Chen and Lee [23] presented an
interval linguistic labels orderedweighted average (ILLOWA)
operator and a consensus measure for autocratic decision
making using group recommendations. Peng et al. [24]
presented somemultigranular uncertain linguistic prioritized
aggregation operators to aggregate directly the uncertain lin-
guistic variables whose values come from the linguistic term
sets with different granularities and convey the prioritization
phenomenon among the aggregated arguments.

In GDM with all kinds of preference relations, con-
sistency and consensus of preference relations play vital
roles. The former refers to the capability of DMs to express
their preferences without contradiction; the latter reflects
the actual levels of agreement amongst all the individual
preferences. Thus, in order to derive a scientific and rea-
sonable decision result, measuring consistency level and
measuring consensus level of preference relation are indis-
pensable research topics. To date, although a great deal of
research has been conducted on the issues [3, 5–7, 9, 13–17],
the contributions of consistency and consensus measures of
UALPRs are little.

In the process of practical GDM, on the other hand, it
is very difficult for all DMs to construct perfect consistent
and consensual preference relations due to the uncertainty
and complexity of real world and the subjectivity of DMs’
judgments. Also, as pointed out by Saaty, improving con-
sistency does not mean getting an answer closer to real-
life situation. It only means that the judgments are closer
to being logically related than to being randomly chosen
[25]. Furthermore, forcing improvements in consistencymay
distort the individual’s true answer to some extent. The
similar situations also exist in consensus. In this paper, we
consider the problem that if the DMs are no longer available
after constructing preference relations and if the preference
relations are not perfect consistent and consensual, then how
to determine the scientific and reasonable decision results
with a higher level of consistency and consensus. To do
so, we shall first give the definitions of the measures of
consistency and consensus of UALPRs, present a consistency
and consensus-based coinduced uncertain linguistic OWA
operator to aggregate UALPRs in such a way that more
importance is placed on the most consistent and consensual
preference information, and then develop a GDM approach
with uncertain linguistic preference information.

The rest of this paper is set out as follows. Section 2
briefly introduces relevant concepts of uncertain linguistic
preference information. In Section 3 we define the consis-
tency measure and the consensus measure to assess the
consistency level and consensus level of uncertain linguistic
preference information, respectively, and study some of their
properties. On the basis of the two measures, we present

a consistency and consensus co-induced uncertain linguistic
OWA operator and discuss some of its desirable properties in
Section 4. In Section 5, based on the proposed operator, we
develop a direct GDM approach. Section 6 demonstrates the
effectiveness and rationally of the developed method with an
illustrative example on the selection of chief quality officer.
Section 7 concludes this paper.

2. Preliminaries

2.1. Linguistic Variables. Let 𝑆 = {𝑠
𝛼

| 𝛼 = 0, 1, 2, . . . , 𝜏} be
a linguistic term set with odd cardinality, which satisfies the
following characteristics: (1) the set is ordered: 𝑠

𝛼
> 𝑠
𝛽
if 𝛼 >

𝛽; (2) there is the reciprocal operator Neg(𝑠
𝛼
) = 𝑠
𝛽
such as

𝛼 + 𝛽 = 𝜏. For example, 𝑆 can be defined as

𝑆 = {𝑠
0
= extremely low, 𝑠

1
= very low,

𝑠
2
= low, 𝑠

3
= slightly low, 𝑠

4
= fair,

𝑠
5
= slightly high, 𝑠

6
= high,

𝑠
7
= very high, 𝑠

8
= extremely high} .

(1)

To preserve all the given information, Xu [12–14]
extended the discrete term set 𝑆 to a continuous term set 𝑆 =

{𝑠
𝛼
| 𝛼 ∈ [0, 𝑞]}, where 𝑞 (𝑞 > 𝜏) is a sufficiently large positive

integer. If 𝑠
𝛼
∈ 𝑆, then we call 𝑠

𝛼
the original term otherwise,

we call 𝑠
𝛼
the virtual term. In general, the decisionmaker uses

the original linguistic terms to evaluate alternatives, and the
virtual ones can only appear in operation.

Consider any two terms 𝑠
𝛼
, 𝑠
𝛽

∈ 𝑆 and 𝜇, 𝜇
1
, 𝜇
2
∈ [0, 1]

and some operational laws as follows [13]:

(1) 𝜇𝑠
𝛼
= 𝑠
𝜇𝛼

,

(2) 𝑠
𝛼
⊕ 𝑠
𝛽
= 𝑠
𝛼+𝛽

,

(3) 𝑠
𝛼
⊖ 𝑠
𝛽
= 𝑠
𝛼−𝛽

,

(4) (𝜇
1
+ 𝜇
2
) 𝑠
𝛼
= 𝜇
1
𝑠
𝛼
⊕ 𝜇
2
𝑠
𝛼
,

(5) 𝜇 (𝑠
𝛼
⊕ 𝑠
𝛽
) = 𝜇𝑠

𝛼
⊕ 𝜇𝑠
𝛽
,

(6) (𝜇
1
− 𝜇
2
) 𝑠
𝛼
= 𝜇
1
𝑠
𝛼
⊖ 𝜇
2
𝑠
𝛼
.

(2)

Definition 1 (see [21]). Let 𝐼(𝑠) be the lower index of 𝑠, and
name it as the gradation of 𝑠 in 𝑆. For example, if 𝑠 = 𝑠

𝛼
,

then 𝐼(𝑠) = 𝛼. Two operational laws of gradation function
are given as follows:

𝐼 (𝑠
𝛼
) + 𝐼 (𝑠

𝛽
) = 𝐼 (𝑠

𝛼
⊕ 𝑠
𝛽
) ,

𝐼 (𝑠
𝛼
) × 𝐼 (𝑠

𝛽
) = 𝐼 (𝑠

𝛼
⊗ 𝑠
𝛽
) .

(3)

2.2. Additive Uncertain Linguistic Preference Relations. Con-
sider a GDM problem, let 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} (𝑛 ≥ 2) be

the set of alternatives, and let 𝐷 = {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑚
} (𝑚 ≥

2) be the set of DMs. Every DM compares each pair of
alternatives in𝑋 and provides his/her preference of the alter-
natives with UALPRs {�̃�

(1)
, . . . , �̃�

(𝑘)
, . . . , �̃�

(𝑚)
}, where �̃�

(𝑘)
=
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(̃𝑙
(𝑘)

𝑖𝑗
)
𝑛×𝑛

= ([̃𝑙
(𝑘)𝐿

𝑖𝑗
, �̃�
(𝑘)𝑈

𝑖𝑗
])
𝑛×𝑛

, �̃�(𝑘)𝐿
𝑖𝑗

, �̃�
(𝑘)𝑈

𝑖𝑗
∈ [𝑠
0
, 𝑠
1
, . . . , 𝑠

𝜏
] (𝑘 = 1,

2, . . . , 𝑚; 𝑖, 𝑗 = 1, 2, . . . , 𝑛). The UALPR can be formally
defined as follows.

Definition 2 (see [19, 21, 22]). An UALPR �̃� = (̃𝑙
𝑖𝑗
)
𝑛×𝑛

on a set
of alternatives𝑋 is characterized by a function 𝜇

�̃�
: 𝑋×𝑋 →

𝑆 and satisfies

�̃�
𝑖𝑗
= [�̃�
𝐿

𝑖𝑗
, �̃�
𝑈

𝑖𝑗
] , 𝑠

0
≤ �̃�
𝐿

𝑖𝑗
≤ �̃�
𝑈

𝑖𝑗
≤ 𝑠
𝜏
,

�̃�
𝐿

𝑖𝑗
⊕ �̃�
𝑈

𝑗𝑖
= �̃�
𝑈

𝑖𝑗
⊕ �̃�
𝐿

𝑗𝑖
= 𝑠
𝜏
, �̃�

𝐿

𝑖𝑖
= �̃�
𝑈

𝑖𝑖
= 𝑠
𝜏/2

,

∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} ,

(4)

where the preference value �̃�
𝑖𝑗
= 𝜇
�̃�
(𝑥
𝑖
, 𝑥
𝑗
) indicates the pref-

erence degree of the alternative 𝑥
𝑖
over 𝑥

𝑗
and is interpreted

as 𝑥
𝑖
is �̃�
𝑖𝑗
as 𝑥
𝑗
, �̃�𝐿
𝑖𝑗
and �̃�
𝑈

𝑖𝑗
are the lower and upper limits of �̃�

𝑖𝑗
,

respectively, �̃�𝐿
𝑖𝑗
, �̃�
𝑈

𝑖𝑗
∈ [𝑠
0
, 𝑠
1
, . . . , 𝑠

𝜏
]. In particular, if �̃�𝐿

𝑖𝑗
= �̃�
𝑈

𝑖𝑗
,

∀𝑖, 𝑗 ∈ {1, . . . , 𝑛}, then �̃�
𝑖𝑗
is reduced to a linguistic preference

value 𝑙
𝑖𝑗
.

3. Consistency Level and Consensus Level

3.1. Consistency Measure. Consistency is usually character-
ized by transitivity. Some transitive properties of linguistic
preference relations can be described as follows [3, 5, 14]:
(1) weak transitivity, (2) max–min transitivity, (3) max–max
transitivity, (4) restricted max–min transitivity, (5) restricted
max–max transitivity, (6) multiplicative consistency, and
(7) additive consistency. Among these concepts, the most
commonly used form is additive consistency [5, 6, 13, 15, 26–
29]. Recently, Alonso et al. [26] introduced an additive tran-
sitivity property of the interval-valued preference relations
and constructed a consistency measure; Gong et al. [27] also
presented a similar additive transitivity property. Inspired
by their ideas, we further redefine an additive transitivity
of UALPRs to guarantee the indifference and reciprocity
properties simultaneously. Then based on the definition, we
propose a consistency measure to assess the consistency level
of an UALPR.

Definition 3. An UALPR �̃� = (̃𝑙
𝑖𝑗
)
𝑛×𝑛

is called additive
consistent uncertain linguistic preference relation, if it
satisfies the following additive transitivity:

�̃�
𝐿

𝑖𝑗
= min (�̃�

𝐿

𝑖𝑡
⊕ �̃�
𝑈

𝑡𝑗
⊖ 𝑠
𝜏/2

, �̃�
𝑈

𝑖𝑡
⊕ �̃�
𝐿

𝑡𝑗
⊖ 𝑠
𝜏/2

) ,

�̃�
𝑈

𝑖𝑗
= max (�̃�𝑈

𝑖𝑡
⊕ �̃�
𝐿

𝑡𝑗
⊖ 𝑠
𝜏/2

, �̃�
𝐿

𝑖𝑡
⊕ �̃�
𝑈

𝑡𝑗
⊖ 𝑠
𝜏/2

) ,

∀𝑖, 𝑗, 𝑡 ∈ {1, . . . , 𝑛} .

(5)

Obviously, the preference value �̃�
𝑖𝑗
can be estimated by

using an intermediate alternative 𝑥
𝑡
:

𝑒�̃�
𝐿

𝑖𝑗
= min (�̃�

𝐿

𝑖𝑡
⊕ �̃�
𝑈

𝑡𝑗
⊖ 𝑠
𝜏/2

, �̃�
𝑈

𝑖𝑡
⊕ �̃�
𝐿

𝑡𝑗
⊖ 𝑠
𝜏/2

) ,

𝑒�̃�
𝑈

𝑖𝑗
= max (�̃�𝑈

𝑖𝑡
⊕ �̃�
𝐿

𝑡𝑗
⊖ 𝑠
𝜏/2

, �̃�
𝐿

𝑖𝑡
⊕ �̃�
𝑈

𝑡𝑗
⊖ 𝑠
𝜏/2

) ,

∀𝑖, 𝑗, 𝑡 ∈ {1, . . . , 𝑛} .

(6)

Indeed, if the �̃�
𝑖𝑗
is completely consistent in an UALPR,

then 𝑒�̃�
𝑡

𝑖𝑗
= �̃�
𝑖𝑗
, ∀𝑡 ∈ {1, . . . , 𝑛}; that is, 𝑒�̃�𝐿𝑡

𝑖𝑗
= �̃�
𝐿

𝑖𝑗
and 𝑒�̃�

𝑈𝑡

𝑖𝑗
=

�̃�
𝑈

𝑖𝑗
. However, it does not always hold due to the uncertainty

and complexity of real-world decision problems and the
subjectivity of DMs’ judgments. In such case, we can get a
deviation.

Definition 4. Let �̃� = (̃𝑙
𝑖𝑗
)
𝑛×𝑛

be an UALPR; then

Δ�̃�
𝑖𝑗
= (Δ�̃�
𝐿

𝑖𝑗
, Δ�̃�
𝑈

𝑖𝑗
)

= (

∑
𝑛

𝑡=1,𝑡 ̸= 𝑖,𝑗


𝐼 (𝑒�̃�
𝐿𝑡

𝑖𝑗
) − 𝐼 (�̃�

𝐿

𝑖𝑗
)


𝑛 − 2
,

∑
𝑛

𝑡=1,𝑡 ̸= 𝑖,𝑗


𝐼 (𝑒�̃�
𝑈𝑡

𝑖𝑗
) − 𝐼 (�̃�

𝑈

𝑖𝑗
)


𝑛 − 2
)

(7)

is called the deviation between �̃�
𝑖𝑗
and its estimated ones 𝑒�̃�𝑡

𝑖𝑗
=

�̃�
𝑖𝑗
, 1 ≤ 𝑡 ≤ 𝑛, 𝑡 ̸= 𝑖, 𝑗.
Clearly, when Δ�̃�

𝑖𝑗
= (0, 0), then there is no inconsistency

at all between �̃�
𝑖𝑗
and the rest of preference values in the

UALPR, and the higher isΔ�̃�
𝑖𝑗
, themore inconsistent is �̃�

𝑖𝑗
with

respect to the rest of information in the UALPR.
Using the deviation Δ�̃�

𝑖𝑗
, we define a consistency measure

to assess the consistent level of �̃�
𝑖𝑗
.

Definition 5. Let �̃� = (̃𝑙
𝑖𝑗
)
𝑛×𝑛

be an UALPR; then

𝑐𝑡
𝑖𝑗
=

𝜏 − Δ�̃�
𝑖𝑗

𝜏
= (𝑐𝑡
𝐿

𝑖𝑗
, 𝑐𝑡
𝑈

𝑖𝑗
) = (

𝜏 − Δ�̃�
𝐿

𝑖𝑗

𝜏
,

𝜏 − Δ�̃�
𝑈

𝑖𝑗

𝜏
) (8)

is called the consistency measure of �̃�
𝑖𝑗
.

This consistency measure has a definite physical implica-
tion and reflects the consistency level between the preference
value �̃�

𝑖𝑗
and the rest of the preference values in the UALPR.

Clearly, when 𝑐𝑡
𝑖𝑗

= (1, 1), then there is no inconsistency at
all between �̃�

𝑖𝑗
and the other preference values, and the lower

is the value of 𝑐𝑡
𝑖𝑗
, the more inconsistent is �̃�

𝑖𝑗
with respect to

the rest of information.

Theorem 6. If �̃� = (̃𝑙
𝑖𝑗
)
𝑛×𝑛

is an UALPR, then

𝑐𝑡
𝐿

𝑖𝑗
= 𝑐𝑡
𝑈

𝑗𝑖
, 𝑐𝑡
𝑈

𝑖𝑗
= 𝑐𝑡
𝐿

𝑗𝑖
, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} . (9)
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Proof. Since

Δ�̃�
𝐿

𝑖𝑗
= (

𝑛

∑

𝑡=1,𝑡 ̸= 𝑖,𝑗


𝐼 (𝑒�̃�
𝐿𝑡

𝑖𝑗
) − 𝐼 (�̃�

𝐿

𝑖𝑗
)

) × (𝑛 − 2)

−1

= (

𝑛

∑

𝑡=1,𝑡 ̸= 𝑖,𝑗


min (𝐼 (�̃�

𝐿

𝑖𝑡
) + 𝐼 (�̃�

𝑈

𝑡𝑗
) − 𝐼 (𝑠

𝜏/2
) , (�̃�
𝑈

𝑖𝑡
)

+𝐼 (�̃�
𝐿

𝑡𝑗
) − 𝐼 (𝑠

𝜏/2
)) −𝐼 (�̃�

𝐿

𝑖𝑗
)

)

× (𝑛 − 2)
−1

= (

𝑛

∑

𝑡=1,𝑡 ̸= 𝑖,𝑗


min (𝜏 − 𝐼 (�̃�

𝑈

𝑡𝑖
) + 𝜏 − 𝐼 (�̃�

𝐿

𝑗𝑡
)

−
𝜏

2
, 𝜏 − 𝐼 (�̃�

𝐿

𝑡𝑖
)

+ 𝜏 − 𝐼 (�̃�
𝑈

𝑗𝑡
) − 𝑠
𝜏/2

) −𝜏 + 𝐼 (�̃�
𝑈

𝑗𝑖
)

)

× (𝑛 − 2)
−1

= (

𝑛

∑

𝑡𝑘=1,𝑡 ̸= 𝑖,𝑗


min(−𝐼 (�̃�

𝑈

𝑡𝑖
) − 𝐼 (�̃�

𝐿

𝑗𝑡
) +

𝜏

2
, −𝐼 (�̃�

𝐿

𝑡𝑖
)

− 𝐼 (�̃�
𝑈

𝑗𝑡
) + 𝑠
𝜏/2

) +𝐼 (�̃�
𝑈

𝑗𝑖
)

)

× (𝑛 − 2)
−1

= (

𝑛

∑

𝑡=1,𝑡 ̸= 𝑖,𝑗


(−1) (max (𝐼 (�̃�𝑈

𝑡𝑖
) + 𝐼 (�̃�

𝐿

𝑗𝑡
) −

𝜏

2
, 𝐼 (�̃�
𝐿

𝑡𝑖
)

+ 𝐼 (�̃�
𝑈

𝑗𝑡
) − 𝑠
𝜏/2

) −𝐼 (�̃�
𝑈

𝑗𝑖
))


)

× (𝑛 − 2)
−1

= (

𝑛

∑

𝑡=1,𝑡 ̸= 𝑖,𝑗


(−1) 𝐼 (max (�̃�𝑈

𝑡𝑖
⊕ �̃�
𝐿

𝑗𝑡
⊖ 𝑠
𝜏/2

,

�̃�
𝐿

𝑡𝑖
⊕ �̃�
𝑈

𝑗𝑡
⊖ 𝑠
𝜏/2

) ⊖�̃�
𝑈

𝑗𝑖
)

)

× (𝑛 − 2)
−1

= Δ�̃�
𝑈

𝑗𝑖
,

(10)

then

𝑐𝑡
𝐿

𝑖𝑗
= 𝑐𝑡
𝑈

𝑗𝑖
. (11)

Similarly, we can obtain 𝑐𝑡
𝑈

𝑖𝑗
= 𝑐𝑡
𝐿

𝑗𝑖
. This completes the above

proof.

In particular, if �̃�
𝑖𝑗
reduced to 𝑙

𝑖𝑗
, then the consistency level

of 𝑙
𝑖𝑗
has property 𝑐𝑡

𝑖𝑗
= 𝑐𝑡
𝑗𝑖
. Furthermore, we can obtain

the consistency level of the whole UALPR by applying the
arithmetic mean.

Definition 7. Let �̃� = (̃𝑙
𝑖𝑗
)
𝑛×𝑛

be an UALPR; then

𝐶𝑡 = (𝐶𝑡
𝐿
, 𝐶𝑡
𝑈
)

= (
1

(𝑛
2
− 𝑛)

𝑛

∑

𝑖,𝑗=1,

𝑖 ̸= 𝑗

𝑐𝑡
𝐿

𝑖𝑗
,

1

(𝑛
2
− 𝑛)

𝑛

∑

𝑖,𝑗=1,

𝑖 ̸= 𝑗

𝑐𝑡
𝑈

𝑖𝑗
)

(12)

is called the consistency measure of �̃�.
If 𝐶𝑡 = (1, 1), then the UALPR �̃� is fully consistent;

otherwise, the lower 𝐶�̃� is the more inconsistent �̃� is.

Theorem 8. If �̃� = (̃𝑙
𝑖𝑗
)
𝑛×𝑛

is an UALPR, then

𝐶𝑡
𝐿
= 𝐶𝑡
𝑈
. (13)

Proof. On has

𝐶𝑡
𝐿
=

1

(𝑛
2
− 𝑛)

𝑛

∑

𝑖,𝑗=1,

𝑖 ̸= 𝑗

𝑐𝑡
𝐿

𝑖𝑗

=
1

(𝑛
2
− 𝑛)

𝑛

∑

𝑖,𝑗=1,

𝑖 ̸= 𝑗

𝑐𝑡
𝑈

𝑗𝑖

=
1

(𝑛
2
− 𝑛)

𝑛

∑

𝑖,𝑗=1,

𝑖 ̸= 𝑗

𝑐𝑡
𝑈

𝑖𝑗
= 𝐶𝑡
𝑈
.

(14)

By Theorem 8, we find that the consistency level of the
whole UALPR is certain.

3.2. Consensus Measure. Using anonymous ways of the defi-
nitions of consistency measure, we define a consensus mea-
sure to assess the level of agreement between the individual
preference value and the collective ones.

Definition 9. Let {�̃�
(𝑘)

= (̃𝑙
(𝑘)

𝑖𝑗
)
𝑛×𝑛

, 𝑘 = 1, 2, . . . , 𝑚} be a
group of UALPRs provided by DMs; then a deviation of
the uncertain linguistic preference value �̃�

(𝑘)

𝑖𝑗
provided by 𝑑

𝑘
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and the ones �̃�
(𝑝)

𝑖𝑗
∈ �̃�
(𝑝) by 𝑑

𝑝
(𝑝 = 1, 2, . . . , 𝑚, 𝑝 ̸= 𝑘) is

defined as
Δ

�̃�
(𝑘)

𝑖𝑗
= (Δ

𝑙
(𝑘)𝐿

𝑖𝑗
, Δ

𝑙
(𝑘)𝑈

𝑖𝑗
)

= (

∑
𝑚

𝑝=1,𝑝 ̸= 𝑘


𝐼 (𝑙
(𝑘)𝐿

𝑖𝑗
) − 𝐼 (𝑙

(𝑝)𝐿

𝑖𝑗
)


𝑚 − 1
,

∑
𝑚

𝑝=1,𝑝 ̸= 𝑘


𝐼 (𝑙
(𝑘)𝑈

𝑖𝑗
) − 𝐼 (𝑙

(𝑝)𝑈

𝑖𝑗
)


𝑚 − 1
) .

(15)

Clearly, Δ

�̃�
(𝑘)

𝑖𝑗
= (0, 0) indicates that the �̃�

𝑖𝑗
provided

by 𝑑
𝑘
and the ones provided by 𝑑

𝑝
(𝑝 = 1, 2, . . . , 𝑚, 𝑝 ̸= 𝑘)

are not contradictory at all, and the higher the Δ

�̃�
(𝑘)

𝑖𝑗
, is the

more decentralized the opinions between 𝑑
𝑘
and 𝑑

𝑝
(𝑝 =

1, 2, . . . , 𝑚, 𝑝 ̸= 𝑘) on the preference value �̃�
𝑖𝑗
are. Based on the

deviation Δ

�̃�
(𝑘)

𝑖𝑗
, we develop a consensus measure of �̃�(𝑘)

𝑖𝑗
.

Definition 10. Let {�̃�(𝑘) = (̃𝑙
(𝑘)

𝑖𝑗
)
𝑛×𝑛

, 𝑘 = 1, 2, . . . , 𝑚} be a group
of UALPRs provided by DMs; then the consensus measure of
�̃�
(𝑘)

𝑖𝑗
is defined as follows:

𝑐𝑎
(𝑘)

𝑖𝑗
= (𝑐𝑎
(𝑘)𝐿

𝑖𝑗
, 𝑐𝑎
(𝑘)𝑈

𝑖𝑗
)

= (1 −

∑
𝑚

𝑝=1,𝑝 ̸= 𝑘


𝐼 (𝑙
(𝑘)𝐿

𝑖𝑗
) − 𝐼 (𝑙

(𝑝)𝐿

𝑖𝑗
)


𝜏 (𝑚 − 1)
,

1 −

∑
𝑚

𝑝=1,𝑝 ̸= 𝑘


𝐼 (𝑙
(𝑘)𝑈

𝑖𝑗
) − 𝐼 (𝑙

(𝑝)𝑈

𝑖𝑗
)


𝜏 (𝑚 − 1)
) .

(16)

Clearly, when 𝑐𝑎
(𝑘)

𝑖𝑗
= (1, 1), then there are no decentral-

ized opinions at all between 𝑑
𝑘
and 𝑑
𝑝
(𝑝 = 1, 2, . . . , 𝑚, 𝑝 ̸= 𝑘)

on the preference value �̃�
𝑖𝑗
, and the lower the 𝑐𝑎

(𝑘)

𝑖𝑗
is the

more decentralized the opinions between 𝑑
𝑘
and 𝑑

𝑝
(𝑝 = 1,

2, . . . , 𝑚, 𝑝 ̸= 𝑘) on the preference value �̃�
𝑖𝑗
are. By applying

the arithmetic mean, we have the consensus measures of the
whole UALPRs.

Definition 11. Let {�̃�(𝑘) = (̃𝑙
(𝑘)

𝑖𝑗
)
𝑛×𝑛

, 𝑘 = 1, 2, . . . , 𝑚} be a group
of UALPRs provided by DMs; then the consensus measures
of the whole UALPRs are as follows:

𝐶𝑎
𝑘
= (𝐶𝑎

𝐿

𝑘
, 𝐶𝑎
𝑈

𝑘
)

= (
1

𝑛 (𝑛 − 1)

𝑛

∑

𝑖,𝑗=1,𝑗 ̸= 𝑖

𝑐𝑎
(𝑘)𝐿

𝑖𝑗
,

1

𝑛 (𝑛 − 1)

𝑛

∑

𝑖,𝑗=1,𝑗 ̸= 𝑖

𝑐𝑎
(𝑘)𝑈

𝑖𝑗
) .

(17)

Clearly, when 𝐶𝑎
𝑘

= (1, 1), then there are no decen-
tralized opinions at all between 𝑑

𝑘
and 𝑑

𝑝
(𝑝 = 1, 2, . . . , 𝑚,

𝑝 ̸= 𝑘), and the lower the 𝐶𝑎
𝑘
is, the more decentralized the

opinions of 𝑑
𝑘
and the others are.

Theorem 12. If {�̃�(𝑘) = (̃𝑙
(𝑘)

𝑖𝑗
)
𝑛×𝑛

, 𝑘 = 1, 2, . . . , 𝑚} is a group of
UALPRs, then

𝑐𝑎
(𝑘)𝐿

𝑖𝑗
= 𝑐𝑎
(𝑘)𝑈

𝑗𝑖
, 𝑐𝑎

(𝑘)𝑈

𝑖𝑗
= 𝑐𝑎
(𝑘)𝐿

𝑗𝑖
, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} . (18)

Proof. On has

𝑐𝑎
(𝑘)𝐿

𝑖𝑗
= 1 −

∑
𝑚

𝑝=1,𝑝 ̸= 𝑘


𝐼 (𝑙
(𝑘)𝐿

𝑖𝑗
) − 𝐼 (𝑙

(𝑝)𝐿

𝑖𝑗
)


𝜏 (𝑚 − 1)

= 1 −

∑
𝑚

𝑝=1,𝑝 ̸= 𝑘


(−1) 𝐼 (𝑙

(𝑘)𝑈

𝑗𝑖
) − 𝐼 (𝑙

(𝑝)𝑈

𝑗𝑖
)


𝜏 (𝑚 − 1)

= 𝑐𝑎
(𝑘)𝑈

𝑗𝑖
.

(19)

which completes the proof of Theorem 12.

In particular, if UALPRs �̃�
𝑖𝑗
reduced to 𝑙

𝑖𝑗
, then the con-

sensus level of 𝑙
𝑖𝑗
has property 𝑐𝑎

𝑖𝑗
= 𝑐𝑎
𝑗𝑖
.

Theorem 13. If {�̃�(𝑘) = (̃𝑙
(𝑘)

𝑖𝑗
)
𝑛×𝑛

, 𝑘 = 1, 2, . . . , 𝑚} is a group of
UALPRs, then

𝐶𝑎
𝐿

𝑘
= 𝐶𝑎
𝑈

𝑘
. (20)

Proof. On has

𝐶𝑎
𝐿

𝑘
=

1

𝑛 (𝑛 − 1)

𝑛

∑

𝑖,𝑗=1,𝑗 ̸= 𝑖

𝑐𝑎
(𝑘)𝐿

𝑖𝑗

=
1

𝑛 (𝑛 − 1)

𝑛

∑

𝑖,𝑗=1,𝑗 ̸= 𝑖

𝑐𝑎
(𝑘)𝑈

𝑗𝑖

=
1

𝑛 (𝑛 − 1)

𝑛

∑

𝑖,𝑗=1,𝑗 ̸= 𝑖

𝑐𝑎
(𝑘)𝑈

𝑖𝑗
= 𝐶𝑎
𝑈

𝑘
.

(21)

By Theorem 13, we find that the consensus level of the
whole UALPR is also certain.

4. Aggregation of Uncertain Linguistic
Preference Information Based on
Consistency and Consensus

To obtain collective preference information by combining
the individual ones, an aggregation operator is needed. The
ordered weighted averaging (OWA) and weighted arithmetic
averaging (WAA) are the most common aggregation opera-
tors. The induced OWA (IOWA) operator provided by Yager
and Filev [30] is a more general type of the OWA operator, in
which the ordering of the arguments is induced by the order
inducing variables, rather than the values of the arguments.
The IOWA operator can be defined as follows.

Definition 14. An IOWA operator of dimension 𝑛 is a map-
ping IOWA : 𝑅

𝑛
→ 𝑅 can be defined as follows:

IOWA
𝑤
(⟨𝜇
1
, 𝑎
1
⟩ , ⟨𝜇
2
, 𝑎
2
⟩ , . . . , ⟨𝜇

𝑛
, 𝑎
𝑛
⟩)

=

𝑛

∑

𝑗=1

𝑤
𝑗
𝑎
𝜎(𝑗)

,

(22)
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where 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is an associated weighting

vector, such that 0 ≤ 𝑤
𝑗

≤ 1, ∑𝑛
𝑗=1

𝑤
𝑗

= 1; 𝑎
𝜎(𝑗)

is the 𝑎
𝑗

value of the OWA pair ⟨𝜇
𝑗
, 𝑎
𝑗
⟩ having the 𝑗th largest 𝜇

𝑗
; 𝜇
𝑗
in

⟨𝜇
𝑗
, 𝑎
𝑗
⟩ is referred to as the order inducing variable and 𝑎

𝑗
as

the argument variable.
Note that (22) can be equivalently written as

IOWA
𝑤
(⟨𝜇
1
, 𝑎
1
⟩ , ⟨𝜇
2
, 𝑎
2
⟩ , . . . , ⟨𝜇

𝑛
, 𝑎
𝑛
⟩) =

𝑛

∑

𝑗=1

𝑤
𝜌(𝑗)

𝑎
𝑗
,

(23)

where 𝜌 = 𝜎
−1

: {1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑛} is the inverse
permutation of 𝜎 and 𝑎

𝑗
is the value of the OWA pair ⟨𝜇

𝑗
, 𝑎
𝑗
⟩

having the 𝜌(𝑗)th largest 𝜇
𝑗
. 𝜇
𝑗
in ⟨𝜇
𝑗
, 𝑎
𝑗
⟩ is referred to as the

order inducing variable and 𝑎
𝑗
as the argument variable.

Based on IOWA operator, Xu [31] presented an induced
uncertain linguistic OWA operator to aggregate uncertain
linguistic variables.

Definition 15. An induced uncertain linguistic OWA
(IULOWA) operator is defined as follows:

IULOWA
𝑤
(⟨𝜇
1
, 𝑠
1
⟩ , ⟨𝜇
2
, 𝑠
2
⟩ , . . . , ⟨𝜇

𝑛
, 𝑠
𝑛
⟩)

=

𝑛

⨁

𝑗=1

𝑤
𝑗
𝑠
𝛽𝑗

= [

[

𝑛

⨁

𝑗=1

𝑤
𝑗
𝑠
𝐿

𝛽𝑗
,

𝑛

⨁

𝑗=1

𝑤
𝑗
𝑠
𝑈

𝛽𝑗

]

]

,

(24)

where𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
) is an associated weighting vector,

such that 0 ≤ 𝑤
𝑗

≤ 1, ∑𝑛
𝑗=1

𝑤
𝑗

= 1; 𝑠
𝛽𝑗

is the 𝑠
𝑗
value of

the OWA pair ⟨𝜇
𝑗
, 𝑠
𝑗
⟩ having the𝑗th largest 𝜇

𝑗
⋅ 𝜇
𝑗
in ⟨𝜇
𝑗
, 𝑠
𝑗
⟩

is referred to as the order inducing variable and 𝑠
𝑗
as the

argument variable.
The key issues in the IOWA operator theory are to

determine the order inducing variables and then derive the
associated weights based on them, but quite few studies have
been conducted on the issues. Recently, Chiclana et al. [32]
introduced a consistency-inducedOWA (C-IOWA) operator,
in which the ordering of the preference value is based upon its
consistency, and it is further studied in [6, 7, 26, 28, 29].Wu et
al. [17] presented a compatibility index ILOWG (CI-ILOWG)
operator, which induces the order of argument values by the
compatibility index of experts they also verified that the CI-
ILOWG operator guarantees the compatibility degree is at
least as good as the arithmetic mean of all the individual
compatibility degrees. As aforementioned, both consensus
and consistency should be considered simultaneously in
any rational GDM. To more effectively relieve the influence
some individuals may assign lower consistent and lower
centralized preference values to their preferred or repugnant
objects, it is very reasonable and meaningful that by assign-
ing low weights to those “inconsistent” or “decentralized”
opinions in preference aggregation procedure. Based on the
discussions, we here propose a consistency and consensus
co-induced uncertain linguistic ordered weighted averaging

(C2-IULOWA) operator to aggregate individual preference
information in such a way that the greater weight is given the
most consistent and consensual preference information.

Definition 16. Let {�̃�
(𝑘)

= (̃𝑙
(𝑘)

𝑖𝑗
)
𝑛×𝑛

, 𝑘 = 1, 2, . . . , 𝑚} be
a group of UALPRs to aggregate, where �̃�

(𝑘)
= (̃𝑙
(𝑘)

𝑖𝑗
) =

([̃𝑙
(𝑘)𝐿

𝑖𝑗
, �̃�
(𝑘)𝑈

𝑖𝑗
]) and {𝐶𝑡

1
, 𝐶𝑡
2
, . . . , 𝐶𝑡

𝑚
} and {𝐶𝑎

1
, 𝐶𝑎
2
, . . . , 𝐶𝑎

𝑚
}

are their corresponding consistency level and consensus
level, respectively; then a consensus and consistency co-
induced uncertain linguistic orderedweighted averaging (C2-
IULOWA) operator is defined as

IULOWA
𝐶
2
→𝑤

(⟨𝐶𝑎
1
, 𝐶𝑡
1
, �̃�
(1)

⟩ , ⟨𝐶𝑎
2
, 𝐶𝑡
2
, �̃�
(2)

⟩ , . . . ,

⟨𝐶𝑎
𝑚
, 𝐶𝑡
𝑚
, �̃�
(𝑚)

⟩)

= [

[

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝐿

𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

,

⨁
𝑚

𝑗=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝑈

𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

]

]

= [

[

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝐿

𝑖𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

,

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝑈

𝑖𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

]

]𝑛×𝑛

,

(25)

where 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑇 is an associated weighting

vector, such that 0 ≤ 𝑤
𝑗
≤ 1, ∑𝑚

𝑗=1
𝑤
𝑗
= 1 and the consen-

sus level𝐶𝑎
𝑘
and the consistency level𝐶𝑡

𝑘
are simultaneously

referred to as the order inducing variables and �̃�
(𝑘)

=

[̃𝑙
(𝑘)𝐿

𝑖𝑗
, �̃�
(𝑘)𝑈

𝑖𝑗
] as the argument variable. 𝜉(⋅) and 𝜁(⋅) are per-

mutation functions such that �̃�(𝑘) is the preference relation
which has the 𝜉(𝑘)th and 𝜁(𝑘)th largest 𝐶𝑎

𝑘
and 𝐶𝑡

𝑘
. In

particular, when �̃�
𝐿

𝑖𝑗
= �̃�
𝑈

𝑖𝑗
, the C2-IULOWA operator reduced

to a consensus and consistency co-induced linguistic ordered
weighted averaging (C2-ILOWA) operator:

ILOWA
𝐶
2
→𝑤

(⟨𝐶𝑎
𝑘
, 𝐶𝑡
𝑘
, 𝐿
(𝑘)

⟩ , 𝑘 = 1, . . . , 𝑚)

=

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝐿
(𝑘)

𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

= [

[

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑙
(𝑘)

𝑖𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

]

]𝑛×𝑛.

(26)

Theorem 17. If a group of UALPRs {�̃�(𝑘) = (̃𝑙
(𝑘)

𝑖𝑗
)
𝑛×𝑛

, 𝑘 = 1, 2,

. . . , 𝑚} to aggregate has identical consistency level, that is, 𝑐𝑡
1
=

𝑐𝑡
2

= ⋅ ⋅ ⋅ = 𝑐𝑡
𝑚
, then the C2-IULOWA operator becomes

a consensus-induced uncertain linguistic ordered weighted
averaging (Ca-IULOWA) operator:

IULOWA
𝐶𝑎→𝑤

(⟨𝐶𝑎
1
, �̃�
(1)

⟩ , ⟨𝐶𝑎
2
, �̃�
(2)

⟩ , . . . ,

⟨𝐶𝑎
𝑚
, �̃�
(𝑚)

⟩)

= [

𝑚

⨁

𝑘=1

𝑤
𝜉(𝑘)

�̃�
(𝑘)𝐿

𝑖𝑗
,

𝑚

⨁

𝑘=1

𝑤
𝜉(𝑘)

�̃�
(𝑘)𝑈

𝑖𝑗
] .

(27)
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Proof. On has

IULOWA
𝐶
2
→𝑤

(⟨𝐶𝑎
1
, 𝐶𝑡
1
, �̃�
(1)

⟩ , ⟨𝐶𝑎
2
, 𝐶𝑡
2
, �̃�
(2)

⟩ , . . . ,

⟨𝐶𝑎
𝑚
, 𝐶𝑡
𝑚
, �̃�
(𝑚)

⟩)

= [

[

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝐿

𝑖𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

,

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝑈

𝑖𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

]

]

= [

[

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝐿

𝑖𝑗
(1/𝑛)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

(1/𝑛)
,

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝑈

𝑖𝑗
(1/𝑛)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

(1/𝑛)

]

]

= [

𝑚

⨁

𝑘=1

𝑤
𝜉(𝑘)

�̃�
(𝑘)𝐿

𝑖𝑗
,

𝑚

⨁

𝑘=1

𝑤
𝜉(𝑘)

�̃�
(𝑘)𝑈

𝑖𝑗
]

= IULOWA
𝐶𝑎→𝑤

(⟨𝐶𝑎
1
, �̃�
(1)

⟩ , ⟨𝐶𝑎
2
, �̃�
(2)

⟩ , . . . ,

⟨𝐶𝑎
𝑚
, �̃�
(𝑚)

⟩) .

(28)

Theorem 18. If a group of UALPRs {�̃�(𝑘) = (̃𝑙
(𝑘)

𝑖𝑗
)
𝑛×𝑛

, 𝑘 = 1,

2, . . . , 𝑚} to aggregate has identical consensus level, that is,
𝑐𝑎
1
= 𝑐𝑎
2
= ⋅ ⋅ ⋅ = 𝑐𝑎

𝑚
, then the C2-IULOWAoperator becomes

a consistency-induced uncertain linguistic ordered weighted
averaging (Ct-IULOWA) operator:

IULOWA
𝐶𝑡→𝑤

(⟨𝐶𝑡
1
, �̃�
(1)

⟩ , ⟨𝐶𝑡
2
, �̃�
(2)

⟩ , . . . ,

⟨𝐶𝑡
𝑚
, �̃�
(𝑚)

⟩)

= [

𝑚

⨁

𝑘=1

𝑤
𝜁(𝑘)

�̃�
(𝑘)𝐿

𝑖𝑗
,

𝑚

⨁

𝑘=1

𝑤
𝜁(𝑘)

�̃�
(𝑘)𝑈

𝑖𝑗
] .

(29)

Proof. On has

IULOWA
𝐶
2
→𝑤

(⟨𝐶𝑎
1
, 𝐶𝑡
1
, �̃�
(1)

⟩ ,

⟨𝐶𝑎
2
, 𝐶𝑡
2
, �̃�
(2)

⟩ , . . . ,

⟨𝐶𝑎
𝑚
, 𝐶𝑡
𝑚
, �̃�
(𝑚)

⟩)

= [

[

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝐿

𝑖𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

,

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝑈

𝑖𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

]

]

= [

[

⨁
𝑚

𝑘=1
(1/𝑛) �̃�

(𝑘)𝐿

𝑖𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
(1/𝑛) 𝑤

𝜁(𝑘)

,

⨁
𝑚

𝑘=1
(1/𝑛) �̃�

(𝑘)𝑈

𝑖𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
(1/𝑛) 𝑤

𝜁(𝑘)

]

]

= [

𝑚

⨁

𝑘=1

𝑤
𝜁(𝑘)

�̃�
(𝑘)𝐿

𝑖𝑗
,

𝑚

⨁

𝑘=1

𝑤
𝜁(𝑘)

�̃�
(𝑘)𝑈

𝑖𝑗
]

= IULOWA
𝐶𝑡→𝑤

(⟨𝐶𝑡
1
, �̃�
(1)

⟩ , ⟨𝐶𝑡
2
, �̃�
(2)

⟩ , . . . ,

⟨𝐶𝑡
𝑚
, �̃�
(𝑚)

⟩) .

(30)

From Definition 16 and the previous theorems, we know
the following.

(1) The inducing variables of the C2-IULOWA operator
are characterized by the consistency measure and
the consensus measure, which synergistically reflect
the consensus level and the consistency level of
UALPRs and participate to guide the determination
of associated weights.

(2) TheC2-IULOWAoperator generalizes the consensus-
induced uncertain linguistic OWA operators and
consistency-induced uncertain linguistic OWA oper-
ators, which comprehensively merge the information
associated with the properties of preference relation
in the preference aggregation.

Moreover, it is easy to verify that the C2-IULOWA oper-
ator is monotonic, commutative, bounded, and idempotent;
the proofs of them are omitted here because they are trivial.
In the following, we study the rationality of the C2-IULOWA
operator that means the aggregated uncertain linguistic
preference relations maintain the essential properties of
preference relations such as the indifference, the reciprocity,
and the consistency properties.

Since the C2-IULOWA operator is idempotent, the indif-
ference property is obvious and its proofs are omitted here.
Now we verify the reciprocity property.

Since �̃�
(𝑘)

= ([̃𝑙
(𝑘)𝐿

𝑖𝑗
, �̃�
(𝑘)𝑈

𝑖𝑗
])
𝑛×𝑛

, 𝑘 = 1, . . . , 𝑚, are UALPRs,
we have �̃�(𝑘)𝐿

𝑖𝑗
⊕ �̃�
(𝑘)𝑈

𝑗𝑖
= 𝑠
𝜏
, �̃�(𝑘)𝑈
𝑖𝑗

⊕ �̃�
(𝑘)𝐿

𝑗𝑖
= 𝑠
𝜏
, �̃�(𝑘)𝑈
𝑖𝑖

= �̃�
(𝑘)𝐿

𝑖𝑖
= 𝑠
𝜏/2

.
Thus

�̃�
(𝐶)𝐿

𝑖𝑗
⊕ �̃�
(𝐶)𝑈

𝑗𝑖
=

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝐿

𝑖𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

⊕

⨁
𝑛

𝑗=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝑈

𝑗𝑖
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

=

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

(�̃�
(𝑘)𝐿

𝑖𝑗
⊕ �̃�
(𝑘)𝑈

𝑗𝑖
)𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

=

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑠
𝜏
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

= 𝑠
𝜏
.

(31)

Similarly, we can verify �̃�
(𝐶)𝑈

𝑖𝑗
⊕ �̃�
(𝐶)𝐿

𝑗𝑖
= 𝑠
𝜏
.

Then we verify the consistency property.
Since �̃�(𝑘) = ([̃𝑙

(𝑘)𝐿

𝑖𝑗
, �̃�
(𝑘)𝑈

𝑖𝑗
])
𝑛×𝑛

, 𝑘 = 1, . . . , 𝑚, are consistent,
we have

�̃�
(𝑘)𝐿

𝑖𝑗
= min (�̃�

(𝑘)𝐿

𝑖𝑡
⊕ �̃�
(𝑘)𝑈

𝑡𝑗
⊖ 𝑠
𝜏/2

, �̃�
(𝑘)𝑈

𝑖𝑡
⊕ �̃�
(𝑘)𝐿

𝑡𝑗
⊖ 𝑠
𝜏/2

) ,

�̃�
(𝑘)𝑈

𝑖𝑗
= max (�̃�(𝑘)𝑈

𝑖𝑡
⊕ �̃�
(𝑘)𝐿

𝑡𝑗
⊖ 𝑠
𝜏/2

, �̃�
(𝑘)𝐿

𝑖𝑡
⊕ �̃�
(𝑘)𝑈

𝑡𝑗
⊖ 𝑠
𝜏/2

) ,

∀𝑖, 𝑗, 𝑡 ∈ {1, . . . , 𝑛} , 𝑘 = 1, . . . , 𝑚,

(32)
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then we have

�̃�
(𝐶)𝐿

𝑖𝑗
=

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝐿

𝑖𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

=

𝑚

⨁

𝑘=1

𝑤
𝜉(𝑘)

min (�̃�
(𝑘)𝐿

𝑖𝑡
⊕ �̃�
(𝑘)𝑈

𝑡𝑗
⊖ 𝑠
𝜏/2

,

�̃�
(𝑘)𝑈

𝑖𝑡
⊕ �̃�
(𝑘)𝐿

𝑡𝑗
⊖ 𝑠
𝜏/2

)𝑤
𝜁(𝑘)

× (

𝑚

∑

𝑘=1

𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

)

−1

= min(

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

(�̃�
(𝑘)𝐿

𝑖𝑡
⊕ �̃�
(𝑘)𝑈

𝑡𝑗
⊖ 𝑠
𝜏/2

)𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

,

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

(�̃�
(𝑘)𝑈

𝑖𝑡
⊕ �̃�
(𝑘)𝐿

𝑡𝑗
⊖ 𝑠
𝜏/2

)𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

)

= min(

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝐿

𝑖𝑡
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

⊕

⨁
𝑛

𝑗=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝑈

𝑡𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

⊖ 𝑠
𝜏/2

,

⨁
𝑚

𝑘=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝑈

𝑖𝑡
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

⊕

⨁
𝑛

𝑗=1
𝑤
𝜉(𝑘)

�̃�
(𝑘)𝐿

𝑡𝑗
𝑤
𝜁(𝑘)

∑
𝑚

𝑘=1
𝑤
𝜉(𝑘)

𝑤
𝜁(𝑘)

⊖ 𝑠
𝜏/2

)

= min (�̃�
(𝐶)𝐿

𝑖𝑡
⊕ �̃�
(𝐶)𝑈

𝑡𝑗
⊖ 𝑠
𝜏/2

, �̃�
(𝐶)𝑈

𝑖𝑡
⊕ �̃�
(𝐶)𝐿

𝑡𝑗
⊖ 𝑠
𝜏/2

) .

(33)

Similarly, we can verify �̃�
(𝐶)𝑈

𝑖𝑗
= max(̃𝑙(𝐶)𝐿

𝑖𝑡
⊕ �̃�
(𝐶)𝑈

𝑡𝑗
⊖ 𝑠
𝜏/2

, �̃�
(𝐶)𝑈

𝑖𝑡
⊕

�̃�
(𝐶)𝐿

𝑡𝑗
⊖ 𝑠
𝜏/2

).
Hence, �̃�(𝐶) is also consistent, which verifies the consis-

tency property.
An important step in the process of aggregating pref-

erence relations is to determine the associated weight of
each preference relation or preference value. Usually, the
associated weights are determined by a linguistic quantifier
𝑄 as [32]

𝑤
𝑗
= 𝑄(

𝑗

𝑛
) − 𝑄(

𝑗 − 1

𝑛
) , 𝑗 = 1, . . . , 𝑛, (34)

with 𝑄(𝑟) = 𝑟
1/2 meaning the quantifier guiding this

aggregation to be “most” [4, 6, 32]. It can easily be shown
that using this the 𝑤

𝑗
satisfy the conditions 𝑤

𝑗
∈ [0, 1] and

∑
𝑗
𝑤
𝑗
= 1.

A further important aspect of induced type aggregation
operator is the fact that ties in the order inducing variables,
that is, when two or more inducing variables have exactly the
same value. In order to solve this problem, we recommend
adopting Yager’s policy [33], is, that using an average of the
components of weights over the tied constituents and leaving
the arguments alone.

5. Group Decision Making Based on
C2-IULOWA Operator

In the procedure of GDM, preference relations are usually
composed by two phases [4, 6–10]: the aggregation phase
and the exploitation phase, and two distinct choice processes
are known: one is the direct way, which draws decision
conclusion directly from individual preference relations and
aggregates those individual choices, and the other is indirect
way, which first aggregates individual linguistic preference
relations into a collective preference relation and then draws
decision conclusion; they can be described as follows:

{𝐿
(𝑘)

, 𝑘 = 1, . . . , 𝑚}
exploitation
→ {solution(𝑘), 𝑘 = 1, . . . , 𝑚}

aggregation
→ solution(𝐶)

{𝐿
(𝑘)

, 𝑘 = 1, . . . , 𝑚}
aggregation
→ {𝐿

(𝐶)
}

exploitation
→ solution(𝐶).

(35)

Herrera et al. [10] and Delgado et al. [11] developed a
direct GDM approach with linguistic preference relation,
which ranks or selects the alternative(s) according to lin-
guistic nondominance degrees. The approach can be briefly
described as follows.

(1) For each linguistic preference relation of each expert,
𝐿
(𝑘), find its respective linguistic strict preference

relation,
𝑠

𝐿
(𝑘)

= (
𝑠

𝑙
(𝑘)

𝑖𝑗
)
𝑛×𝑛

, such that

𝑠

𝑙
(𝑘)

𝑖𝑗
=

{{{{

{{{{

{

𝑠
0
, if 𝑙(𝑘)

𝑖𝑗
< 𝑙
(𝑘)

𝑗𝑖

𝑠
ℎ
∈ 𝑆, if 𝑙(𝑘)

𝑖𝑗
≥ 𝑙
(𝑘)

𝑗𝑖
,with 𝑙

(𝑘)

𝑖𝑗
= 𝑠
𝑙
,

𝑙
(𝑘)

𝑗𝑖
= 𝑠
𝑡
, 𝑙 = 𝑡 + ℎ.

(36)

(2) For each linguistic strict preference relation of each
expert,

𝑠

𝐿
(𝑘), determine the individual linguistic

non-dominance degree of each alternative 𝑥
𝑖
, called

IND(𝑘)
𝑖
, according to linguistic OWA operator:

IND(𝑘)
𝑖

= LOWA (neg (
𝑠

𝑙
(𝑘)

𝑗𝑖
) , 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑖) ,

𝑖 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑚.

(37)
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(3) For each alternative 𝑥
𝑖
, calculate the social linguistic

non-dominance degree, called SND
𝑖
, as follows:

SND
𝑖
= LOWA (IND(𝑘)

𝑖
, 𝑙 = 1, . . . , 𝑚) , 𝑖 = 1, . . . , 𝑛.

(38)

(4) Rank or select the alternatives with respect to
SND
𝑖
(𝑖 = 1, 2, . . . , 𝑛).

Here, we extend those definitions to rank or select the
alternative(s) for UALPRs. To do so, we give the following
definitions.

Definition 19. Let �̃� = (̃𝑙
𝑖𝑗
)
𝑛×𝑛

be an UALPR; then the
uncertain linguistic dominance relation in terms of �̃� is
defined as

�̃�𝐷
𝑖𝑗
= [max (�̃�𝐿

𝑖𝑗
⊖ �̃�
𝑈

𝑗𝑖
, 𝑠
0
) ,max (�̃�𝑈

𝑖𝑗
⊖ �̃�
𝐿

𝑗𝑖
, 𝑠
0
)] . (39)

The linguistic dominance relation is used to measure the
“degree of preference” of 𝑥

𝑖
over 𝑥

𝑗
that exceeds the “degree

of preference” of 𝑥
𝑗
over 𝑥

𝑖
.

Definition 20. Let �̃� = (̃𝑙
𝑖𝑗
)
𝑛×𝑛

be an UALPR; then the
uncertain linguistic non-dominance relations are defined as:

�̃�𝑁𝐷
𝑖𝑗
= Neg (�̃�𝐷

𝑗𝑖
)

= [(max (�̃�𝑈
𝑗𝑖
⊖ �̃�
𝐿

𝑖𝑗
, 𝑠
0
)) ,

Neg (max (�̃�𝐿
𝑗𝑖
⊖ �̃�
𝑈

𝑖𝑗
, 𝑠
0
))] .

(40)

Since each uncertain linguistic preference value associates
with its consistency level and consensus level, at the same
time, from Theorem 6, 𝑐𝑡

𝐿

𝑖𝑗
= 𝑐𝑡

𝑈

𝑗𝑖
, 𝑐𝑡
𝐿

𝑗𝑖
= 𝑐𝑡

𝑈

𝑖𝑗
, and

Theorem 12, 𝑐𝑎
𝐿

𝑖𝑗
= 𝑐𝑎

𝑈

𝑗𝑖
, 𝑐𝑎
𝐿

𝑗𝑖
= 𝑐𝑎

𝑈

𝑖𝑗
, it is obvious that

the uncertain linguistic non-dominance relations have still
preserved consistent consistency level and consensus level
of its compositions �̃�

𝑖𝑗
and �̃�
𝑗𝑖
. Hence we can utilize the C2-

IULOWA operator to obtain individual uncertain linguistic
non-dominance degrees of alternatives.

For simplicity of calculation, the uncertain linguistic
non-dominance relations are split into two crisp rela-
tions, �̃�𝑁𝐷

𝐿

𝑖𝑗
= [Neg(max(̃𝑙𝑈

𝑗𝑖
⊖ �̃�
𝐿

𝑖𝑗
, 𝑠
0
))]
𝑛×𝑛

and �̃�𝑁𝐷
𝑈

𝑖𝑗
=

[Neg(max(̃𝑙𝐿
𝑗𝑖
⊖�̃�
𝑈

𝑖𝑗
, 𝑠
0
))]
𝑛×𝑛

; similar ideas can also be found in
many existing references [26, 27, 34, 35]. Then motivated
by [36, 37], we give alternative uncertain linguistic non-
dominance degrees of alternatives by utilizing C2-IUOWA
operator:

�̃�𝑁𝐷
(𝑘)

𝑖
= IULOWA

𝐶
2
→𝑤

(⟨𝑐𝑎
(𝑘)

𝑖𝑗
, 𝑐𝑡
(𝑘)

𝑖𝑗
,Neg (�̃�𝐷(𝑘)

𝑗𝑖
)⟩ ,

𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑖) ,

𝑘 = 1, 2, . . . , 𝑚, 𝑖 = 1, 2, . . . , 𝑛.

(41)

Finally, we obtain collective uncertain linguistic non-
dominance degrees of alternatives by utilizing the C2-
IULOWA operator again:

�̃�𝑁𝐷
(𝐶)

𝑖
= IULOWA

𝐶
2
→𝑤

(⟨𝐶𝑎
(𝑘)

, 𝐶𝑡
(𝑘)

, �̃�𝑁𝐷
(𝑘)

𝑖
⟩ ,

𝑘 = 1, . . . , 𝑚) ,

𝑖 = 1, 2, . . . , 𝑛.

(42)

To rank the uncertain linguistic non-dominance degrees,
we adopt to the degree of possibility of uncertain linguistic
variables 𝑎

𝑖
≥ 𝑎
𝑗
[18–20].

Definition 21. Let �̃�𝑁𝐷
(𝐶)

𝑖
= [�̃�𝑁𝐷

𝐿(𝐶)

𝑖
, �̃�𝑁𝐷

𝑈(𝐶)

𝑖
] ⊆ 𝑆, 𝑖 =

1, 2, . . . , 𝑛 be 𝑛, uncertain linguistic values; then the degree of
possibility 𝑃𝑜𝑠(�̃�𝑁𝐷

(𝐶)

𝑖
) of �̃�𝑁𝐷

(𝐶)

𝑖
is defined as

𝑃𝑜𝑠
𝑖
= 𝑃𝑜𝑠 (�̃�𝑁𝐷

(𝐶)

𝑖
)

=

𝑛

∑

𝑗=1

𝑃𝑜𝑠 (�̃�𝑁𝐷
(𝐶)

𝑖
≥ �̃�𝑁𝐷

(𝐶)

𝑗
)

=

𝑛

∑

𝑗=1

((max 𝐼 (�̃�𝑁𝐷
(𝐶)𝑈

𝑖
⊖ �̃�𝑁𝐷

(𝐶)𝐿

𝑗
, 𝑠
0
)

−max 𝐼 (�̃�𝑁𝐷
(𝐶)𝑈

𝑗
⊖ �̃�𝑁𝐷

(𝐶)𝐿

𝑖
, 𝑠
0
))

× (𝐼 (�̃�𝑁𝐷
(𝐶)𝑈

𝑖
⊖ �̃�𝑁𝐷

(𝐶)𝐿

𝑖
)

+ 𝐼 (�̃�𝑁𝐷
(𝐶)𝑈

𝑗
⊖ �̃�𝑁𝐷

(𝐶)𝐿

𝑗
))
−1

) ,

𝑖 = 1, . . . , 𝑛.

(43)

Now we can rank or select alternatives in descending
order in accordance with 𝑃𝑜𝑠

𝑖
, 𝑖 ∈ {1, . . . , 𝑛}.

Themain steps of the proposed approach are summarized
as follows.

Step 1. Obtain UALPRs over alternatives from DMs, �̃�(𝑘) =
(̃𝑙
(𝑘)

𝑖𝑗
)
𝑛×𝑛

, 𝑘 = 1, . . . , 𝑚.

Step 2. Calculate the consistency levels of preference values
and preference relations 𝑐�̃�

(𝑘)

𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝐶𝑡

𝑘
, 𝑘 =

1, 2, . . . , 𝑚, by using (8) and (12).

Step 3. Calculate the consensus levels of preference values
and preference relations 𝑐𝑎

(𝑘)

𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝐶𝑎

𝑘
, 𝑘 =

1, 2, . . . , 𝑚, by using (16) and (17).

Step 4. Determine the ordered weights by using (34).

Step 5. Calculate the uncertain linguistic non-dominance
relations according to the uncertain linguistic preference
relations (�̃�𝑁𝐷

(𝑘)

𝑖𝑗
)
𝑛×𝑛

, 𝑘 = 1, 2, . . . , 𝑚, by using (40).
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Table 1: Consistency levels of preference values provided by 𝑒
1
.

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
1

(1, 1) (0.8125, 1) (1, 0.8125) (0.9375, 0.9375)

𝑥
2

(1, 0.8125) (1, 1) (0.8125, 0.9375) (0.9375, 1)

𝑥
3

(0.8125, 1) (0.9375, 0.8125) (1, 1) (1, 0.9375)

𝑥
4

(0.9375, 0.9375) (1, 0.9375) (0.9375, 1) (1, 1)

Table 2: Consistency levels of preference values provided by 𝑒
2
.

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
1

(1, 1) (0.5625, 0.625) (0.375, 0.5) (0.75, 0.5625)

𝑥
2

(0.625, 0.5625) (1, 1) (0.625, 0.5625) (0.75, 0.875)

𝑥
3

(0.5, 0.375) (0.5625, 0.625) (1, 1) (0.5625, 0.375)

𝑥
4

(0.5625,0.75) (0.875, 0.75) (0.375, 0.5625) (1, 1)

Step 6. Determine the individual uncertain linguistic
non-dominance degrees of alternatives �̃�𝑁𝐷

(𝑘)

𝑖
, 𝑘 =

1, 2, . . . , 𝑚, 𝑖 = 1, 2, . . . , 𝑛, by using (41).

Step 7. Calculate the collective uncertain linguistic non-
dominance degree of alternatives �̃�𝑁𝐷

(𝐶)

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, by

using (42).

Step 8. Rank the alternatives with �̃�𝑁𝐷
(𝐶)

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, by

using (43).

6. Numerical Examples

In this section, we consider a group decisionmaking problem
that concerns the evaluation and selection of chief quality
officer to demonstrate the details of the proposed method.

Over the last decades, organizational competition is
shifting from price to quality in many industries. The chief
quality officer (CQO), similar to the CEO, undertakes overall
responsibility of the quality work of enterprise. Hence, the
selection of the most appropriate CQO is naturally one
of the key factors for an enterprise’s survival. A high-tech
enterprise wants to introduce a CQO according to a main
criterion of the leadership of quality improvements. After
preliminary screening, four alternatives 𝑥

𝑗
(𝑗 = 1, 2, 3, 4)

have remained in the candidate list. Three experts 𝑒
𝑘
(𝑘 =

1, 2, 3) from a committee act as decision makers; the decision
makers compare these four alternatives with respect to the
criterion of the leadership of quality improvements by using
the linguistic term set

𝑆 = {𝑠
0
= extremely low, 𝑠

1
= very low,

𝑠
2
= low, 𝑠

3
= slightly low, 𝑠

4
= fair,

𝑠
5
= slightly high, 𝑠

6
= high,

𝑠
7
= very high, 𝑠

8
= extremely high} .

(44)

To get the most desirable CQO, the following steps are
involved.

Step 1. Three decision makers (𝑒
1
, 𝑒
2
, and 𝑒

3
) provide their

preference on alternatives and form UALPRs as follows,
respectively,

𝐴
1
= (

[𝑠
4
, 𝑠
4
] [𝑠
0
, 𝑠
2
] [𝑠
2
, 𝑠
4
] [𝑠
1
, 𝑠
3
]

[𝑠
6
, 𝑠
8
] [𝑠
4
, 𝑠
4
] [𝑠
4
, 𝑠
6
] [𝑠
4
, 𝑠
5
]

[𝑠
4
, 𝑠
6
] [𝑠
2
, 𝑠
4
] [𝑠
4
, 𝑠
4
] [𝑠
3
, 𝑠
4
]

[𝑠
5
, 𝑠
7
] [𝑠
3
, 𝑠
4
] [𝑠
4
, 𝑠
5
] [𝑠
4
, 𝑠
4
]

) ,

𝐴
2
= (

[𝑠
4
, 𝑠
4
] [𝑠
4
, 𝑠
6
] [𝑠
0
, 𝑠
2
] [𝑠
5
, 𝑠
7
]

[𝑠
2
, 𝑠
4
] [𝑠
4
, 𝑠
4
] [𝑠
4
, 𝑠
5
] [𝑠
2
, 𝑠
4
]

[𝑠
6
, 𝑠
8
] [𝑠
3
, 𝑠
4
] [𝑠
4
, 𝑠
4
] [𝑠
4
, 𝑠
5
]

[𝑠
1
, 𝑠
3
] [𝑠
4
, 𝑠
6
] [𝑠
3
, 𝑠
4
] [𝑠
4
, 𝑠
4
]

) ,

𝐴
3
= (

[𝑠
4
, 𝑠
4
] [𝑠
0
, 𝑠
1
] [𝑠
4
, 𝑠
5
] [𝑠
5
, 𝑠
6
]

[𝑠
7
, 𝑠
8
] [𝑠
4
, 𝑠
4
] [𝑠
6
, 𝑠
7
] [𝑠
2
, 𝑠
3
]

[𝑠
3
, 𝑠
4
] [𝑠
1
, 𝑠
2
] [𝑠
4
, 𝑠
4
] [𝑠
7
, 𝑠
8
]

[𝑠
2
, 𝑠
3
] [𝑠
5
, 𝑠
6
] [𝑠
0
, 𝑠
1
] [𝑠
4
, 𝑠
4
]

) .

(45)

Step 2. Calculate the consistency levels of preference values
by using (8); the consistency levels of preference values
provided by three decision makers are listed in Tables 1, 2,
and 3, respectively.

According to the results from Tables 1, 2, and 3, calculate
the consistency level of preference relations by utilizing (12);
the results are as follows:

𝐶𝑡
1
= 0.927, 𝐶𝑡

2
= 0.594, 𝐶𝑡

3
= 0.438. (46)

Step 3. Calculate the consensusmeasures of preference values
by utilizing (16). The consensus levels of preference values
provided by three experts are listed in Tables 4, 5, and 6,
respectively.



Journal of Applied Mathematics 11

Table 3: Consistency levels of preference values provided by 𝑒
3
.

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
1

(1, 1) (0.4375, 0.5625) (0.4375, 0.4375) (0.4375, 0.4375)
𝑥
2

(0.5625, 0.4375) (1, 1) (0.4375, 0.4375) (0.3125, 0.5625)
𝑥
3

(0.4375, 0.4375) (0.4375, 0.4375) (1, 1) (0.4375, 0.3125)
𝑥
4

(0.4375, 0.4375) (0.5625, 0.3125) (0.3125, 0.4375) (1, 1)

Table 4: Consensus levels of preference values provided by 𝑒
1
.

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
1

(1, 1) (0.75, 0.6875) (0.75, 0.8125) (0.5, 0.5625)

𝑥
2

(0.6875, 0.75) (1, 1) (0.875, 0.875) (0.75, 0.8125)

𝑥
3

(0.8125, 0.75) (0.875, 0.875) (1, 1) (0.6875, 0.6875)

𝑥
4

(0.5625, 0.5) (0.8125, 0.75) (0.6875, 0.6875) (1, 1)

Then calculate the consistency levels of preference rela-
tions by (17); the results are as follows:

𝐶𝑎
1
= 0.729, 𝐶𝑎

2
= 0.719, 𝐶𝑎

3
= 0.719. (47)

Step 4. Determine associated weights of decisionmakers and
preference values. By using (34) determine the associated
weights of three variables:

𝑤
1
= 𝑄(

1

3
) − 𝑄(

0

3
) = 0.577,

𝑤
2
= 𝑄(

2

3
) − 𝑄(

1

3
) = 0.239,

𝑤
3
= 𝑄(

3

3
) − 𝑄(

2

3
) = 0.184.

(48)

Step 5. Calculate the individual uncertain linguistic non-
dominance relations by utilizing (40):

�̃�𝑁𝐷
(1)

𝑖𝑗
= (

[−, −] [𝑠0, 𝑠4] [𝑠4, 𝑠8] [𝑠2, 𝑠6]

[𝑠
8
, 𝑠
8
] [−, −] [𝑠8, 𝑠8] [𝑠8, 𝑠8]

[𝑠
8
, 𝑠
8
] [𝑠
4
, 𝑠
8
] [−, −] [𝑠6, 𝑠8]

[𝑠
8
, 𝑠
8
] [𝑠
6
, 𝑠
8
] [𝑠
8
, 𝑠
8
] [−, −]

) ,

�̃�𝑁𝐷
(2)

𝑖𝑗
= (

[−, −] [𝑠
8
, 𝑠
8
] [𝑠
0
, 𝑠
4
] [𝑠
8
, 𝑠
8
]

[𝑠
4
, 𝑠
8
] [−, −] [𝑠8, 𝑠8] [𝑠4, 𝑠8]

[𝑠
8
, 𝑠
8
] [𝑠
6
, 𝑠
8
] [−, −] [𝑠8, 𝑠8]

[𝑠
2
, 𝑠
6
] [𝑠
8
, 𝑠
8
] [𝑠
6
, 𝑠
8
] [−, −]

) ,

�̃�𝑁𝐷
(3)

𝑖𝑗
= (

[−, −] [𝑠
0
, 𝑠
2
] [𝑠
8
, 𝑠
8
] [𝑠
8
, 𝑠
8
]

[𝑠
8
, 𝑠
8
] [−, −] [𝑠8, 𝑠8] [𝑠4, 𝑠6]

[𝑠
6
, 𝑠
8
] [𝑠
2
, 𝑠
4
] [−, −] [𝑠8, 𝑠8]

[𝑠
4
, 𝑠
6
] [𝑠
8
, 𝑠
8
] [𝑠
0
, 𝑠
2
] [−, −]

) .

(49)

Step 6. Determine the individual uncertain linguistic non-
dominance degrees of alternatives by (41). For instance, the
individual non-dominance degree of 𝑥

1
provided by 𝑒

1
is

calculated as follows:
�̃�𝑁𝐷
(1)

1
= [(0.184 × 0.408𝑠

0
⊕ 0.577

×0.408𝑠
4
⊕ 0.239 × 0.184𝑠

2
)

× (0.184 × 0.408 + 0.577

× 0.408 + 0.239 × 0.184)
−1
,

(0.577 × 0.239𝑠
4
⊕ 0.184

× 0.577𝑠
8
⊕ 0.239 × 0.184𝑠

6
)

× (0.577 × 0.239 + 0.184

× 0.577 + 0.239 × 0.184)
−1
]

= [𝑠
2.90

, 𝑠
5.78

] .

(50)

Similarly, we can obtain the other individual non-
dominance degrees:

�̃�𝑁𝐷
(1)

2
= [𝑠
8
, 𝑠
8
] ,

�̃�𝑁𝐷
(1)

3
= [𝑠
5.35

, 𝑠
8
] ,

�̃�𝑁𝐷
(1)

4
= [𝑠
6.42

, 𝑠
8
] ,

�̃�𝑁𝐷
(2)

1
= [𝑠
6.92

, 𝑠
7.16

] ,

�̃�𝑁𝐷
(2)

2
= [𝑠
4.96

, 𝑠
8
] ,

�̃�𝑁𝐷
(2)

3
= [𝑠
6.72

, 𝑠
8
] ,

�̃�𝑁𝐷
(2)

4
= [𝑠
7.16

, 𝑠
7.52

] ,

�̃�𝑁𝐷
(3)

1
= [𝑠
4.74

, 𝑠
5.71

] ,

�̃�𝑁𝐷
(3)

2
= [𝑠
6.42

, 𝑠
6.81

] ,
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Table 5: Consensus levels of preference values provided by 𝑒
2
.

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
1

(1, 1) (0.5, 0.4375) (0.625, 0.6875) (0.75, 0.6875)
𝑥
2

(0.4375, 0.5) (1, 1) (0.875, 0.8125) (0.875, 0.875)
𝑥
3

(0.6875, 0.625) (0.8125, 0.875) (1, 1) (0.75, 0.75)
𝑥
4

(0.6875, 0.75) (0.875, 0.875) (0.75, 0.75) (1, 1)

Table 6: Consensus levels of preference values provided by 𝑒
3
.

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
1

(1, 1) (0.75, 0.625) (0.625, 0.75) (0.75,0.75)
𝑥
2

(0.625, 0.75) (1, 1) (0.75, 0.8125) (0.875, 0.8125)
𝑥
3

(0.75, 0.625) (0.8125, 0.75) (1, 1) (0.5625, 0.5625)
𝑥
4

(0.75, 0.75) (0.8125, 0.875) (0.5625, 0.5625) (1, 1)

Table 7: Collective non-dominance degrees of alternatives by
utilizing C2-IULOWA, Ct-IULOWA, and Ca-IULOWA operators.

C2-IULOWA Ct-IULOWA Ca-IULOWA
𝑥
1

[𝑠
3.52

, 𝑠
5.94

] [𝑠
4
, 𝑠
5.73

] [𝑠
3.44

, 𝑠
6.66

]

𝑥
2

[𝑠
7.49

, 𝑠
7.89

] [𝑠
7.03

, 𝑠
7.86

] [𝑠
7.01

, 𝑠
7.83

]

𝑥
3

[𝑠
5.39

, 𝑠
7.76

] [𝑠
6.1

, 𝑠
7.7

] [𝑠
5.38

, 𝑠
7.51

]

𝑥
4

[𝑠
6.44

, 𝑠
7.83

] [𝑠
6.3

, 𝑠
7.36

] [𝑠
6.49

, 𝑠
7.58

]

�̃�𝑁𝐷
(3)

3
= [𝑠
4.06

, 𝑠
5.43

] ,

�̃�𝑁𝐷
(3)

4
= [𝑠
5.68

, 𝑠
6.82

] .

(51)

Step 7. Aggregate the individual non-dominance degrees
of alternatives into collective non-dominance degrees of
alternatives by utilizing (42):

�̃�𝑁𝐷
1
= [𝑠
3.52

, 𝑠
5.94

] ,

�̃�𝑁𝐷
2
= [𝑠
7.49

, 𝑠
7.89

] ,

�̃�𝑁𝐷
3
= [𝑠
5.39

, 𝑠
7.76

] ,

�̃�𝑁𝐷
4
= [𝑠
6.44

, 𝑠
7.83

] .

(52)

Step 8. Obtain the ranking result of the alternatives according
to the magnitude of collective non-dominance degrees by
utilizing (43). The ranking result of the four alternatives is
𝑥
2

≻ 𝑥
4

≻ 𝑥
3

≻ 𝑥
1
, and then the most appropriate CQO

is 𝑥
2
.
In order to validate the proposedmethod, inwhat follows,

we use the Ct-IULOWA and the Ca-IULOWA operators for
the same decision structure. The final results derived by
C2-IULOWA, Ct-IULOWA, and Ca-IULOWA operators are
shown in Table 7, and they are represented graphically in
Figure 1.

Obviously, the ranking results derived by C2-IULOWA,
Ct-IULOWA, and Ca-IULOWA operators all are 𝑥

2
≻ 𝑥
4
≻

𝑥
3
≻ 𝑥
1
; the situations verify each other; the results derived

s
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s
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s
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1
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0

x
1

x
2

x
3

x
4

C2-IULOWA
Ct-IULOWA
Ca-IULOWA

Figure 1: Collective non-dominance degrees of alternatives by
utilizing C2-IULOWA, Ct-IULOWA, and Ca- IULOWA operators.

from theC2-IULOWA,Ct-IULOWA, andCa-IULOWAoper-
ators are feasible and effective. The reasons of the differences
of the final results are intuitive; that is, as discussed above, the
Ct-IULOWA operator focuses solely on the consistency and
ignores the consensus of the uncertain linguistic preference
information, while theCa-IULOWAoperator focuses only on
the consensus and ignores the consistency of the uncertain
linguistic preference information.The C2-IULOWA operator
comprehensively considers both the consistency and consen-
sus of the uncertain linguistic preference information. Hence,
the results derived byC2-IULOWAoperator aremore feasible
and effective.

7. Conclusion

In group decision making with uncertain linguistic pref-
erence relations, the aggregation of preference information
plays important roles in reaching a reasonable decision result.
Considering the fact that when carrying out rational decision
making, the consensual or consistent information is more
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appropriate than the inconsistent or decentralized ones, in
this paper, we investigated the aggregation of uncertain
linguistic preference information by fusing its consensus and
consistent information. To do so, we first proposed the con-
sistency and consensus measures, to assess the consistency
level and consensus level of uncertain linguistic preference
relations and preference values of them, and studied some
of their desirable properties. Based on both consistency level
and consensus level, we proposed a co-induced uncertain
linguistic OWA operator, namely, C2-IULOWA operator,
to aggregate uncertain linguistic preference information,
in which consistency level and consensus level synergisti-
cally serve as inducing variables and participate in guiding
the determination of associated weights in the preference
aggregation process. We have verified that the C2-IULOWA
operator is able to maintain the indifference, reciprocity,
and consistency properties of uncertain linguistic preference
relations after aggregation is carried out. For applying the C2-
IULOWA operator to group decision making with uncertain
linguistic preference relations, we developed a direct group
decision making approach. The approach is very suitable
for the situations with time pressure and decision makers
unwilling to revise their initial judgments, in which the
inconsistent or decentralized information would be still
retained and yet it is considered to be less important for
ranking the alternatives. The proposed approach is effective
and feasible just as shown in the illustrative example. It is
expected that the proposed approach can be applied to the
fields of quality management and mobile business.

Acknowledgments

The authors are very grateful to the editor, Professor Chong
Lin, and the anonymous referees for their insightful and
constructive comments and suggestions which have helped
to improve the paper. This work was supported in part by
the National Natural Science Funds of China (nos. 61364016,
71272191 and 71072085), the Natural Science Funds of KUST
(no. KKSY201358032) and the Graduate Innovation Funds of
Heilongjiang Province of China (no. YJSCX2011-003HLJ).

References

[1] T. L. Saaty, The Analytic Hierarchy Process: Planning, Priority
Setting, Resource Allocation, McGraw-Hill, New York, NY, USA,
1980.

[2] S. A. Orlovsky, “Decision-making with a fuzzy preference rela-
tion,” Fuzzy Sets and Systems, vol. 1, no. 3, pp. 155–167, 1978.

[3] T. Tanino, “Fuzzy preference orderings in group decision
making,” Fuzzy Sets and Systems, vol. 12, no. 2, pp. 117–131, 1984.

[4] J. Kacprzyk, M. Fedrizzi, and H. Nurmi, “Group decision
making and consensus under fuzzy preferences and fuzzy
majority,” Fuzzy Sets and Systems, vol. 49, no. 1, pp. 21–31, 1992.

[5] E. Herrera-Viedma, F. Herrera, F. Chiclana, and M. Luque,
“Some issues on consistency of fuzzy preference relations,”
European Journal of Operational Research, vol. 154, no. 1, pp. 98–
109, 2004.

[6] E. Herrera-Viedma, F. Chiclana, F. Herrera, and S. Alonso,
“Group decision-making model with incomplete fuzzy prefer-
ence relations based on additive consistency,” IEEETransactions
on Systems, Man, and Cybernetics, Part B, vol. 37, no. 1, pp. 176–
189, 2007.

[7] E. Herrera-Viedma, S. Alonso, F. Chiclana, and F. Herrera, “A
consensus model for group decision making with incomplete
fuzzy preference relations,” IEEE Transactions on Fuzzy Systems,
vol. 15, no. 5, pp. 863–877, 2007.

[8] F. Herrera, E. Herrera-Viedma, and J. L. Verdegay, “A sequential
selection process in group decision making with a linguistic
assessment approach,” Information Sciences, vol. 85, no. 4, pp.
223–239, 1995.

[9] F. Herrera, E. Herrera-Viedma, and J. L. Verdegay, “A model
of consensus in group decision making under linguistic assess-
ments,” Fuzzy Sets and Systems, vol. 78, no. 1, pp. 73–87, 1996.

[10] F. Herrera, E. Herrera-Viedma, and J. L. Verdegay, “Direct
approach processes in group decision making using linguistic
OWA operators,” Fuzzy Sets and Systems, vol. 79, no. 2, pp. 175–
190, 1996.

[11] M. Delgado, F. Herrera, E. Herrera-Viedma, and L. Mart́ınez,
“Combining numerical and linguistic information in group
decisionmaking,” Information Sciences, vol. 107, no. 1–4, pp. 177–
194, 1998.

[12] Z. Xu, “A method based on linguistic aggregation operators
for group decision making with linguistic preference relations,”
Information Sciences, vol. 166, no. 1–4, pp. 19–30, 2004.

[13] Z. Xu, “An approach to group decisionmaking based on incom-
plete linguistic preference relations,” International Journal of
Information Technology and Decision Making, vol. 4, no. 1, pp.
153–160, 2005.

[14] Z. Xu, “Incomplete linguistic preference relations and their
fusion,” Information Fusion, vol. 7, no. 3, pp. 331–337, 2006.

[15] Y. Dong, Y. Xu, and H. Li, “On consistency measures of linguis-
tic preference relations,” European Journal of Operational
Research, vol. 189, no. 2, pp. 430–444, 2008.

[16] Y. Dong, G. Zhang,W.-C. Hong, and Y. Xu, “Consensus models
for AHP group decision making under row geometric mean
prioritization method,” Decision Support Systems, vol. 49, no. 3,
pp. 281–289, 2010.

[17] J. Wu, Q.-w. Cao, and J.-l. Zhang, “An ILOWG operator based
group decision making method and its application to evaluate
the supplier criteria,” Mathematical and Computer Modelling,
vol. 54, no. 1-2, pp. 19–34, 2011.

[18] Z. Xu, “Uncertain linguistic aggregation operators based
approach to multiple attribute group decision making under
uncertain linguistic environment,” Information Sciences, vol.
168, no. 1–4, pp. 171–184, 2004.

[19] Z. Xu, “A direct approach to group decision making with
uncertain additive linguistic preference relations,” Fuzzy Opti-
mization and Decision Making, vol. 5, no. 1, pp. 21–32, 2006.

[20] Z. Xu, “An approach based on the uncertain LOWG and
induced uncertain LOWG operators to group decision making
with uncertain multiplicative linguistic preference relations,”
Decision Support Systems, vol. 41, no. 2, pp. 488–499, 2006.

[21] C.-Y. Gao and D.-H. Peng, “Consolidating SWOT analy-
sis with nonhomogeneous uncertain preference information,”
Knowledge-Based Systems, vol. 24, no. 6, pp. 796–808, 2011.

[22] H. Chen, L. Zhou, and B. Han, “On compatibility of uncertain
additive linguistic preference relations and its application in the
group decision making,” Knowledge-Based Systems, vol. 24, no.
6, pp. 816–823, 2011.



14 Journal of Applied Mathematics

[23] S.-M. Chen and L.-W. Lee, “Autocratic decision making using
group recommendations based on the ILLOWA operator and
likelihood-based comparison relations,” IEEE Transactions on
Systems, Man, and Cybernetics Part A, vol. 42, no. 1, pp. 115–129,
2012.

[24] D.-H. Peng, T.-D. Wang, C.-Y. Gao, and H. Wang, “Multigran-
ular uncertain linguistic prioritized aggregation operators and
their application to multiple criteria group decision making,”
Journal of Applied Mathematics, vol. 2013, Article ID 857916, 13
pages, 2013.

[25] T. L. Saaty, “Exploring the interface between hierarchies, multi-
ple objectives and fuzzy sets,” Fuzzy Sets and Systems, vol. 1, no.
1, pp. 57–68, 1978.

[26] S. Alonso, F. Chiclana, F. Herrera, E. Herrera-Viedma, J. Alcalá-
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