
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 409539, 13 pages
http://dx.doi.org/10.1155/2013/409539

Research Article
Application Scheduling in Mobile Cloud
Computing with Load Balancing

Xianglin Wei,1 Jianhua Fan,1 Ziyi Lu,1 and Ke Ding2

1 Nanjing Telecommunication Technology Research Institute, Nanjing 21007, China
2 College of Command Information Systems, PLA University of Science and Technology, Nanjing 21007, China

Correspondence should be addressed to Xianglin Wei; wei xianglin@163.com

Received 19 April 2013; Revised 15 September 2013; Accepted 27 September 2013

Academic Editor: Chih-Hao Lin

Copyright © 2013 Xianglin Wei et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mobile cloud computing (MCC) enables the mobile devices to offload their applications to the cloud and thus greatly enriches
the types of applications on mobile devices and enhances the quality of service of the applications. Under various circumstances,
researchers have put forward several MCC architectures. However, how to reduce the response latency while efficiently utilizing the
idle service capacities of the mobile devices still remains a challenge. In this paper, we firstly give a definition of MCC and divide
the recently proposed architectures into four categories. Secondly, we present a Hybrid Local Mobile Cloud Model (HLMCM)
by extending the Cloudlet architecture. Then, after formulating the application scheduling problems in HLMCM and bringing
forward the Hybrid Ant Colony algorithm based Application Scheduling (HACAS) algorithm, we finally validate the efficiency of
the HACAS algorithm by simulation experiments.

1. Introduction

Recent years have witnessed the rapid development of mobile
devices, such as PDAs and smartphones. The tremendous
improvement of hardware and software enables them to
make calls and send short messages and emails, but it also
gives them the ability to sense the environment and make
social contacts, health care, and mobile learning. Moreover,
the inherent mobility of the mobile devices enables the
users to interact with the devices, environment, and social
community without time and space restriction. Thus the
mobile devices are able to integrate the capabilities of com-
munication, work, medical treatment, and mobile learning,
and they become important components of people’s daily
life. According to the International Data Corporation (IDC)
Worldwide Quarterly Mobile Phone Tracker, it is estimated
that 982 million smartphones will be shipped worldwide in
2015 [1]. However, mobile devices also have some inherent
defects, such as their limited battery energy, low CPU speed,
insufficient storage space, and inadequate sensing capacities
[2]. These limitations have brought for mobile applications
many challenges in mobility management, quality of service
(QoS) insurance, energy management, and security issues.

On the other hand, the lack of resources also motivates
the researchers in mobile computing area to search for the
infrastructure which can provide the needed resources for
the mobile devices [3]. Consequently, cloud computing was
introduced to fulfill this gap since it can theoretically provide
nearly inexhaustible resources for mobile computing. The
combination of cloud computing and mobile computing
has stimulated the emergence of mobile cloud computing
(MCC).

MCC brings rich resources of the cloud computing for
mobile devices and applications, as well as inheriting the
cloud’s advantages, such as low cost, high scalability, and
robustness. Therefore, it greatly improves the potential of
mobile computing. InMCC environment,mobile devices can
offload full or part of their mobile applications to the data
centers of the cloud in order to relieve their own burden
in CPU load and energy consumption. This enables them
to support more sophisticated and richer applications and
services, such as mobile game [4], mobile locating [5], voice,
key words and picture searching [6–8], and mobile sensing
[9]. In order to support these applications, researchers have
proposed various architectures forMCC, such asMobiCloud,
MAUI, CloneCloud, Cloudlet, and Hyrax. These proposals

2 Journal of Applied Mathematics

attempt to utilize the cloud infrastructure as well as the
mobile devices’ idle CPUs or sensing capacities to achieve
highQoS.However, offloading to remote cloud infrastructure
will introduce long response latency. Hence, to reduce the
response latency, the offloaded applications should be han-
dled by local cloud infrastructure, which usually has fewer
resources than those of the remote ones. Therefore, how to
efficiently schedule the limited resources while fulfilling the
requirements of a large number of offloaded applications is a
critical problem for MCC to address.

In this paper, we first give the definition of MCC and
divide the recently proposed architectures into four ca-
tegories. Secondly, Hybrid Local Mobile Cloud Model
(HLMCM) is put forward after combining the advantages of
current proposals, such as Cloudlet and Hyrax. Thirdly, we
formulate the application scheduling problems in HLMCM
and bring forward the Hybrid Ant Colony algorithm based
Application Scheduling (HACAS) algorithm. Finally, the
effectiveness of HACAS algorithm is validated by simulation
experiments.

The rest of the paper is organized as follows. Section 2
summarizes related work. Section 3 gives the definition of
MCC and introduces the HLMCM. Section 4 formulates
the application scheduling problem and proposes HACAS
algorithm. Simulation experiments and results are shown in
Section 5. Finally, we conclude our main work and present
further research directions in Section 6.

2. Related Work

Application scheduling in cloud infrastructure has attracted
much attention in recent years. In fact, the application
scheduling and load balancing inMCC are burgeoning areas.
Liu et al. have established a macroscopic scheduling model
with cognition and decision components for the cloud com-
puting, which considers both the requirements of different
jobs and the circumstances of computing infrastructure.They
have also put forward a job scheduling algorithm based
on Multiobjective Genetic Algorithm (MO-GA), taking into
account the energy consumption and the profits of the service
providers [10]. In order to reduce the operator cost and to
increase the reliability of the cloud service provider, Feller
et al. have modeled the workload placement problem as
an instance of the multidimensional bin-packing (MDBP)
problem and have designed a novel, nature-inspired algo-
rithm based on the Ant Colony Optimization (ACO) meta-
heuristics to compute the placement dynamically, according
to the current load [11]. Goudarzi and Pedram have consid-
ered a multitier cloud computing environment, in which the
clients have Service Level Agreements (SLAs) and the total
profit in the system depends on how the system can meet
these SLAs.They have proposed an algorithm based on force-
directed search to allocate the resources, such as processing,
memory requirement, and communication resources [12].

In the shared data center environment, Nagendram et al.
have depicted the resource scheduling problem to a bounded
multidimensional knapsack problem, taking into account the
requirement dependency amongmultidimensional resources

including memory, storage, CPU, and network bandwidth.
Then, they have presented a Multidimensional resource
integrated scheduling (MRIS), an inquisitive algorithm to
obtain the approximate optimal solution [13]. To schedule
the tasks and achieve load balance, Tayal has put forward an
optimized algorithm based on the Fuzzy-GA optimization
which makes a scheduling decision by evaluating the entire
group of tasks in the job queue [14]. In the private cloud
environment constructed for e-learning, Morariu et al. have
presented a workload scheduling algorithm based on genetic
algorithm [15]. For the load balancing problem of the VM
scheduling in the cloud computing, Gu et al. have proposed
a scheduling strategy on load balancing of VM resources
based on genetic algorithm [16]. Yamauchi et al. proposed
a distributed parallel scheduling methodology for MCC and
developed a simulator to analyze the bottleneck of MCC [17].

Ant Colony Optimization (ACO) has also been used to
balance the load in cloud environment. In [18], Mishra et al.
have proposed amethod to utilize theACO for load balancing
in cloud environment. The routing packets in this environ-
ment are treated as the ants in the network. Moreover, they
replaced the routing tables in the network nodes by tables of
probabilities. These tables are also called “pheromone tables”
since the pheromone strengths used in ACO are represented
by these probabilities. Every node has a pheromone table for
every possible destination in the network, and each table has
an entry for every neighbor. The entries in the tables are the
probabilities which influence the ants’ selection of the next
node on the way to their destination node. Consequently, at
each node, the ant should choose the next node toward its
final destination node according to the probabilities. After
arriving at a node, the ants update the probabilities of that
node’s pheromone table entries corresponding to their source
node; that is, ants lay the kind of pheromone associated
with the node they were launched from. They alter the table
to increase the probability pointing to their previous node.
Besides, in order to distribute the load among many paths
from the source node to the destination node, the ants from
one colony will consult the routing tables of other colonies
so as to avoid routing packets to those paths that are highly
preferred by the other groups.Through thismethod, the loads
are separated among many possible paths in the network.

Zhu et al. considered the task scheduling in cloud
environment from the perspectives of QoS fulfillment and
shortest path [19]. Nishant et al. have proposed an algorithm
for load distribution of workloads among nodes of a cloud by
the use of ACO. Moreover, they have presented another load
balancing algorithm which ensures that there is no conflict
of interests based on relocating the tasks among nodes [20].
In these works, they do not take each task’s profit into
consideration and cannot maximize the profit of the system,
which is an import target of the scheduling algorithm for the
commercial mobile cloud environment. In grid computing,
an ACO algorithm is proposed by Suryadevera et al. for
load balancing which will determine the best resource to be
allocated to the jobs, based on resource capacity, and at the
same time balance the load of entire resources on grid. The
main objective of this algorithm is to achieve high throughput
and thus increases the performance in grid environment

Journal of Applied Mathematics 3

[21]. A review on the load balancing studies for the cloud
environment is presented in [22].

Different from the scheduling algorithm in cloud envi-
ronment, the scheduling algorithms forMCC should take the
energy consumption into consideration. To make the system
last longer, the scheduling algorithms should balance the load
of the mobile devices to avoid some heavy-loaded nodes
leaving the system too early. Therefore, these scheduling
algorithms for cloud computing cannot be applied to the
MCC environment directly. In order to bridge this gap,
we propose an architecture for MCC and then present a
scheduling algorithm for MCC which can maximize the
profit and balance the load of the mobile devices.

3. Definition and Architecture

3.1. The Definition of MCC and Current Proposed Architec-
tures. The Mobile Cloud Computing Forum defines MCC
as follows [23]: “Mobile cloud computing, at its simplest,
refers to an infrastructure where both the data storage and
the data processing happen outside of the mobile device.
Mobile cloud applications move the computing power and
data storage away from mobile phones and into the cloud,
bringing applications and mobile computing to not just
smartphone users but a much broader range of mobile
subscribers.” Aepona describes MCC as a new paradigm
for mobile applications whereby the data processing and
storage are moved from the mobile device to powerful and
centralized computing platforms located in clouds [24].These
centralized applications are then accessed over the wireless
connection based on a thin native client or web browser
on the mobile devices. In [25, 26], MCC is described as a
combination of mobile web and cloud computing, which is
the most popular tool for mobile users to access applications
and services on the Internet. Dinh et al. defined MCC as an
entity that providesmobile users with the data processing and
storage services in clouds [27].

These definitions are mostly descriptive. This paper gives
the following definition: MCC is a mobile application-
oriented computing paradigm in mobile and dynamic envi-
ronment, which makes use of the resources provided by
clouds, mobile devices, and network facilities to fulfill users’
requirements on QoS, quality of experience (QoE), security
and privacy, with some particular cost, energy, and program-
ming model and context information.

In order to efficiently utilize the available resources,
researchers have brought forward severalMCC architectures.
In this paper, we divide them into four categories. In the
proposals of the first category, mobile devices first offload
applications to the remote large data centers of the clouds,
from which the results will be returned; the typical proposals
include MAUI [28] and CloneCloud [29]. In the second
category, Satyanarayanan et al. introduced the Cloudlet entity
to the system, which is a local service infrastructure logically
implemented at the access point of mobile devices, and
the mobile devices only have to offload applications to the
Cloudlet rather than remote data centers [27, 30]. It should
be noted that Cloudlet can reduce the server response latency

since the offloading happens locally most of the time. In the
proposals of the third category, mobile devices collaborate
with each other to run applications without the need to rely
on any cloud infrastructure.This sounds like themobile Peer-
to-Peer systemandmobile grid computing, but different from
these computing paradigms, the typical schemes (such as
Hyrax [31] Misco [32], and the virtual cloud [33]) of this
category adopt the unique characteristics of MCC such as
fault tolerant and application partition. The typical schemes
of the fourth category move the cloud infrastructure close
to the users to improve the timeliness of the service, such as
MobiCloud [34–36].

Figure 1 illustrates the traditional architecture which uses
remote cloud infrastructure via the backbone network. As
shown in Figure 1, the latency of this architecture consists
of the time spent on the access network, the backbone
network, and the time spent inside the cloud infrastructure.
In the Cloudlet architecture, as shown in Figure 2, most
of the time, the application will not deliver to the remote
cloud infrastructure, and thus the latency is composed of
the one-hop time spent on the access network, which is
much lower than those using architecture of Figure 1 [30, 37].
Under some special conditions, Cloudlet cannot handle the
offloaded applications locally, and it needs the remote cloud
infrastructure’s help for processing them. The latency under
these conditions approximates the traditional architecture
which directly uses the remote cloud infrastructure.

3.2. Hybrid Local Mobile Cloud Model. In order to provide
high QoS for mobile applications, the MCC architecture
should have low response latency. Moreover, the mobile
devices’ participation for providing their idle computing and
sensing capabilities is also very critical for the promotion
of the users’ QoE (quality of experience). This is due to the
fact that one single mobile device’s sensing result can be
easily influenced by its local environment and hence is error-
prone, while aggregating a fewmobile devices’ sensing results
about the area can provide more correct context information.
Therefore, we have modified the Cloudlet architecture to
make the mobile devices contribute their computing and
sensing capabilities like they do in Hyrax [31] and Misco
models [32]. This new mobile cloud computing model is
called the Hybrid Local Mobile CloudModel (HLMCM) and
is illustrated in Figure 3.

From Figure 3, we can see that HLMCM consists of a
Cloudlet and a set of mobile devices. The mobile devices are
connected to the Cloudlet via wireless links, such asWiFi and
WiMAX. Similar to the original Cloudlet architecture, the
Cloudlet in HLMCM is logically attached to the access point
of themobile devices to achieve low response latency, and the
mobile devices can offload their mobile applications to the
Cloudlet. However, different from Satyanarayanan’s scheme
[30], in HLMCM, the mobile devices collaborate with the
Cloudlet to provide service. This designation is based on the
following considerations.

(1) Mobile devices’ computing, storage, and sensing ca-
pabilities are increasingly becoming powerful. How-
ever, the utilization ratio of these resources is low

4 Journal of Applied Mathematics

Mobile devices

··
·

Backbone
network

Cloud
infrastructure

Figure 1: The architecture that uses the remote cloud infrastructure.

Cloudlet

Mobile devices

Backbone
network

Cloud
infrastructure

··
·

Figure 2: The Cloudlet architecture.

Cloudlet

Mobile devices

Figure 3: The architecture of the hybrid local mobile cloud model.

at most times, which means that the mobile devices
usually have idle resources for sharing.

(2) The Cloudlet usually only contains a few servers
and is much less powerful than the data center of
the typical large-scale cloud. Therefore, the mobile
devices’ participation can promote the scalability of
HLMCM.

Cloudlet

Mobile devices

(1) (2)

(2)
(2)

(4)

(3)
(3)

(3)
Client

(1)

(1)

(4)

(4)

Client

Client

··
·

Figure 4: The general working process of HLMCM.

(3) The involvement of the mobile devices can help
improve theQoS provided byHLMCM, especially the
sensing capabilities.

The general working process of HLMCM is shown in
Figure 4, and it mainly contains the following four steps.

(1) The clients offload part or full of their applications to
the Cloudlet. Note that the clients are mobile devices

Journal of Applied Mathematics 5

as well, and they can provide service for other devices’
mobile applications.

(2) The Cloudlet executes the application scheduling
algorithm to offload the applications to a few mobile
devices that are willing to provide resources.

(3) The mobile devices handle the applications received
and send their results to the Cloudlet.

(4) The Cloudlet sends the results of the applications
from the mobile devices to the clients.

Note that there may be a large number of mobile devices
requesting for offloading applications to the HLMCMwhose
sensibility, computing, and storage capabilities are usually
much less than those of the large cloud infrastructure.There-
fore, efficient application scheduling algorithm is critical for
HLMCM to provide high QoS. Moreover, the application
scheduling algorithm should consider the profits of the
HLMCM as well as balancing the load of the mobile devices
to make the whole system last longer.

4. Model and Algorithm

4.1.Model andProblemStatement. InHLMCMenvironment,
the scheduling algorithm is in charge of allocating the
offloaded applications from the mobile devices to the service
providers, including the Cloudlet and𝑚−1 mobile devices in
the system. For ease of description, the service provider will
be referred to as provider in the following analysis.

Assume the dimension of the resources is 𝑑 and each
provider’s resources can be expressed as a vector ⃗𝑐

𝑖
=

(𝑐
1

𝑖
, . . . , 𝑐

𝑑

𝑖
), in which 𝑐

𝑘

𝑖
is the 𝑘th dimensional resource that

the provider 𝑖 has. Assume that the set of applications that
arrives at some particular time slot is 𝐼 = {1, 2, . . . , 𝑛}, and
the value of the application 𝑗 is 𝑝

𝑗
, 𝑗 = 1, 2, . . . , 𝑛.

The resources consumed by application 𝑗 when executed
on provider 𝑖 are a vector ⃗𝑟

𝑖𝑗
= (𝑟
1

𝑖𝑗
, . . . 𝑟
𝑑

𝑖𝑗
), 𝑖 = 1, 2, . . . , 𝑚.

Assume that each application can only be executed on one
provider and cannot be further partitioned. Once an appli-
cation is executed successfully on some provider, HLMCM
will receive the value of this application as its profit. Here,
the scheduling target is to maximize the total profits of
HLMCM with the constraint of resource capacity of each
service provider. Therefore, the scheduling problem can be
formulated as follows.

Maximize
𝑛

∑

𝑗=1

𝑝
𝑗

𝑚

∑

𝑖=1

𝑥
𝑖𝑗

subject to
𝑛

∑

𝑗=1

⃗𝑟
𝑖𝑗
𝑥
𝑖𝑗
≤ ⃗𝑐
𝑖
, 𝑖 = 1, 2, . . . , 𝑚

𝑚

∑

𝑖=1

𝑥
𝑖𝑗
≤ 1, 𝑗 = 1, 2, . . . , 𝑛

𝑥
𝑖𝑗
∈ {0, 1} , 𝑗 = 1, 2, . . . , 𝑛.

(1)

From (1), we can see that this can be seen as a multidi-
mensional 0-1 knapsack problem and is NP-hard.

Besides, in order to make HLMCM last longer, the
applications should be uniformly executed on the mobile
devices. This will make the devices consume their energy
evenly to avoid the phenomenon that some mobile devices
with heavy load consume their energy too early and have to
leave the system.

For some particular provider 𝑖, the load of its 𝑘th
dimensional resource is defined as.

𝐿
𝑖𝑘
=

∑
𝑛

𝑗=1
𝑟
𝑘

𝑖𝑗
𝑥
𝑖𝑗

𝑐
𝑘

𝑖

. (2)

𝑖
󸀠s load𝐿

𝑖
is defined as themean value of all its 𝑑-dimensional

resources’ loads; that is,

𝐿
𝑖
=

∑
𝑑

𝑘=1
𝐿
𝑖𝑘

𝑑

.
(3)

4.2. HACAS Algorithm. In order to solve this problem,
this paper proposes a scheduling algorithm based on the
hybrid ant colony algorithm which has been widely used
to solve complex combinatorial optimization problems [38].
The following part of this section presentsHACAS algorithm,
which contains the pheromone value and its update model,
local heuristic value, application scheduling probability, tabu
list and the bulletin board, and provider selection scheme.

4.2.1. Pheromone Value and Its Update Model. The appli-
cation scheduling problem in this paper belongs to the
subset problem [39]; that is, given a set 𝑆 which contains
𝑛 applications for scheduling and the evaluation function
𝑓(), the target is to select the best subset of 𝑆 to maximize
or minimize 𝑓(). There may be more than one evaluation
functions while this section focuses on the case where there
is only one evaluation function. In this situation, the order of
the selected applications is not important, and the pheromone
value is placed on the application rather than the connection
among the applications, which means that applications with
a higher pheromone value can better satisfy the requirements
of the evaluation function. When the specific condition is
met, such as a partial solution with some particular length
is obtained, the pheromone value needs to be updated. The
update process includes two parts. Firstly, the pheromone
value of each application is reduced by a certain percentage to
emulate the real-life behavior of evaporation of pheromone
count over time; Secondly, the pheromone value increment
laid by the new partial solutions of the ants will be added.
Assume that the pheromone value on application 𝑖 at time 𝑡 is
𝜏
𝑖
(𝑡); then at the next update time 𝑡󸀠, the value is updated to

𝜏
𝑖
(𝑡
󸀠
):

𝜏
𝑖
(𝑡
󸀠
) = (1 − 𝜌) 𝜏

𝑖 (
𝑡) + Δ𝜏

𝑖
(𝑡, 𝑡
󸀠
) , (4)

where 0 < 𝜌 ≤ 1 is a coefficient which represents pheromone
evaporation, Δ𝜏

𝑖
(𝑡, 𝑡
󸀠
) is the pheromone value increment

obtained from all the ants’ partial solutions; that is,

Δ𝜏
𝑖
(𝑡, 𝑡
󸀠
) =

𝑞

∑

𝑗=1

Δ𝜏
𝑗

𝑖
(𝑡, 𝑡
󸀠
) , (5)

6 Journal of Applied Mathematics

where 𝑞 is the number of the ants and Δ𝜏
𝑗

𝑖
(𝑡, 𝑡
󸀠
) is the

pheromone value laid on application 𝑖 by ant 𝑗’s partial
solution at time 𝑡󸀠 and is defined as

Δ𝜏
𝑗

𝑖
(𝑡, 𝑡
󸀠
)

= {

𝐺 (𝑓 (𝑆
𝑗
(𝑡
󸀠
))) , if 𝑗th ant incoporates application 𝑖

0, otherwise,
(6)

where 𝑆
𝑗
(𝑡
󸀠
) is the partial solution of ant 𝑗 at time 𝑡

󸀠 and
𝑓(𝑆
𝑗
(𝑡
󸀠
)) is the value of the evaluation function of this

solution. To maximize the profit, the evaluation is defined as

𝑓 (𝑆
𝑗
(𝑡
󸀠
)) = ∑

𝑘∈𝑆𝑗(𝑡
󸀠
)

𝑝
𝑘
; (7)

that is, the total value of the applications belongs to 𝑆
𝑗
(𝑡
󸀠
).

The function 𝐺 in (4) depends on the problem; in this paper,
it is defined as 𝐺(𝑓(𝑆

𝑗
(𝑡
󸀠
))) = 𝑄𝑓(𝑆

𝑗
(𝑡
󸀠
)), in which 𝑄 is a

parameter of the method.

4.2.2. Local Heuristic Value. The positive feedback of the ant
colony algorithm is usually combinedwith some local heuris-
tic schemes to accelerate the search process. In HLMCM, the
local heuristic scheme needs to consider the profits of the
applications as well as the resources they consume.

Let 𝜇⃗
𝑘
(𝑗, 𝑡) = ∑

𝑙∈𝑆𝑗(𝑡)
⃗𝑟
𝑘𝑙

be the resources consumed
on provider 𝑘 by the partial solution 𝑆

𝑗
(𝑡) constructed by

ant 𝑗. Then, the remaining resources on provider 𝑘 are
⃗𝛾
𝑘
(𝑗, 𝑡) = ⃗𝑐

𝑘
−𝜇⃗
𝑘
(𝑗, 𝑡) = (𝛾

1

𝑘
(𝑗, 𝑡), . . . , 𝛾

𝑑

𝑘
(𝑗, 𝑡)), in which 𝛾𝑖

𝑘
(𝑗, 𝑡)

is the remaining amount of the 𝑖th dimensional resource.
The tightness of application ℎ on provider 𝑘 on the 𝑖th
dimensional resource is defined as

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑟
𝑖

𝑘ℎ

𝛾
𝑖

𝑘
(𝑗, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(8)

that is the ratio between 𝑟
𝑖

𝑘ℎ
, the amount of provider 𝑘’s

resource consumed by application ℎ, and 𝛾
𝑖

𝑘
(𝑗, 𝑡). Moreover,

the tightness of application ℎ on provider 𝑘 is defined as

𝛿
𝑘ℎ

(𝑗, 𝑡) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑟
1

𝑘ℎ

𝛾
1

𝑘
(𝑗, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑟
𝑑

𝑘ℎ

𝛾
𝑑

𝑘
(𝑗, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (9)

In (9), the tightness of the 𝑑-dimensional resources is
converted into a single value which comprehensively consid-
ers all dimensions of the resources.

The average tightness on all providers in case of applica-
tion ℎ being chosen to be included in 𝑆

𝑗
(𝑡) is

𝛿
ℎ
(𝑗, 𝑡) =

∑
𝑚

𝑘=1
𝛿
𝑘ℎ

(𝑗, 𝑡)

𝑚

. (10)

In order to consider the application ℎ’s profit as well as
its resource requirement, the local heuristic value 𝜂

ℎ
(𝑆
𝑗
(𝑡)) is

defined as

𝜂
ℎ
(𝑆
𝑗 (
𝑡)) =

𝑝
ℎ

𝛿
ℎ
(𝑗, 𝑡)

. (11)

4.2.3. Application Scheduling Probability. After obtaining the
pheromone value and local heuristic value on each appli-
cation, the probability that ℎ has to be selected as the next
scheduling application of 𝑆

𝑗
(𝑡) is

𝑃
𝑗

ℎ
(t)

=

{
{
{
{

{
{
{
{

{

[𝜏
ℎ (
𝑡)]
𝛼
[𝜂
ℎ
(𝑆
𝑗 (
𝑡))]

𝛽

∑
𝑘∈allowed𝑗(𝑡)

[𝜏
𝑘 (
𝑡)]
𝛼
[𝜂
𝑘
(𝑆
𝑗 (
𝑡))]

𝛽
, if ℎ ∈ allowed

𝑗 (
𝑡)

0, otherwise,
(12)

where allowed
𝑗
(𝑡) ⊆ 𝑆 − 𝑆

𝑗
(𝑡), is the set of the remaining

schedulable applications. From (12), we can see that the more
pheromone value and local heuristic value an application has,
the higher the probability will be scheduled.

4.2.4. Tabu List and the Bulletin Board. A data structure,
called a tabu list, is associated to each ant in order to avoid
that ant from scheduling an application more than once.This
list tabu

𝑗
(𝑡) maintains a set of scheduled applications up to

time 𝑡 by ant 𝑗. Let the applications that can be executed on
at least one of the providers be 𝐹; then we have allowed

𝑗
(𝑡) =

𝐹 ∩ {ℎ | ℎ ∉ tabu
𝑗
(𝑡)}.

In addition, we set a bulletin board to record the best
solution up to time 𝑡, with which each ant can compare its
own solution. If its solution is better than the best one, it will
update the best one with its solution.

4.2.5. Provider Selection Scheme. After deciding the sched-
uled application, there is usually more than one provider
who have sufficient resources to execute the application.
Note that traditional hybrid algorithm only focuses on the
application scheduling probability. In order to balance the
load of the providers, we take the provider selection scheme
into consideration in this section.

For some particular feasible provider 𝑖, the load of its
𝑘th dimensional resource is 𝐿

𝑖𝑘
as defined in (2). After

adding application ℎ, the expected load of its 𝑘th dimensional
resource is

𝐿
󸀠

𝑖𝑘
= 𝐿
𝑖𝑘
+

𝑟
𝑘

𝑖ℎ

𝑐
𝑘

𝑖

. (13)

The expected load of provider 𝑖 is defined as

𝐿
󸀠

𝑖
=

∑
𝑑

𝑘=1
𝐿
󸀠

𝑖𝑘

𝑑

.
(14)

This means that if is ℎ executed on provider 𝑖, 𝑖’s expected
load will be 𝐿󸀠

𝑖
.

In order to balance the load of all the providers, the
provider with the lowest expected load will be selected to
execute application ℎ.

4.2.6. Algorithm. The HACAS algorithm is illustrated in
Algorithm 1. The parameters needed to be settled include 𝐶,

Journal of Applied Mathematics 7

(1) Initialize ⃗𝑟
𝑖𝑗
, ⃗𝑐
𝑖
, 𝑝
𝑗
, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 𝑞 = 𝑛, number

of cycles 𝐶, 𝜏
𝑗
(0) = 1/𝑞, 1 ≤ 𝑗 ≤ 𝑞, tabu list = [],

best solution = 0, application provider, 𝛼 = 𝛽 = 1, 𝜌 = 0.3, 𝑄 = 1

(2) for (𝑡 = 1: 𝑡 <= 𝐶; t++)
(3) for (𝑗 = 1; 𝑗 < 𝑞; j++)
(4) random first = 0
(5) while 𝑎𝑙𝑙𝑜𝑤𝑒𝑑

𝑗
(𝑡) ̸= 0

(6) if random first == 0
(7) Select the first scheduled application randomly
(8) random first = 1
(9) else
(10) Select the scheduled application ℎ according to (12)
(11) end if
(12) Calculate the expected loads of all feasible providers according to (14)
(13) Rank the feasible providers according to their expected loads in an increasing order
(14) The provider with the lowest expected load is selected for ℎ
(15) Add ℎ to 𝑆

𝑗
(𝑡) and the tabu list

(16) end while
(17) Calculate 𝑓(𝑆

𝑗
(𝑡)), which is the object function of the generated solution of ant 𝑗

(18) if 𝑓(𝑆
𝑗
(𝑡)) > best solution

(19) best solution = 𝑓(𝑆
𝑗
(𝑡))

(20) Save ant j’s solution in application provider
(21) end if
(22) end for
(23) Calculate the incremental pheromone on each application according to (5)
(24) Clear the tabu list for each ant
(25) end for
(26) print best solution
(27) print application provider

Algorithm 1: The HACAS algorithm.

𝛼, 𝛽, 𝜌, 𝑞, 𝑄, ⃗𝑟
𝑖𝑗
, ⃗𝑐
𝑖
, and 𝑝

𝑗
. The initial pheromone trail value

on each application is set to be 1/𝑞.
Step 1 initiates the parameters. Step 4 introduces a variable

random first to enable each ant to randomly select its first
scheduling application. Steps 5 to 16 present the solution-
searching process of an ant. Firstly, Steps 6 to 11 select the next
scheduled application, that is, randomly selecting the first
one and then scheduling other applications according to the
probabilities calculated in (12). Secondly, Step 12 calculates
the expected loads of all feasible providers according to
(14), Step 13 ranks the feasible providers according to their
expected loads in an increasing order, Step 14 selects the
provider with the lowest expected load for ℎ, and finally, Step
15 adds the newly scheduled application to the partial solution
as well as the tabu list. At the end of Step 16, each ant has
found its solution 𝑆

𝑗
(𝑡); Step 17 calculates 𝑓(𝑆

𝑗
(𝑡)). If 𝑓(𝑆

𝑗
(𝑡))

is larger than the best solution in the bulletin board, then Step
19 will assign𝑓(𝑆

𝑗
(𝑡)) to best solution and save the scheduling

results into application provider. After Step 22, all the ants
have finished searching for the solutions, and one cycle is
finished. Step 23 calculates the pheromone value increment
according to (5). Step 24 clears the tabu lists of the ants. Steps
26 to 27 print the best solution found at the 𝐶th cycle and the
scheduling results.

5. Simulation, Results, and Discussion

5.1. Experimental Settings

5.1.1. Experimental Environment. To evaluate the perfor-
mance of the algorithms proposed in this paper, we have
conducted many simulation experiments, whose parameters
are listed in Table 1.

In this simulation, the dimension of the resources is 2.
Both the first and the second dimensional resources pos-
sessed by each provider obey uniform distribution in the
interval [𝑎

1
, 𝑎
2
]. There are 𝑚 providers and 𝑛 applications

in the system. At time 𝑡, these applications arrive simultane-
ously.The applications’ resource consumption of the first and
the second dimensional resources on some provider obeys
uniform distribution in the intervals [𝑎

3
, 𝑎
4
] and [𝑎

5
, 𝑎
6
],

respectively. Moreover, the applications’ profits obey uniform
distribution in the interval [𝑎

7
, 𝑎
8
].The number of cycles (i.e.,

𝐶) is set to be 10. The default parameters are listed in Table 1.
Based on these parameters, a series of simulation exper-

iments has been conducted. The experiments contain 10
cycles. In each cycle, each ant searches for its own scheduling
result based on the method presented in the scheduling
algorithm in the above section. At the end of each cycle,

8 Journal of Applied Mathematics

Table 1: Simulation parameters.

Parameter Default Value
𝑛 100
𝑎
1

31
𝑎
2

100
𝑎
3

10
𝑎
4

30
𝑎
5

10
𝐶 10
𝛽 1
𝑄 1
𝑚 20
𝑎
6

30
𝑎
7

5
𝑎
8

30
𝛼 1
𝜌 0.3
𝜃 1
𝜆 1

the pheromone value on the applications will be updated and
the bulletin board is used to record the best scheduling result.

5.1.2. Comparison Benchmark and Metrics. We evaluate
HACAS algorithm from two different angles. Firstly, in order
to validate the effectiveness of HACAS algorithm, we com-
pare it with the First-Come-First-Served (FCFS) algorithm.
In FCFS, the applications are scheduled according to their
arrival order, and the providers are selected randomly from
those who can execute the application. The profit of the
scheduling algorithm, which is defined as the total profits of
all the applications scheduled by the algorithm, is chosen as
the metrics to compare them.

Secondly, in order to evaluate the provider selection
scheme of HACAS algorithm, a scheduling algorithm with
random provider selection is adopted as the comparison
benchmark, in which steps 12–14 in Algorithm 1 are replaced
with the following step.

(12) Randomly select the service provider for ℎ from those
feasible providers.

The scheduling algorithm with this modification is called
theHybridAntColony algorithmbasedApplication Schedul-
ing with Random Provider Selection (HACASRPS) algo-
rithm.

For the solution of ant 𝑗 at the 𝑘th cycle, let provider 𝑖’s
load be 𝐿𝑗𝑘

𝑖
. The mean value (𝜇𝑗

𝑘
) and the standard deviation

(𝜎𝑗
𝑘
) of all the 𝑚 providers’ loads at the 𝑘th cycle of ant 𝑗’s

solution are defined as

𝜇
𝑗

𝑘
=

∑
𝑚

𝑖=1
𝐿
𝑗𝑘

𝑖

𝑚

,

𝜎
𝑗

𝑘
= √

1

𝑚

𝑚

∑

𝑖=1

(𝐿
𝑗𝑘

𝑖
− 𝜇
𝑗

𝑘
)

2

.

(15)

𝜎
𝑗

𝑘
reflects the deviation of all the providers’ loads of ant 𝑗’s

solution at the 𝑘th cycle. Then, at the end of the 𝑘th cycle,
the mean value of the standard deviation of all the providers’
loads of all the 𝑞 ants’ solution is defined as

𝜇
𝑘

𝜎
=

∑
𝑞

𝑗=1
𝜎
𝑗

𝑘

𝑞

. (16)

In order to simplify the expression, 𝜇𝑘
𝜎
will be referred

to as the load variation of the scheduling algorithm at the
𝑘th cycle. Then, the average load variation of the scheduling
algorithm of all the simulation cycles can be defined as

𝜇
𝜎
=

∑
𝐶

𝑘=1
𝜇
𝑘

𝜎

𝐶

. (17)

We define the average load of a scheduling algorithm in
𝑘th cycle by

𝜇
𝑘

𝜇
=

∑
𝑞

𝑗=1
𝜇
𝑗

𝑘

𝑞

. (18)

Then the average load of a scheduling algorithm is defined
by

𝜇
𝜇
=

∑
𝐶

𝑘=1
𝜇
𝑘

𝜇

𝐶

.
(19)

𝜎
𝑗

𝑘
, 𝜇
𝜇
, and 𝜇

𝑘

𝜎
are selected as the metrics to evaluate the

effectiveness of the provider selection scheme of the HACAS
algorithm.

5.2. Experimental Results

5.2.1. The Profits. With the parameters in Table 1, the profit
of FCFS algorithm is 1324. The profits of HACASRPS and
HACAS algorithms are shown in Figure 5.

From Figure 5, we can see that as cycle increases, the
profits of both HACASRPS and HACAS algorithms increase.
This is due to the fact that as cycle increases, both the
HACASRPS and HACAS algorithms will find more prof-
itable scheduling results which will bring more profits. At
the end of the 10th cycle, the profits of HACASRPS and
HACAS algorithms are 1747 and 1794, respectively, which
are more than 30% higher than that of FCFS algorithm.
This phenomenon can be attributed to the local heuristic
value adopted by both algorithms, which enables them to
schedule those applications which consume less resources
while bringing more profits with preference.

5.2.2. Load Balancing. Balancing the load of all the providers
to make the system last longer is an important target of
HACAS algorithm’s provider selection scheme. This section
investigates the effectiveness of this selection scheme and
compares it with random provider selection method adopted
in HACASRPS algorithm.

With the parameters in Table 1, the average loads of
HACAS and HACASRPS algorithms are 0.800 and 0.779,

Journal of Applied Mathematics 9

1 2 3 4 5 6 7 8 9 10
1550

1600

1650

1700

1750

1800

Cycle

Pr
ofi

t

HACASRPS
HACAS

Figure 5: The profits of HACASRPS and HACAS algorithms. The
horizontal axis represents the simulation cycle; the longitudinal axis
represents the profit of the algorithm.

1 2 3 4 5 6 7 8 9 10
0.77

0.78

0.79

0.8

0.81

0.82

0.83

HACASRPS
HACAS

k

𝜇
k 𝜇

Figure 6: The average load of HACAS and HACASRPS algorithms
in different simulation cycles; 𝑘 is the simulation cycle, and 𝜇

𝑘

𝜇
is the

average load of the algorithm in the 𝑘th cycle.

respectively. The former is slightly higher than the latter,
which is due to the fact that HACAS schedules more appli-
cations than HACASRPS algorithm as shown in Figure 5.
The average load of HACAS and HACASRPS algorithms in
different simulation cycles (as defined in (18)) are shown in
Figure 6. From Figure 6, we can see that the average load of
both algorithms stays stable as cycle increases.

Figure 6 tells us that the average loads of HACAS and
HACASRPS algorithms are 0.8 and 0.78, respectively. We
further investigate the load variations of both algorithms

1 2 3 4 5 6 7 8 9 10
0.1

0.105

0.11

0.115

0.12

0.125

0.13

HACASRPS
HACAS

k

𝜇
k 𝜎

Figure 7: The load variations of HACAS and HACASRPS algo-
rithms in different simulation cycles; 𝑘 is the simulation cycle, and
𝜇
𝑘

𝜎
is the load variation of the algorithm in the 𝑘th cycle.

in different simulation cycles, and the results are shown in
Figure 7.

From Figure 7, we can see that the load variations of these
two algorithms maintain stable as simulation cycle increases.
Moreover, the load variation of HACAS algorithm is much
lower than that of HACASRPS algorithm. In some particular
cycle, HACAS algorithm’s load variation is about 13% lower
than that of the HACASRPS algorithm. This is because the
provider selection scheme adopted in HACAS algorithm
takes the providers’ load into account when choosing the
provider for the scheduled applications. This means that
the provider selection scheme in HACAS algorithm can
effectively balance the load of the providers more effectively.

5.2.3. Parameters’ Influence. In the above experiments, the
number of the applications for scheduling is large and the
load of the providers is high. This section shows the results
when the number of the applications for scheduling is
relatively small. Concretely speaking, we set 𝑚 = 20 with
𝑛 = 30 in this experiment.

Firstly, we investigate the load of all the providers of the
10th ant’s solution at the 5th cycle, and the results are shown
in Figure 8.

From Figure 8, we can see that the load of the providers
in HACASRPS algorithm fluctuates in a much wider range
than that of HACAS algorithm. In HACASRPS algorithm,
the load of the 7th provider is almost 0.8, while the loads
of the 16th and the 18th provider are 0. In contrast, the load
of the providers in HACAS algorithm is mostly between 0.3
and 0.6.The notable differences of the resource consumption
among different applications (from 10 to 30) have led to the
differences among the loads of the providers.

Then we show the standard deviation of all the providers’
loads of the ant’s solution in the 5th cycle in Figure 10. Note
that there are 30 ants in the algorithm since 𝑞 = 𝑛.

10 Journal of Applied Mathematics

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Provider

Th
e l

oa
d

of
 th

e p
ro

vi
de

r

HACASRPS
HACAS

Figure 8: The load of all the providers of the 10th ant’s solution at
the 5th cycle.

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ant

HACASRPS
HACAS

Th
e s

ta
nd

ar
d

de
vi

at
io

n
of

 al
l t

he
 p

ro
vi

de
rs

’
lo

ad
 o

f t
he

 an
t’s

 so
lu

tio
n

Figure 9: The standard deviation of all the providers’ loads of the
ant’s solution in the 5th cycle.

Figure 9 reveals that the standard deviations of all the
providers’ loads of the ant’s solution of HACAS algorithm are
much lower than those of the HACASRPS algorithm.

Similar to Figure 7, Figure 10 further reveals the load
variations of HACAS andHACASRPS algorithms in different
simulation cycles when 𝑛 = 30, from which we can
derive similar observations with those drawn from Figure 7.
Moreover, in some particular cycle in Figure 10, HACAS
algorithm’s load variation is about 60% lower than that of the
HACASRPS algorithm. Therefore, after combining Figures
7 and 10, we know that the effectiveness of the provider

1 2 3 4 5 6 7 8 9 10
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

k

𝜇
k 𝜎

HACASRPS
HACAS

Figure 10: The load variations of HACAS and HACASRPS algo-
rithms in different simulation cycles; 𝑘 is the simulation cycle, and
𝜇
𝑘

𝜎
is the load variation of the algorithm in the 𝑘th cycle.

selection scheme of the HACAS algorithm becomes more
prominent when the load of the system is low.

5.3. Discussion and Application Scenario

5.3.1. Discussion. As shown in Section 5.2, the performance
of HACAS algorithm is better than that of FCFS and
HACASRPS algorithms. This phenomenon can be attributed
to HACAS algorithm’s pheromone value and its update
model, application scheduling model, and provider selec-
tion scheme. Concretely speaking, pheromone value and its
updatemodel makeHACAS learn from its historical decision
to raise the profit of the system. Moreover, application
scheduling model takes the pheromone value as well as
application’s resource consumption into consideration and
can help HACAS algorithm choose those applications with
the highest profit and the lowest resource consumption. Last
but not the least, the provider selection scheme can balance
the load of the mobile devices, which is very important to
make the system last longer.

In addition, the following section shows the reason why
we propose HLMCM and choose simulation parameters.

5.3.2. The Rationale behind Proposing HLMCM. We put for-
wardHLMCMsincewe cannot fulfill users’ QoE requirement
through simply extending the cloud infrastructure or the
Cloudlet entity’s computing or storage capacity. For instance,
in a cooperation sensing environment, the accurate sensing
result can only be drawn through jointly using many mobile
devices’ diverse sensing results (such as location, orientation,
and temperature) [3]. Besides, in some circumstances, com-
munication using backbone links may not be always present
in some isolated areas, during rescue missions, uprisings,
and disaster scenarios [37, 40]. Under these circumstance,

Journal of Applied Mathematics 11

themobile devices can only search for the local infrastructure
such as the Cloudlet entity which is easy to implement.

5.3.3. Rationale for Choosing the Simulation Parameters Pre-
sented in Table 1. In the simulation part, a mobile device is
assumed to have at least enough resources to run an offloaded
application.This is also the basic assumption in the knapsack
problem that the maximum volume of the objects (in this
paper, 30) is smaller than the minimum capacity of the knap-
sacks (in this paper, 31). Moreover, we notice that in Table 1,
the resources possessed by each provider obey uniformdistri-
bution in the interval [𝑎

1
, 𝑎
2
], while 𝑎

1
= 31 and 𝑎

2
= 100.This

setting is attributed to following observation. The resources
in mobile devices mainly contain CPU, storage, and sensors,
and so forth. The process frequency of mainstream smart-
phones’ CPU ranges from 800MHz to 2GHz. Moreover, the
storage capacity of the mainstream smartphones ranges from
16GB to 64GB. The number of sensors (including proximity
sensor, Global Positioning System, accelerometer, compass,
and gyros) on each smartphones ranges from 2 to 6. If we
treat these devices as general resources, then we know that
the volume difference of the resource possessed by the devices
is about 3 times. Therefore, in Table 1, the volume difference
of the resource processed by the devices is also set to be
around 3. Based on this consideration, the maximum and the
minimum resources possessed by each device in Table 1 are
set to be in the interval (31, 100). The profit and the energy
consumption difference of the applications are based on the
observations and current studies [41] on the mainstream
applications (such as game, web browser, etc.) in the app store
(such as the iPhone App store).The other parameters, such as
𝛼, 𝛽, 𝜌, and 𝑄, are decided by the default parameters used by
the hybrid ant colony algorithm.

In this paper, the parameters used in Table 1 can validate
that HACAS algorithm is effective under heavy load envi-
ronment (i.e., the applications’ total resource requirements
exceed the resources possessed by the system). Moreover,
in the section “Parameters’ influence,” 𝑛 is set to be 20
to evaluate the effectiveness of HACAS under light load
environment. Notice that these parameters can be adjusted
as the simulation needs and the proposed HACAS algorithm
can adapt to various circumstances.

5.3.4. Application Scenario. The case for mobile cloud com-
puting can be argued by considering the unique advantages
of empoweredmobile computing, and a wide range of poten-
tial mobile cloud applications have been recognized in the
literature. These applications fall into different areas such as
image processing, natural language processing, sharing GPS,
sharing Internet access, sensor data applications, querying,
crowd computing, and multimedia search. A survey of the
possible applications can be referred to [42].

Here, we show an application scenario that applies
MCC for disaster rescue. In a disaster-stricken environment
(such as hurricane, tsunamim, and earthquake), the com-
munication infrastructure can be seriously damaged, if not
completely destroyed. Moreover, many roads could also get
blocked. These damages make it difficult for the rescuers to

find the location of wounded people or even to get a global
view of the disaster area. Under such circumstances, the
rescuers can deploy some emergency communication facili-
ties (such as communication vehicles) with Cloudlet entities.
Then, the mobile devices (especially the smartphones) near
the vehicles can communicate with each other, report the
location of the wounded people, and upload the pictures or
videos around themselves for processing to help the rescue
process. Moreover, the devices also need the Cloudlet to
provide them with the needed information (such as the
latest map in the area) and to process their images captured.
Among these requests, searching for wounded or missing
persons is one of the most critical yet excruciating tasks
(applications). Therefore, the HLMCM, which is composed
by the Cloudlet and the mobile devices, can run HACAS
algorithm to effectively schedule these applications.

6. Conclusion and Future Work

Efficiently exploiting the mobile devices’ idle computing,
storage, and sensing capacity can greatly improve the quality
of service provided by mobile cloud computing (MCC). To
achieve this goal, an appropriate architecture of MCC and
a dedicated scheduling algorithm are considered important.
To address these issues, this paper contributes in several
ways by providing suitable definitions of critical aspects and
proposing efficient algorithms and approaches.

Our simulation results have revealed that when the load
of the system is heavy, HACAS algorithm can select those
applications with maximum profit and minimum energy
consumption. With the parameters setting in the simulation,
the profit of HACAS algorithm is about 30% higher than
that of FCFS algorithm. Besides, when the load of the system
is light, the provider selection scheme adopted in HACAS
can effectively balance the load of the devices in the system.
Concretely speaking, HACAS algorithm’s load variation is
about 60% better than that of the random provider selection
scheme. Moreover, in the discussion part of the paper, we
have presented the rationale for devising HLMCM and
for selecting those simulation parameters. In simple terms,
HLMCM can effectively use mobile devices’ diverse sensing
results which cannot be realized by extending the cloud
infrastructure or the Cloudlet entity’s service capability.
Moreover, the simulation parameters are chosen based on
the observation of mainstream smartphones. The discussion
section also gives an application scenario where HACAS
algorithm is used for disaster rescue.

In the future, we will further extend the scheduling
algorithm by considering the dynamic resource requirement
of the applications.

Acknowledgments

This research was supported in part by the Major State Basic
Research Development Program of China (973 Program)
no. 2012CB315806, National Natural Science Foundation of
China under Grant no. 61070173, National Natural Science
Foundation of China under Grant no. 61201216, Jiangsu

12 Journal of Applied Mathematics

Province Natural Science Foundation of China under Grant
no. BK2010133, Jiangsu Province Natural Science Foundation
of China under Grant no. BK2009058, and China Postdoc-
toral Science Foundation funded project under Grant no.
201150M1512.

References

[1] IDC, Worldwide smartphone market expected to grow 55
in 2011 and approach shipments of one billion in 2015,
according to IDC, http://www.idc.com/getdoc.jsp?container-
Id=prUS22871611.

[2] M.Conti, S. Chong, S. Fdida et al., “Research challenges towards
the Future Internet,” Computer Communications, vol. 34, no. 18,
pp. 2115–2134, 2011.

[3] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smart-
phones: incentivemechanismdesign formobile phone sensing,”
in Proceedings of the 18th Annual International Conference on
Mobile Computing and Networking (Mobicom ’12), pp. 173–184,
ACM, 2012.

[4] L. Duan, T. Kubo, K. Sugiyama, J. Huang, T. Hasegawa, and J.
Walrand, “Incentive mechanisms for smartphone collaboration
in data acquisition and distributed computing,” in Proceedings
of the Annual IEEE International Conference on Computer
Communications (INFOCOM ’12), pp. 1701–1709, Orlando, Fla,
USA, March 2012.

[5] Y.-K. Kwok, K. Hwang, and S. Song, “Selfish grids: game-
theoreticmodeling andNAS/PSA benchmark evaluation,” IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 5,
pp. 621–636, 2007.

[6] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “A cooperative game
framework for QoS guided job allocation schemes in grids,”
IEEE Transactions on Computers, vol. 57, no. 10, pp. 1413–1422,
2008.

[7] P. Ghosh, K. Basu, and S. K. Das, “A game theory-based pricing
strategy to support single/multiclass job allocation schemes for
bandwidth-constrained distributed computing systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 3,
pp. 289–306, 2007.

[8] G. Danezis, S. Lewis, and R. Anderson, “How much is location
privacy worth?” in Proceedings of Workshop on the Economics of
Information Security Series (WEIS ’05), 2005.

[9] J.-S. Lee and B. Hoh, “Sell your experiences: a market mecha-
nism based incentive for participatory sensing,” in Proceedings
of the 8th IEEE International Conference on Pervasive Computing
and Communications (PerCom ’10), pp. 60–68, April 2010.

[10] J. Liu, X. Luo, X. Zhang, F. Zhang, and B. Li, “Job scheduling
model for cloud computing based on multi-objective genetic
algorithm,” IJCSI International Journal of Computer Science
Issues, vol. 10, no. 1, 2013.

[11] E. Feller, L. Rilling, and C. Morin, “Energy-aware ant colony
based workload placement in clouds,” in Proceedings of the 12th
IEEE/ACM International Conference on Grid Computing (Grid
’11), pp. 26–33, September 2011.

[12] H. Goudarzi and M. Pedram, “Multi-dimensional SLA-based
resource allocation for multi-tier cloud computing systems,” in
Proceedings of the IEEE 4th International Conference on Cloud
Computing (CLOUD ’11), pp. 324–331, July 2011.

[13] S. Nagendram, J. Vijaya Lakshmi, and D. Venkata Narasimha
Rao, “Efficient resource scheduling in data centers usingMRIS,”
Indian Journal of Computer Science and Engineering, vol. 2, no.
5, pp. 764–769, 2011.

[14] S. Tayal, “Task scheduling optimization for the cloud computing
systems,” International Journal of Adcanced Engineering Sciences
and Technologies, vol. 5, no. 2, pp. 111–115, 2011.

[15] O. Morariu, C. Morariu, and T. Borangiu, “A genetic algorithm
for workload scheduling in cloud based e-Learning,” in Pro-
ceedings of the 2nd InternationalWorkshop on Cloud Computing
Platforms (CloudCP ’12), ACM, April 2012.

[16] J. Gu, J. Hu, T. Zhao, and G. Sun, “A new resource scheduling
strategy based on genetic algorithm in cloud computing envi-
ronment,” Journal of Computers, vol. 7, no. 1, pp. 42–52, 2012.

[17] H. Yamauchi, K. Kurihara, T. Otomo, Y. Teranishi, T. Suzuki,
and K. Yamashita, “Effective distributed parallel scheduling
methodology for mobile cloud computing,” in Proceedings of
the 17th Workshop on Synthesis and System Integration of Mixed
Information Technologies (SASIMI ’12), pp. 516–521, 2012.

[18] R. Mishra and A. Jaiswa, “Ant colony optimization: a solution
of load balancing in cloud,” International Journal of Web &
Semantic Technology, vol. 3, no. 2, 2012.

[19] L. Zhu, Q. Li, and L. He, “Study on cloud computing resource
scheduling strategy based on the ant colony optimization
algorithm,” IJCSI International Journal of Computer Science, vol.
9, no. 5, 2012.

[20] K. Nishant, P. Sharma, V. Krishna et al., “Load balancing of
nodes in cloud using ant colony optimization,” in Proceedings
of the 14th International Conference on Computer Modelling and
Simulation (UKSim ’12), pp. 3–8, March 2012.

[21] S. Suryadevera, J. Chourasia, S. Rathore, and A. Jhummarwala,
“Load balancing in computational grids using ant colony
optimization algorithm,” International Journal of Computer &
Communication Technology, vol. 3, no. 3, 2012.

[22] N. J. Kansal and I. Chana, “Cloud load balancing techniques:
a step towards green computing,” IJCSI International Journal of
Computer Science, vol. 9, no. 1, 2012.

[23] http://www.mobilecloudcomputingforum.com/.
[24] White Paper, Mobile Cloud Computing Solution Brief, AE-

PONA, November 2010.
[25] J. H. Christensen, “Using RESTful web-services and cloud

computing to create next generation mobile applications,” in
Proceedings of the 24th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA ’09), pp. 627–633, October 2009.

[26] L. Liu, R. Moulic, and D. Shea, “Cloud service portal for mobile
device management,” in IEEE International Conference on E-
Business Engineering (ICEBE ’10), pp. 474–478, January 2011.

[27] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,”
Wireless Communications and Mobile Computing, 2012.

[28] E. Cuervoy, A. Balasubramanian,D.-K. Cho et al., “MAUI:mak-
ing smartphones last longer with code offload,” in Proceedings
of the 8th Annual International Conference on Mobile Systems,
Applications and Services (MobiSys ’10), pp. 49–62, June 2010.

[29] B.-G. Chun and P. Maniatis, “Augmented smartphone applica-
tions through clone cloud execution,” in Proceedings of the 12th
Workshop on Hot Topics in Operating Systems (HotOS XII ’09),
Monte Verita, Switzerland, 2009.

[30] M. Satyanarayanan, P. Bahl, R. Cáceres, andN.Davies, “The case
for VM-based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, 2009.

[31] E. E. Marinelli, Hyrax: cloud computing on mobile devices using
MapReduce [M.S. thesis], Carnegie Mellon University, 2009.

Journal of Applied Mathematics 13

[32] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen, and V. H.
Tuulos, “Misco: a MapReduce framework for mobile systems,”
in Proceedings of the 3rd International Conference on PErvasive
Technologies Related to Assistive Environments (PETRA ’10),
ACM, June 2010.

[33] G. Huerta-Canepa and D. Lee, “A virtual cloud computing pro-
vider for mobile devices,” in Proceedings of the 1st ACM Work-
shop on Mobile Cloud Computing & Services: Social Networks
and Beyond (MCS ’10), New York, NY, USA, June 2010.

[34] D.Huang, X. Zhang,M.Kang, and J. Luo, “MobiCloud: building
secure cloud framework for mobile computing and communi-
cation,” in Proceedings of the 5th IEEE International Symposium
on Service-Oriented System Engineering (SOSE ’10), pp. 27–34,
June 2010.

[35] T. Xing, D. Huang, S. Ata, and D. Medhi, “MobiCloud: a geo-
distributedmobile cloud computing platform,” in Proceedings of
the 8th International Conference on Network and Service Man-
agement (CNSM ’12), Las Vegas, Nev, USA, October 2012.

[36] Q. Liu, X. Jian, J.Hu,H. Zhao, and S. Zhang, “Anoptimized solu-
tion for mobile environment using mobile cloud computing,”
in Proceedings of the 5th International Conference on Wireless
Communications, Networking and Mobile Computing (WiCOM
’09), pp. 1–5, September 2009.

[37] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of
cloudlets on interactivemobile cloud applications,” in IEEE 16th
Internationa Enterprise Distributed Object Computing Confer-
ence (EDOC ’12), pp. 123–132, 2012.

[38] M. Dorigo, G. Di Caro, and L.M. Gambardella, “Ant algorithms
for discrete optimization,” Artificial Life, vol. 5, no. 2, pp. 137–
172, 1999.

[39] G. Leguizamon and Z. Michalewicz, “A new version of ant sys-
tem for subset problems,” in Proceedings of the Congress on
Evolutionary Computation (CEC ’99), vol. 2, p. 1464, 1999.

[40] H. Mehendale, A. Paranjpe, and S. Vempala, “Lifenet: a flexible
ad hoc networking solution for transient environments,” ACM
SIGCOMMComputer Communication Review, vol. 41, no. 4, pp.
446–447, 2011.

[41] Y. Cui, X. Ma, H. Wang, I. Stojmenovic, and J. Liu, “A survey of
energy efficientWireless transmission and modeling in mobile
cloud computing,”MobileNetworks andApplications, vol. 18, no.
1, pp. 148–155, 2012.

[42] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud com-
puting: a survey,” Future Generation Computer Systems, vol. 29,
pp. 84–106, 2013.

