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We study the existence and uniqueness of a fixed point of themultidimensional operatorswhich satisfyMeir-Keeler type contraction
condition. Our results extend, improve, and generalize the results mentioned above and the recent results on these topics in the
literature.

1. Introduction

Fixed point theory plays a crucial role in nonlinear functional
analysis. In particular, fixed point results are used to prove
the existence (and also uniqueness) when solving various
type of equations. On the other hand, fixed point theory has
a wide application potential in almost all positive sciences,
such as Economics, Computer Science, Biology, Chemistry,
and Engineering. One of the initial results in this direction
(given by S. Banach), which is known as Banach fixed
point theorem or Banach contraction mapping principle [1]
is as follows. Every contraction in a complete metric space
has a unique fixed point. In fact, this principle not only
guarantees the existence and uniqueness of a fixed point,
but it also shows how to get the desired fixed point. Since
then, this celebrated principle has attracted the attention of a
number of authors (e.g., see [1–39]). Due to its importance in
nonlinear functional analysis, Banach contraction mapping
principle has been generalized in many ways with regards to
different abstract spaces. One of the most interesting results
on generalization was reported byGuo and Lakshmikantham
[18] in 1987. In their paper, the authors introduced the notion
of coupled fixed point and proved some related theorems for
certain type mappings. After this pioneering work, Gnana
Bhaskar and Lakshmikantham [10] reconsidered coupled
fixed point in the context of partially ordered sets by defining

the notion of mixed monotone mapping. In this outstanding
paper, the authors proved the existence and uniqueness of
coupled fixed points for mixedmonotonemappings and they
also discussed the existence and uniqueness of solution for
a periodic boundary value problem. Following these initial
papers, a significant number of papers on coupled fixed point
theorems have been reported (e.g., see [6, 11, 13, 19, 22, 23, 29,
31–33, 36, 38, 40]).

Following this trend, Berinde and Borcut [8] extended
the notion of coupled fixed point to tripled fixed point.
Inspired by this interesting paper, Karapınar [24] improved
this idea by defining quadruple fixed point (see also [25–
28]). Very recently, Roldán et al. [35] generalized this idea
by introducing the notion of Φ-fixed point, that is to say, the
multidimensional fixed point.

Another remarkable generalization of Banach contrac-
tion mapping principle was given byMeir and Keeler [34]. In
the literature of this topic, Meir-Keeler type contraction has
been studied densely by many selected mathematicians (e.g.,
see [2–4, 9, 20, 21, 36, 39]).

In this paper, we prove the existence and uniqueness of
fixed point of multidimensional Meir-Keeler contraction in a
complete partially orderedmetric space. Our results improve,
extend, and generalize the existence results on the topic in
fixed point theory.
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2. Preliminaries

Preliminaries and notation about coincidence points can also
be found in [35]. Let 𝑛 be a positive integer. Henceforth, 𝑋
will denote a nonempty set, and 𝑋𝑛 will denote the product
space 𝑋 × 𝑋× 𝑛. . . ×𝑋. Throughout this paper, 𝑚 and 𝑘 will
denote nonnegative integers and 𝑖, 𝑗, 𝑠 ∈ {1, 2, . . . , 𝑛}. Unless
otherwise stated, “for all𝑚” will mean “for all𝑚 ≥ 0” and “for
all 𝑖” will mean “for all 𝑖 ∈ {1, 2, . . . , 𝑛}.”

A metric on 𝑋 is a mapping 𝑑 : 𝑋 × 𝑋 → R satisfying,
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,

(i) 𝑑 (𝑥, 𝑦) = 0, iff 𝑥 = 𝑦;

(ii) 𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑧, 𝑥) + 𝑑 (𝑧, 𝑦) .
(1)

From these properties, we can easily deduce that 𝑑(𝑥, 𝑦) ≥ 0

and 𝑑(𝑦, 𝑥) = 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. The last requirement is
called the triangle inequality. If 𝑑 is a metric on𝑋, we say that
(𝑋, 𝑑) is ametric space (for short, anMS).

Definition 1 (see [15]). A triple (𝑋, 𝑑, ≼) is called a partially
ordered metric space if (𝑋, 𝑑) is an MS and ≼ is a partial order
on𝑋.

Definition 2 (see [10]). An orderedMS (𝑋, 𝑑, ≼) is said to have
the sequential 𝑔-monotone property if it verifies the following.

(i) If {𝑥
𝑚
} is a nondecreasing sequence and {𝑥

𝑚
}
𝑑

→ 𝑥,
then 𝑔𝑥

𝑚
≼ 𝑔𝑥 for all𝑚.

(ii) If {𝑦
𝑚
} is a nonincreasing sequence and {𝑦

𝑚
}
𝑑

→ 𝑦,
then 𝑔𝑦

𝑚
≼ 𝑔𝑦 for all𝑚.

If 𝑔 is the identity mapping, then 𝑋 is said to have the
sequential monotone property.

Henceforth, fix a partition {𝐴, 𝐵} of Λ
𝑛
= {1, 2, . . . , 𝑛};

that is, 𝐴 ∪ 𝐵 = Λ
𝑛
and 𝐴 ∩ 𝐵 = 0. We will denote that

Ω
𝐴,𝐵

= {𝜎 : Λ
𝑛
→ Λ

𝑛
: 𝜎 (𝐴) ⊆ 𝐴, 𝜎 (𝐵) ⊆ 𝐵} ,

Ω


𝐴,𝐵
= {𝜎 : Λ

𝑛
→ Λ

𝑛
: 𝜎 (𝐴) ⊆ 𝐵, 𝜎 (𝐵) ⊆ 𝐴} .

(2)

If (𝑋, ≼) is a partially ordered space, 𝑥, 𝑦 ∈ 𝑋, and 𝑖 ∈ Λ
𝑛
, we

will use the following notation:

𝑥≼
𝑖
𝑦 ⇐⇒ {

𝑥 ≼ 𝑦, if 𝑖 ∈ 𝐴,
𝑥 ≽ 𝑦, if 𝑖 ∈ 𝐵.

(3)

Let 𝐹 : 𝑋𝑛 → 𝑋 and 𝑔 : 𝑋 → 𝑋 be two mappings.

Definition 3 (see [35]). We say that 𝐹 and 𝑔 are commuting if
𝑔𝐹(𝑥
1
, . . . , 𝑥

𝑛
) = 𝐹(𝑔𝑥

1
, . . . , 𝑔𝑥

𝑛
) for all 𝑥

1
, . . . , 𝑥

𝑛
∈ 𝑋.

Definition 4 (see [35]). Let (𝑋, ≼) be a partially ordered space.
We say that 𝐹 has the mixed 𝑔-monotone property (w.r.t.
{𝐴, 𝐵}) if 𝐹 is 𝑔-monotone nondecreasing in arguments of 𝐴
and 𝑔-monotone nonincreasing in arguments of 𝐵; that is, for
all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑦, 𝑧 ∈ 𝑋 and all 𝑖,

𝑔𝑦 ≼ 𝑔𝑧 ⇒ 𝐹 (𝑥
1
, . . . , 𝑥

𝑖−1
, 𝑦, 𝑥
𝑖+1
, . . . , 𝑥

𝑛
)

≼
𝑖
𝐹 (𝑥
1
, . . . , 𝑥

𝑖−1
, 𝑧, 𝑥
𝑖+1
, . . . , 𝑥

𝑛
) .

(4)

Henceforth, let 𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
, 𝜏 : Λ

𝑛
→ Λ

𝑛
be 𝑛 + 1

mappings from Λ
𝑛
into itself, and let Φ be the (𝑛 + 1)-tuple

(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
, 𝜏).

Definition 5 (see [35]). A point (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛 is called

a Φ-coincidence point of the mappings 𝐹 and 𝑔 if

𝐹 (𝑥
𝜎𝑖(1)

, 𝑥
𝜎𝑖(2)

, . . . , 𝑥
𝜎𝑖(𝑛)

) = 𝑔𝑥
𝜏(𝑖)

∀𝑖. (5)

If 𝑔 is the identity mapping on 𝑋, then (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛

is called a Φ-fixed point of the mapping 𝐹.

Remark 6. If 𝐹 and 𝑔 are commuting and (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈

𝑋
𝑛 is a Φ-coincidence point of 𝐹 and 𝑔, then

(𝑔𝑥
1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) also is a Φ-coincidence point of 𝐹

and 𝑔.

With regards to coincidence points, it is possible to
consider the following simplification. If 𝜏 is a permutation of
Λ
𝑛
andwe reorder (5), thenwe deduce that every coincidence

point may be seen as a coincidence point associated to the
identity mapping on Λ

𝑛
.

Lemma 7. Let 𝜏 be a permutation of Λ
𝑛
, and let Φ =

(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
, 𝜏) and Φ



= (𝜎
𝜏
−1
(1)
, 𝜎
𝜏
−1
(2)
, . . . , 𝜎

𝜏
−1
(𝑛)
, 𝐼
Λ 𝑛
).

Then, a point (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛 is a Φ-coincidence point
of the mappings 𝐹 and 𝑔 if and only if (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is a Φ-

coincidence point of the mappings 𝐹 and 𝑔.

Therefore, in the sequel, without loss of generality,
we will only consider Υ-coincidence points where Υ =

(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
), that is, that verify 𝐹(𝑥

𝜎𝑖(1)
, 𝑥
𝜎𝑖(2)

, . . . , 𝑥
𝜎𝑖(𝑛)

) =

𝑔𝑥
𝑖
for all 𝑖.
If one represents a mapping 𝜎 : Λ

𝑛
→ Λ

𝑛
throughout

its ordered image, that is, 𝜎 = (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)), then

(i) Gnana-Bhaskar and Lakshmikantham’s election in
𝑛 = 2 is 𝜎

1
= 𝜏 = (1, 2) and 𝜎

2
= (2, 1);

(ii) Berinde and Borcut’s election in 𝑛 = 3 is 𝜎
1
= 𝜏 =

(1, 2, 3), 𝜎
2
= (2, 1, 2) and 𝜎

3
= (3, 2, 1);

(iii) Karapnar’s election in 𝑛 = 4 is 𝜎
1
= 𝜏 = (1, 2, 3, 4),

𝜎
2
= (2, 3, 4, 1), 𝜎

3
= (3, 4, 1, 2), and 𝜎

4
= (4, 1, 2, 3).

For more details, see [35]. We will use the following result
about real sequences in the proof of our main theorem.

Lemma 8. If {𝑥
𝑚
}
𝑚∈N is a sequence in an MS (𝑋, 𝑑) that is

not Cauchy, then there exist 𝜀
0
> 0 and two subsequences

{𝑥
𝑚(𝑘)

}
𝑘∈N and {𝑥

𝑛(𝑘)
}
𝑘∈N such that, for all 𝑘 ∈ N, 𝑘 < 𝑚(𝑘) <

𝑛(𝑘) < 𝑚(𝑘 + 1), 𝑑(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≥ 𝜀
0
, and 𝑑(𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)−1

) <

𝜀
0
.

Meir and Keeler generalized the Banach contraction
mapping principle in the following way.

Definition 9 (Meir and Keeler [34]). A Meir-Keeler mapping
is a mapping 𝑇 : 𝑋 → 𝑋 on an MS (𝑋, 𝑑) such that for
all 𝜀 > 0, there exists 𝛿 > 0 verifying that if 𝑥, 𝑦 ∈ 𝑋 and
𝜀 ≤ 𝑑(𝑥, 𝑦) < 𝜀 + 𝛿, then 𝑑(𝑇𝑥, 𝑇𝑦) < 𝜀.
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Lim characterized this kind of mappings in terms of a
contractivity condition using the following class of functions.

Definition 10 (Lim [30]). A function 𝜙 : [0,∞[→ [0,∞[

will be called an L-function if (a) 𝜙(0) = 0, (b) 𝜙(𝑡) > 0 for
all 𝑡 > 0, and (c) for all 𝜀 > 0, there exists 𝛿 > 0 such that
𝜙(𝑡) ≤ 𝜀 for all 𝑡 ∈ [𝜀, 𝜀 + 𝛿].

Theorem 11 (Lim [30]). Let (𝑋, 𝑑) be anMS, and let 𝑇 : 𝑋 →

𝑋. Then 𝑇 is a Meir-Keeler mapping if and only if there exists
an (nondecreasing, right-continuous) L-map 𝜙 such that

𝑑 (𝑇 (𝑥) , 𝑇 (𝑦)) < 𝜙 (𝑑 (𝑥, 𝑦))

∀𝑥, 𝑦 ∈ 𝑋 verifying 𝑑 (𝑥, 𝑦) > 0.
(6)

Using a result of Chu and Diaz [14], Meir and Keeler
[34] proved that every Meir-Keeler mapping on a complete
MS has a unique fixed point. Since then, many authors have
developed this notion in different ways (e.g., see [2–4, 9,
20, 21, 36, 39]). For instance, in [36], Samet introduces the
concept of generalized Meir-Keeler type function as follows.

Definition 12 (see [36]). Let (𝑋, 𝑑, ≼) be a partially ordered
metric space and 𝐹 : 𝑋 × 𝑋 → 𝑋 a given mapping. We say
that𝐹 is a generalizedMeir-Keeler type function if for all 𝜀 > 0,
there exists 𝛿(𝜀) > 0 such that

𝑥 ≽ 𝑢, 𝑦 ≼ V,

𝜀 ≤
1

2
[𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)] < 𝜀 + 𝛿 (𝜀)

⇒ 𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) < 𝜀.

(7)

Then, the author [36] proved some coupled fixed point
theorems via generalized Meir Keeler type mappings. In this
paper, we extend the notion of generalized Meir-Keeler type
mappings in various ways and get some fixed point results by
the help of these notions.

3. Multidimensional Meir-Keeler-Type
Mappings

Henceforth, let (𝑋, 𝑑, ≼) be a partially ordered MS and let 𝐹 :
𝑋
𝑛

→ 𝑋 and 𝑔 : 𝑋 → 𝑋 be two mappings.

Definition 13. We will say that 𝐹 is a (multidimensional) 𝑔-
Meir-Keeler type mapping, ((MK) mapping) if it verifies the
following two properties.

(MK1) If 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
∈ 𝑋 verify 𝑔𝑥

𝑖
= 𝑔𝑦
𝑖

for all 𝑖, then 𝐹(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝐹(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
).

(MK2) For all 𝜀 > 0, there exists 𝛿 > 0 such that if
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
∈ 𝑋 verify 𝑔𝑥

𝑖
≼
𝑖
𝑔𝑦
𝑖
for

all 𝑖 and

𝜀 ≤ max
1≤𝑖≤𝑛

𝑑 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
) < 𝜀 + 𝛿,

then 𝑑 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)) < 𝜀.

(8)

If 𝑔 is the identity mapping on 𝑋, we will say that 𝐹 is a
(𝑛-dimensional)Meir-Keeler type mapping.

On the one hand, notice that, in a wide sense, property
(MK1) may be interpreted as property (MK2) for 𝜀 = 0. On
the other hand, we observe that our definition may not be
compared with the original one due to Meir and Keeler since
we assume that 𝑋 has a partial order. In any case, if 𝑛 = 1,
(𝑋, 𝑑) has a partial order and 𝑔 is the identity mapping on𝑋,
and we can only establish that if 𝐹 : 𝑋 → 𝑋 is a Meir-Keeler
mapping in the sense of Definition 9, then 𝐹 is aMeir-Keeler-
type mapping in the sense of Definition 13, but the converse
does not hold.

Remark 14. If 𝑔 is an injective mapping on 𝑋, then all
mappings 𝐹 verify (MK1).

Lemma 15. Let 𝐹 : 𝑋
𝑛

→ 𝑋 be a mapping on a partially
ordered MS (𝑋, 𝑑, ≼), and let 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
∈ 𝑋

be such that 𝑔𝑥
𝑖
≼
𝑖
𝑔𝑦
𝑖
for all 𝑖.

(1) If 𝐹 verifies (MK2), then either 𝑔𝑥
𝑖
= 𝑔𝑦
𝑖
for all 𝑖 or

𝑑 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)) < max
1≤𝑖≤𝑛

𝑑 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
) .

(9)

(2) If 𝐹 is a g-Meir-Keeler type mapping, then

𝑑 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)) ≤ max
1≤𝑖≤𝑛

𝑑 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
) ,

(10)

and the equality is achieved if and only if 𝑔𝑥
𝑖
= 𝑔𝑦
𝑖
for

all 𝑖.

Proof. (1) If the condition “𝑔𝑥
𝑖

= 𝑔𝑦
𝑖
for all 𝑖”

does not hold, then 𝜀 = max
1≤𝑖≤𝑛

𝑑(𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
) > 0.

Hence, 𝑑(𝐹(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝐹(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)) < 𝜀 =

max
1≤𝑖≤𝑛

𝑑(𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
). (2) If 𝐹 is a 𝑔-Meir-Keeler-type map-

ping, the case “𝑔𝑥
𝑖
= 𝑔𝑦
𝑖
for all 𝑖” means that the equality

is achieved.

This global contractivity condition (10) is not strong
enough to ensure that 𝐹 has a fixed point. For instance, if
𝑛 = 1, then 𝐹(𝑥) = 𝑥 + 1 for all 𝑥 ∈ R has no fixed point. In
order to characterize this kind of mappings in different ways,
we recall some definitions and results.

Definition 16. The 𝑔-modulus of uniform continuity of𝐹 is, for
all 𝜀 > 0,

𝛿
𝑔,𝐹

(𝜀) = sup({𝜆 ≥ 0 : [
𝑔𝑥
𝑖
≼
𝑖
𝑔𝑦
𝑖

∀𝑖,

max
1≤𝑖≤𝑛

𝑑 (𝑔𝑥
𝑖
, 𝑔𝑦i) < 𝜆

]

⇒ 𝑑 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝐹 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)) < 𝜀}) .

(11)

Remark 17. The identity mapping on a set 𝑋 will be denoted
by 1
𝑋

: 𝑋 → 𝑋. If 𝑔 : 𝑋 → 𝑋 is a mapping, then
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𝐺 : 𝑋
𝑛

→ 𝑋
𝑛 will be defined by 𝐺(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (𝑔𝑥

1
,

𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋. If (𝑋, 𝑑) is a

metric space, then 𝐷 : 𝑋
𝑛

× 𝑋
𝑛

→ [0,∞[, given by
𝐷(𝑃,𝑄) = max

1≤𝑖≤𝑛
𝑑(𝑝
𝑖
, 𝑞
𝑖
) for all 𝑃 = (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
),

𝑄 = (𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
) ∈ 𝑋

𝑛, is a metric on 𝑋𝑛. A partial order
≼ on 𝑋 may be induced on 𝑋

𝑛 by 𝑃 ≼ 𝑄 if and only if
𝑝
𝑖
≼ 𝑞
𝑖
for all 𝑖 (notice that this partial order depends on

the partition {𝐴, 𝐵} ofΛ
𝑛
). Then, (𝑋𝑛, 𝐷, ≼) also is a partially

ordered MS. Furthermore, given any 𝜔 = (𝜔
2
, 𝜔
3
, . . . , 𝜔

𝑛
) ∈

𝑋
𝑛−1, 𝐹
𝜔
: 𝑋
𝑛

→ 𝑋
𝑛 will denote the mapping defined by

𝐹
𝜔
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (𝐹(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝜔
2
, 𝜔
3
, . . . , 𝜔

𝑛
) for all

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋. It is obvious that

𝐷(𝐹
𝜔
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹
𝜔
(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
))

= 𝑑 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
))

(12)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
∈ 𝑋.

Theorem 18. Let (𝑋, 𝑑, ≼) be a partially ordered MS, and let
𝐹 : 𝑋

𝑛

→ 𝑋 and 𝑔 : 𝑋 → 𝑋 be two mappings. Then, the
following statements are equivalent.

(MK) 𝐹 is a 𝑔-Meir-Keeler-type mapping.
(MK3) For all 𝜀 > 0, there exists 𝛿 > 0 such that

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
∈ 𝑋

𝑔𝑥
𝑖
≼
𝑖
𝑔𝑦
𝑖

∀𝑖

max
1≤𝑖≤𝑛

𝑑 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
) < 𝜀 + 𝛿

}}

}}

}

⇒ 𝑑 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)) < 𝜀.

(13)

(MK4) 𝛿
𝑔,𝐹
(𝜀) > 𝜀 for all 𝜀 > 0.

(MK5) 𝐹 and 𝑔 verify (MK1), and there exists an (nondecreas-
ing, right-continuous) L-function 𝜙 : [0,∞[→ [0,∞[

such that

𝑑 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
))

< 𝜙 (max
1≤𝑖≤𝑛

𝑑 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
))

(14)

for all 𝑥
1
, . . . , 𝑥

𝑛
, 𝑦
1
, . . . , 𝑦

𝑛
∈ 𝑋 verifying 𝑔𝑥

𝑖
≼
𝑖
𝑔𝑦
𝑖

for all 𝑖 andmax
1≤𝑖≤𝑛

𝑑(𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
) > 0.

(MK6) For all 𝜔 ∈ 𝑋
𝑛−1, the mapping 𝐹

𝜔
: 𝑋
𝑛

→ 𝑋
𝑛 is a

𝐺-Meir-Keeler-type mapping on (𝑋𝑛, 𝐷, ≼).

(MK7) There exists 𝜔
0
∈ 𝑋
𝑛−1 such that the mapping 𝐹

𝜔0
:

𝑋
𝑛

→ 𝑋
𝑛 is a 𝐺-Meir-Keeler-type mapping on

(𝑋
𝑛

, 𝐷, ≼).

Proof. [(MK)⇒(MK3)]: Fix 𝜀 > 0, and let 𝛿 > 0 given
by (MK2). Let 𝑥

1
, . . . , 𝑥

𝑛
, 𝑦
1
, . . . , 𝑦

𝑛
∈ 𝑋 be such that

𝑔𝑥
𝑖
≼
𝑖
𝑔𝑦
𝑖
for all 𝑖, and let 𝜂 = max

1≤𝑖≤𝑛
𝑑(𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
) <

𝜀 + 𝛿. If 𝜂 = 0, then 𝑔𝑥
𝑖

= 𝑔𝑦
𝑖
for all 𝑖, and so

𝑑(𝐹(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝐹(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)) = 0 < 𝜀 by (MK1).

In another case, 𝜂 > 0. If 𝜀 ≤ 𝜂 < 𝜀 + 𝛿, then
𝑑(𝐹(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝐹(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)) < 𝜀 by (MK2). Now,

suppose that 0 < 𝜂 < 𝜀. Then, 𝜂 ∈ [𝜂, 𝜂 + 𝛿
𝜂
[, where 𝛿

𝜂
> 0

is also given by (MK2), and 𝑑(𝐹(𝑥
1
, . . . , 𝑥

𝑛
), 𝐹(𝑦
1
, . . . , 𝑦

𝑛
)) <

𝜂 < 𝜀. Hence, (MK3) holds.
[(MK3)⇒(MK4)]: Given 𝜀 > 0, let 𝛿 > 0 verifying (MK3).

Then, 𝛿
𝑔,𝐹
(𝜀) ≥ 𝜀 + 𝛿, and so 𝛿

𝑔,𝐹
(𝜀) > 𝜀.

[(MK4)⇒(MK)]: On the one hand, if 𝑔𝑥
𝑖
= 𝑔𝑦
𝑖
for all 𝑖,

then 𝑑(𝐹(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝐹(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)) < 𝜀 for all 𝜀 > 0,

and so 𝐹 verify (MK1). On the other hand, let 𝜀 > 0, and
define 𝛿 = (𝛿

𝑔,𝐹
(𝜀) − 𝜀)/2 > 0. Therefore, 𝜀 + 𝛿 < 𝛿

𝑔,𝐹
(𝜀).

Since 𝛿
𝑔,𝐹
(𝜀) is a supremum, there exists 𝜆

0
∈ ]𝜀 + 𝛿, 𝛿

𝑔,𝐹
(𝜀)]

such that if 𝑔𝑥
𝑖
≼
𝑖
𝑔𝑦
𝑖
for all 𝑖 and max

1≤𝑖≤𝑛
𝑑(𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
) < 𝜆
0
,

then 𝑑(𝐹(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝐹(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)) < 𝜀. In particular,

if 𝑔𝑥
𝑖
≼
𝑖
𝑔𝑦
𝑖
for all 𝑖 and 𝜀 ≤ max

1≤𝑖≤𝑛
𝑑(𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
) < 𝜀+𝛿 < 𝜆

0
,

then 𝑑(𝐹(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝐹(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)) < 𝜀.

[(MK)⇔(MK5)]: It is possible to follow step by step the
proof of Proposition 1 in [39] with slight changes.

[(MK)⇔(MK6)⇔(MK7)]: It is apparent taking into
account (12).

The following result is a particular case taking 𝜙(𝑡) = 𝑘𝑡

for all 𝑡 ≥ 0.

Corollary 19. Let (𝑋, 𝑑, ≼) be a partially orderedmetric space,
and let 𝐹 : 𝑋

𝑛

→ 𝑋 and 𝑔 : 𝑋 → 𝑋 be two mappings.
Assume that there exists 𝑘 ∈ (0, 1) such that

𝑑 (𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝐹 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)) ≤ 𝑘max

1≤𝑖≤𝑛

𝑑 (𝑔𝑥
𝑖
, 𝑔𝑦
𝑖
)

(15)

for all 𝑥
1
, . . . , 𝑥

𝑛
, 𝑦
1
, . . . , 𝑦

𝑛
∈ 𝑋 verifying 𝑔𝑥

𝑖
≼
𝑖
𝑔𝑦
𝑖
for all 𝑖.

Then, 𝐹 is a 𝑔-Meir-Keeler-type mapping.

Next, we prove that a generalized Meir Keeler type
function in the sense of Samet [36, Definition 12] is a
particular case of 2-dimensional Meir-Keeler-type mapping
in the sense of Definition 13.

Lemma 20. Every generalizedMeir Keeler type function in the
sense of Samet is a 2-dimensional Meir-Keeler-type mapping in
the sense of Definition 13 taking 𝑔 as the identity mapping on
the MS.

Proof. Suppose that 𝐹 : 𝑋 × 𝑋 → 𝑋 is a generalized Meir
Keeler type function in the sense of Samet. Fix 𝜀 > 0 and
let 𝛿 > 0 verifying (7). Let 𝑥, 𝑦, 𝑢, V ∈ 𝑋 such that 𝑥 ≽ 𝑢,
𝑦 ≼ V, andmax(𝑑(𝑥, 𝑢), 𝑑(𝑦, V)) < 𝜀+𝛿.We have to prove that
𝑑(𝐹(𝑥, 𝑦), 𝐹(𝑢, V)) < 𝜀. If 𝑥 = 𝑢 and 𝑦 = V, there is nothing to
prove. Next, suppose that max (𝑑(𝑥, 𝑢), 𝑑(𝑦, V)) > 0. Let

𝑀 =
1

2
[𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)] . (16)

If𝑀 = 0, then 𝑥 = 𝑢 and 𝑦 = V, which is false. Then,𝑀 > 0.
On the other hand,

𝑀 =
𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)

2
≤ max (𝑑 (𝑥, 𝑢) , 𝑑 (𝑦, V)) < 𝜀 + 𝛿.

(17)

If 𝜀 ≤ 𝑀 < 𝜀 + 𝛿, then 𝑑(𝐹(𝑥, 𝑦), 𝐹(𝑢, V)) < 𝜀 by (7).
Finally, if 0 < 𝑀 < 𝜀, taking 𝜀



= 𝑀 in (7), we have
that 𝑀 ∈ [𝜀



, 𝜀


+ 𝛿
𝜀
[ (where 𝛿

𝜀
 is taken as in (7)), and
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so 𝑑(𝐹(𝑥, 𝑦), 𝐹(𝑢, V)) < 𝑀 < 𝜀. This proves that 𝐹 is a 2-
dimensional Meir-Keeler type mapping associated to 𝑔 =

𝐼
𝑋
.

Remark 21. Converse of Lemma 20 does not hold. For
instance, let 𝑋 = R be provided with its usual metric
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| and partial order ≤. Take 0 < 𝑘 < 1

and consider 𝐹(𝑥, 𝑦) = 𝑘𝑥 for all 𝑥, 𝑦 ∈ R. Then, 𝐹 is
a 2-dimensional Meir-Keeler-type mapping in the sense of
Definition 13 (taking 𝑔 as the identity mapping on R), but,
if 𝑘 > 1/2, it is not a generalized Meir Keeler type function in
the sense of Samet.

Indeed, we firstly prove that 𝐹 is a 2-dimensional Meir-
Keeler-type mapping in the sense of Definition 13 (taking
𝑔 as the identity mapping on R). Let 𝜀 > 0. Consider any
𝑟 ∈]0, 1/𝑘 − 1[ (i.e., 𝑘(1 + 𝑟) < 1) and define 𝛿 = 𝑟𝜀 > 0.
Consider 𝑥, 𝑦, 𝑢, V ∈ R such that 𝑥 ≥ 𝑢 and 𝑦 ≤ V verifying
𝜀 ≤ max (𝑑(𝑥, 𝑢), 𝑑(𝑦, V)) = max (|𝑥 − 𝑢|, |𝑦 − V|) < 𝜀 + 𝛿. In
particular, |𝑥 − 𝑢| < 𝜀 + 𝛿. Then,

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) = 𝑑 (𝑘𝑥, 𝑘𝑢) = 𝑘 |𝑥 − 𝑢| < 𝑘 (𝜀 + 𝛿)

= 𝑘 (𝜀 + 𝑟𝜀) = 𝑘 (1 + 𝑟) 𝜀 < 𝜀.

(18)

It follows that𝐹 is a 2-dimensionalMeir-Keeler-typemapping
in the sense of Definition 13. Next, we claim that if 𝑘 > 1/2,
then 𝐹 is not a generalized Meir Keeler type function in the
sense of Samet. Let 𝜀 > 0. If 𝐹 was a generalized Meir Keeler
type function in the sense of Samet, it would be 𝛿 > 0

verifying (7). Take 𝑥 = 𝜀, 𝑢 = − 𝜀, and 𝑦 = V = 0. Then,
𝑥 ≥ 𝑢, 𝑦 ≤ V and

𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)

2
=
|𝜀 − (− 𝜀)| + |0 − 0|

2

=
2𝜀

2
= 𝜀 ∈ [𝜀, 𝜀 + 𝛿[ .

(19)

However, 𝑑(𝐹(𝑥, 𝑦), 𝐹(𝑢, v)) = 𝑑(𝑘𝜀, 𝑘(−𝜀)) = 𝑘|𝜀 − (−𝜀)| =

2𝑘𝜀 > 𝜀 since 𝑘 > 1/2.

4. Main Results

In the following result, we show sufficient conditions to
ensure the existence of Υ-coincidence points, where Υ =

(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
).

Theorem 22. Let (𝑋, 𝑑) be a complete MS, and let ≼ a partial
order on𝑋. Let Υ = (𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑛
) be an 𝑛-tuple of mappings

from {1, 2, . . . , 𝑛} into itself verifying 𝜎
𝑖
∈ Ω
𝐴,𝐵

if 𝑖 ∈ 𝐴 and
𝜎
𝑖
∈ Ω


𝐴,𝐵
if 𝑖 ∈ 𝐵. Let 𝐹 : 𝑋

𝑛

→ 𝑋 and 𝑔 : 𝑋 → 𝑋

be two mappings such that 𝐹 is a 𝑔-Meir-Keeler-type mapping
and has the mixed 𝑔-monotone property on 𝑋, 𝐹(𝑋𝑛) ⊆

𝑔(𝑋), and 𝑔 is continuous and commuting with 𝐹. Suppose
that either 𝐹 is continuous or (𝑋, 𝑑, ≼) has the sequential g-
monotone property. If there exist 𝑥1

0
, 𝑥
2

0
, . . . , 𝑥

𝑛

0
∈ 𝑋 verifying

𝑔𝑥
𝑖

0
≼
𝑖
𝐹(𝑥
𝜎𝑖(1)

0
, 𝑥
𝜎𝑖(2)

0
, . . . , 𝑥

𝜎𝑖(𝑛)

0
) for all 𝑖, then 𝐹 and 𝑔 have, at

least, one Υ-coincidence point.

Proof. Theproof is divided in six steps.We follow the strategy
of Theorem 9 in [35].
Step 1. There exist 𝑛 sequences {𝑥

1

𝑚
}
𝑚≥0

, {𝑥
2

𝑚
}
𝑚≥0

, . . . ,

{𝑥
𝑛

𝑚
}
𝑚≥0

such that 𝑔𝑥𝑖
𝑚+1

= 𝐹(𝑥
𝜎𝑖(1)

𝑚
, 𝑥𝜎𝑖(2)
𝑚

, . . . , 𝑥
𝜎𝑖(𝑛)

𝑚
) for all

𝑚 and all 𝑖.
Step 2. 𝑔𝑥𝑖

𝑚
≼
𝑖
𝑔𝑥
𝑖

𝑚+1
for all𝑚 and all 𝑖.

Define 𝛿
𝑚

= max
1≤𝑖≤𝑛

𝑑(𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
) ≥ 0 for all 𝑚.

Firstly, suppose that there exists 𝑚
0
∈ N such that 𝛿

𝑚0
= 0.

Then, 𝑔𝑥𝑖
𝑚0

= 𝑔𝑥
𝑖

𝑚0+1
= 𝐹(𝑥

𝜎𝑖(1)

𝑚0

, 𝑥
𝜎𝑖(2)

𝑚0

, . . . , 𝑥
𝜎𝑖(𝑛)

𝑚0

) for all 𝑖, so
(𝑥
1

𝑚0

, 𝑥
2

𝑚0

, . . . , 𝑥
𝑛

𝑚0

) is aΥ-coincidence point of𝐹 and𝑔 andwe
have finished. Therefore, we may reduce to the case in which
𝛿
𝑚
> 0 for all𝑚; that is,

∀𝑚, there exists 𝑗 such that 𝑔𝑥𝑗
𝑚

̸= 𝑔𝑥
𝑗

𝑚+1
. (20)

Step 3. We claim that {𝑑(𝑔𝑥𝑖
𝑚
, 𝑔𝑥
𝑖

𝑚+1
)}
𝑚≥0

→ 0 for all
𝑖 (i.e., {max

1≤𝑗≤𝑛
𝑑(𝑔𝑥
𝑗

𝑚
, 𝑔𝑥𝑗
𝑚+1

)}
𝑚≥0

→ 0). Indeed, as
𝑔𝑥
𝑖

𝑚
≼
𝑖
𝑔𝑥
𝑖

𝑚+1
for all 𝑚 and all 𝑖, then condition (MK2),

Lemma 15, and (20) imply that, for all𝑚 ≥ 1 and all 𝑖,

𝑑 (𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
) = 𝑑 (𝐹 (𝑥

𝜎𝑖(1)

𝑚−1
, 𝑥
𝜎𝑖(2)

𝑚−1
, . . . , 𝑥

𝜎𝑖(𝑛)

𝑚−1
) ,

𝐹 (𝑥
𝜎𝑖(1)

𝑚
, 𝑥
𝜎𝑖(2)

𝑚
, . . . , 𝑥

𝜎𝑖(𝑛)

𝑚
))

< max
1≤𝑗≤𝑛

𝑑 (𝑔𝑥
𝜎𝑖(𝑗)

𝑚−1
, 𝑔𝑥
𝜎𝑖(𝑗)

𝑚
)

≤ max
1≤𝑗≤𝑛

𝑑 (𝑔𝑥
𝑗

𝑚−1
, 𝑔𝑥
𝑗

𝑚
) = 𝛿
𝑚−1

.

(21)

Taking maximum on 𝑖, we deduce that the sequence {𝛿
𝑚
}
𝑚≥1

is nonincreasing and lower bounded. Therefore, it is conver-
gent; that is, there exists Δ ≥ 0 such that {𝛿

𝑚
}
𝑚≥1

→ Δ (and
Δ ≤ 𝛿

𝑚
for all 𝑚). We claim that Δ = 0. On the contrary,

assume that Δ > 0. Let 𝛿 > 0 be a positive number associated
to 𝜀 = Δ > 0 by (MK2). Since

{max
1≤𝑖≤𝑛

𝑑(𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
)}

𝑚

= {𝛿
𝑚
}
𝑚
↘ Δ, (22)

there exists 𝑚
0

∈ N such that if 𝑚 ≥ 𝑚
0
, then Δ ≤

max
1≤𝑖≤𝑛

𝑑(𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
) < Δ + 𝛿. By (MK2), it follows that,

for all 𝑖,

𝑑 (𝑔𝑥
𝑖

𝑚0

, 𝑔𝑥
𝑖

𝑚0+1
)

= 𝑑 (𝐹 (𝑥
𝜎𝑖(1)

𝑚0

, 𝑥
𝜎𝑖(2)

𝑚0

, . . . , 𝑥
𝜎𝑖(𝑛)

𝑚0

) ,

𝐹 (𝑥
𝜎𝑖(1)

𝑚0+1
, 𝑥
𝜎𝑖(2)

𝑚0+1
, . . . , 𝑥

𝜎𝑖(𝑛)

𝑚0+1
)) < Δ.

(23)

Taking maximum on 𝑖, we deduce that

Δ ≤ 𝛿
𝑚0

= max
1≤𝑖≤𝑛

𝑑 (𝑔𝑥
𝑖

𝑚0

, 𝑔𝑥
𝑖

𝑚0+1
) < Δ. (24)

But this is impossible. Then, we have just proved that Δ = 0.
Therefore, {𝛿

𝑚
}
𝑚≥1

→ Δ = 0, which means that

lim
𝑚→∞

𝛿
𝑚
= lim
𝑚→∞

(max
1≤𝑗≤𝑛

𝑑 (𝑔𝑥
𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚+1
)) = 0. (25)
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As 0 ≤ 𝑑(𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
) ≤ 𝛿

𝑚
for all 𝑚 and all 𝑖, then

{𝑑(𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
)} → 0 for all 𝑖.

Step 4. Every sequence {𝑔𝑥𝑖
𝑚
}
𝑚≥0

is Cauchy. Suppose
that {𝑔𝑥

𝑖1

𝑚
}
𝑚≥0

, . . . , {𝑔𝑥
𝑖𝑠

𝑚
}
𝑚≥0

are not Cauchy and
{𝑔𝑥
𝑖𝑠+1

𝑚
}
𝑚≥0

, . . . , {𝑔𝑥
𝑖𝑛

𝑚
}
𝑚≥0

are Cauchy, being {𝑖
1
, . . . , 𝑖

𝑛
} =

{1, . . . , 𝑛}. By Lemma 8, for all 𝑟 ∈ {1, 2, . . . , 𝑠}, there exist
𝜀
𝑟
> 0 and subsequences {𝑔𝑥𝑖𝑟

𝑚


𝑟
(𝑘)

}
𝑘∈N and {𝑔𝑥𝑖𝑟

𝑛


𝑟
(𝑘)

}
𝑘∈N such

that

𝑘 < 𝑚


𝑟
(𝑘) < 𝑛



𝑟
(𝑘) , 𝑑 (𝑔𝑥

𝑖𝑟

m
𝑟
(𝑘)

, 𝑔𝑥
𝑖𝑟

𝑛


𝑟
(𝑘)

) ≥ 𝜀
𝑟
,

𝑑 (𝑔𝑥
𝑖𝑟

𝑚


𝑟
(𝑘)

, 𝑔𝑥
𝑖𝑟

𝑛


𝑟
(𝑘)−1

) < 𝜀
𝑟
, ∀𝑘 ∈ N.

(26)

Let 𝜀
0
= max(𝜀

1
, . . . , 𝜀

𝑠
) and 𝜀

0
= min(𝜀

1
, . . . , 𝜀

𝑠
) > 0. Since

{𝑔𝑥
𝑖𝑠+1

𝑚
}
𝑚≥0

, . . . , {𝑔𝑥
𝑖𝑛

𝑚
}
𝑚≥0

are Cauchy, there exists 𝑛
0
∈ N

such that if 𝑛, 𝑚 ≥ 𝑛
0
, then 𝑑(𝑔𝑥

𝑗

𝑚
, 𝑔𝑥
𝑗

𝑛
) < 𝜀



0
/2 for all

𝑗 ∈ {𝑖
𝑠+1
, . . . , 𝑖

𝑛
}.

Let 𝑘
0

∈ N such that 𝑛
0

< min(𝑚
1
(𝑘
0
),

𝑚


2
(𝑘
0
), . . . , 𝑚



𝑠
(𝑘
0
)), and define 𝑚(1) = min(𝑚

1
(𝑘
0
),

𝑚


2
(𝑘
0
), . . . , 𝑚



𝑠
(𝑘
0
)). As 𝑚(1) = 𝑚



𝑟
(𝑘
0
) for some

𝑟 ∈ {1, 2, . . . , 𝑠}, there exists 𝑛
𝑟
(𝑘
0
) such that 𝑑(𝑔𝑥𝑖𝑟

𝑚


𝑟
(𝑘0)

,

𝑔𝑥
𝑖𝑟

𝑛


𝑟
(𝑘0)

) ≥ 𝜀
𝑟
≥ 𝜀
0
. Thus, we can consider the numbers

𝑚(1) + 1, 𝑚(1) + 2, . . . until finding the first positive integer
𝑛(1) > 𝑚(1) verifying

max
1≤𝑟≤𝑠

𝑑 (𝑔𝑥
𝑖𝑟

𝑚(1)
, 𝑔𝑥
𝑖𝑟

𝑛(1)
) ≥ 𝜀
0
,

𝑑 (𝑔𝑥
𝑖𝑗

𝑚(1)
, 𝑔𝑥
𝑖𝑗

𝑛(1)−1
) < 𝜀
0
, ∀𝑗 ∈ {1, 2, . . . , 𝑠} .

(27)

Now, let 𝑘
1
∈ N such that 𝑛(1) < min(𝑚

1
(𝑘
1
), 𝑚
2
(𝑘
1
)

, . . . , 𝑚


𝑠
(𝑘
1
)) and define 𝑚(2) = min(𝑚

1
(𝑘
1
), 𝑚
2
(𝑘
1
)

, . . . , 𝑚


𝑠
(𝑘
1
)). Since 𝑚(2) ∈ {𝑚



1
(𝑘
1
), 𝑚


2
(𝑘
1
), . . . , 𝑚



𝑠
(𝑘
1
)}, we

can consider the numbers𝑚(2)+ 1,𝑚(2) + 2, . . . until finding
the first positive integer 𝑛(2) > 𝑚(2) verifying

max
1≤𝑟≤𝑠

𝑑 (𝑔𝑥
𝑖𝑟

𝑚(2)
, 𝑔𝑥
𝑖𝑟

𝑛(2)
) ≥ 𝜀
0
,

𝑑 (𝑔𝑥
𝑖𝑗

𝑚(2)
, 𝑔𝑥
𝑖𝑗

𝑛(2)−1
) < 𝜀
0
, ∀𝑗 ∈ {1, 2, . . . , 𝑠} .

(28)

Repeating this process, we can find sequences such that, for
all 𝑘 ≥ 1,

𝑛
0
< 𝑚 (𝑘) < 𝑛 (𝑘) < 𝑚 (𝑘 + 1) ,

max
1≤𝑟≤𝑠

𝑑 (𝑔𝑥
𝑖𝑟

𝑚(𝑘)
, 𝑔𝑥
𝑖𝑟

𝑛(𝑘)
) ≥ 𝜀
0
,

𝑑 (𝑔𝑥
𝑖𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑖𝑗

𝑛(𝑘)−1
) < 𝜀
0
, ∀𝑗 ∈ {1, 2, . . . , 𝑠} .

(29)

Since 𝑛
0
< 𝑚(𝑘) < 𝑛(𝑘), we know that 𝑑(𝑔𝑥𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑗

𝑛(𝑘)
),

𝑑(𝑔𝑥
𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
), 𝑑(𝑔𝑥𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
) < 𝜀



0
/2 for all 𝑗 ∈

{𝑖
𝑠+1
, . . . , 𝑖

𝑛
}. Therefore, for all 𝑘,

max
1≤𝑗≤𝑛

𝑑 (𝑔𝑥
𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑗

𝑛(𝑘)
) = max
1≤𝑟≤𝑠

𝑑 (𝑔𝑥
𝑖𝑟

𝑚(𝑘)
, 𝑔𝑥
𝑖𝑟

𝑛(𝑘)
) ≥ 𝜀
0
,

max
1≤𝑗≤𝑛

𝑑 (𝑔𝑥
𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
) < 𝜀


0
.

(30)

Let 𝛿 > 0 verifying (MK3) using 𝜀
0
, and let 𝑘

1
∈ N such that

if 𝑘 ≥ 𝑘
1
, then 𝑑(𝑔𝑥𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)
) < 𝛿 for all 𝑗. Then, for all 𝑗

and all 𝑘 ≥ 𝑘
1
,

𝑑 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
) ≤ 𝑑 (𝑔𝑥

𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)
)

+ 𝑑 (𝑔𝑥
𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
) < 𝛿 + 𝜀

0
,

(31)

Applying (MK3), it follows, for all 𝑘 ≥ 𝑘
0
and all 𝑖, that

𝑑 (𝑔𝑥
𝑖

𝑚(𝑘)
, 𝑔𝑥
𝑖

𝑛(𝑘)
)

= 𝑑 (𝐹 (𝑥
𝜎𝑖(1)

𝑚(𝑘)−1
, . . . , 𝑥

𝜎𝑖(𝑛)

𝑚(𝑘)−1
) , 𝐹 (𝑥

𝜎𝑖(1)

𝑛(𝑘)−1
, . . . , 𝑥

𝜎𝑖(𝑛)

𝑛(𝑘)−1
))

< 𝜀
0
,

(32)

but this contradicts (30) since max
1≤𝑗≤𝑛

𝑑(𝑔𝑥
𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑗

𝑛(𝑘)
) ≥

𝜀
0
.This contradiction shows us that every sequence {𝑔𝑥𝑖

𝑚
}
𝑚≥0

is Cauchy.
Existence of a fixed point is derived by standard

techniques. Indeed, since (𝑋, 𝑑) is complete, there exist
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 such that 𝑥

𝑖
= lim
𝑚→∞

𝑔𝑥
𝑖

𝑚
for all 𝑖. As 𝑔

is continuous and 𝐹 commutes with 𝑔,

lim
𝑚→∞

𝐹 (𝑔𝑥
𝜎𝑖(1)

𝑚
, 𝑔𝑥
𝜎𝑖(2)

𝑚
, . . . , 𝑔𝑥

𝜎𝑖(𝑛)

𝑚
)

= lim
𝑚→∞

𝑔𝐹 (𝑥
𝜎𝑖(1)

𝑚
, 𝑥
𝜎𝑖(2)

𝑚
, . . . , 𝑥

𝜎𝑖(𝑛)

𝑚
)

= lim
𝑚→∞

𝑔𝑔𝑥
𝑖

𝑚+1
= 𝑔𝑥
𝑖

∀𝑖.

(33)

Step 5. Suppose that 𝐹 is continuous. In this case, since
{𝑔𝑥
𝜎𝑖(𝑗)

𝑚
}
𝑚
→ 𝑥
𝜎𝑖(𝑗)

for all 𝑖, 𝑗 and 𝐹 is continuous,

lim
𝑚→∞

𝑔𝑔𝑥
𝑖

𝑚+1
= lim
𝑚→∞

𝐹 (𝑔𝑥
𝜎𝑖(1)

𝑚
, 𝑔𝑥
𝜎𝑖(2)

𝑚
, . . . , 𝑔𝑥

𝜎𝑛(𝑛)

𝑚
)

= 𝐹 (𝑥
𝜎𝑖(1)

, 𝑥
𝜎𝑖(2)

, . . . , 𝑥
𝜎𝑖(𝑛)

)

(34)

for all 𝑖. Then, 𝐹(𝑥
𝜎𝑖(1)

, 𝑥
𝜎𝑖(2)

, . . . , 𝑥
𝜎𝑖(𝑛)

) = 𝑔𝑥
𝑖
for all 𝑖; that is,

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is a Υ-coincidence point of 𝐹 and 𝑔.

Step 6. Suppose that (𝑋, 𝑑, ≼) has the sequential𝑔-monotone
property. In this case, by step 2, we know that 𝑔𝑥𝑖

𝑚
≼
𝑖
𝑔𝑥
𝑖

𝑚+1

for all 𝑚 and all 𝑖. This means that the sequence {𝑔𝑥𝑖
𝑚
}
𝑚≥0

is monotone. As 𝑥
𝑖

= lim
𝑚→∞

𝑔𝑥
𝑖

𝑚
, we deduce that

𝑔𝑔𝑥
𝑖

𝑚
≼
𝑖
𝑔𝑥
𝑖
for all 𝑚 and all 𝑖. This condition implies that,

for all𝑚 and all 𝑗,

either [𝑔𝑔𝑥
𝜎𝑗(𝑖)

𝑚
≼
𝑖
𝑔𝑥
𝜎𝑗(𝑖)

∀𝑖]

or [𝑔𝑥
𝜎𝑗(𝑖)

≼
𝑖
𝑔𝑔𝑥
𝜎𝑗(𝑖)

𝑚
∀𝑖]

(35)

(the first case occurs when 𝑗 ∈ 𝐴 and the second one
when 𝑗 ∈ 𝐵). Fix 𝑗 ∈ {1, 2, . . . , 𝑛}, and we claim that
lim
𝑚→∞

𝐹(𝑔𝑥
𝜎𝑗(1)

𝑚
, 𝑔𝑥
𝜎𝑗(2)

𝑚
, . . . , 𝑔𝑥

𝜎𝑗(𝑛)

𝑚
) = 𝐹(𝑥

𝜎𝑗(1)
, 𝑥
𝜎𝑗(2)

,

. . . , 𝑥
𝜎𝑗(𝑛)

). Indeed, let 𝜀 > 0 arbitrary, and let 𝛿 > 0 verifying
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(MK3). Since {𝑔𝑔𝑥𝜎𝑗(𝑖)
𝑚

}
𝑚

→ 𝑔𝑥
𝜎𝑗(𝑖)

for all 𝑖, there exists

𝑚
2
∈ N such that if 𝑚 ≥ 𝑚

2
, then 𝑑(𝑔𝑔𝑥𝜎𝑗(𝑖)

𝑚
, 𝑔𝑥
𝜎𝑗(𝑖)

) < 𝜀 + 𝛿

for all 𝑖. Applying (MK3) and (35),

𝑑 (𝐹 (𝑔𝑥
𝜎𝑗(1)

𝑚
, 𝑔𝑥
𝜎𝑗(2)

𝑚
, . . . , 𝑔𝑥

𝜎𝑗(𝑛)

𝑚
) ,

𝐹 (𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

))

< 𝜀.

(36)

Therefore, 𝐹(𝑥
𝜎𝑗(1)

, 𝑥
𝜎𝑗(2)

, . . . , 𝑥
𝜎𝑗(𝑛)

) = lim
𝑚→∞

𝐹(𝑔𝑥
𝜎𝑗(1)

𝑚
,

𝑔𝑥
𝜎𝑗(2)

𝑚
, . . . , 𝑔𝑥

𝜎𝑗(𝑛)

𝑚
) = lim

𝑚→∞
𝑔𝑔𝑥
𝑗

𝑚+1
= 𝑔𝑥
𝑗
for all 𝑗. In

conclusion, (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is a Υ-coincidence point of 𝐹 and

𝑔.

5. Uniqueness of Υ-Coincidence Points

For the uniqueness of a fixed point, we need the following
notion. Consider on the product space 𝑋

𝑛 the following
partial order: for (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑋
𝑛,

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≤ (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) ⇐⇒ 𝑥

𝑖
≼
𝑖
𝑦
𝑖
, ∀𝑖.

(37)

We say that two points (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) and (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)

are comparable if (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≤ (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) or

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≥ (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
).

By following the lines ofTheorem 11 in [35], we prove the
uniqueness of the coincidence point.

Theorem23. Under the hypothesis ofTheorem22, assume that
for all Υ-coincidence points (𝑥

1
, 𝑥
2
, . . . , x

𝑛
), (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈

𝑋
𝑛 of 𝐹 and 𝑔, there exists (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ 𝑋

𝑛 such
that (𝑔𝑢

1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) is comparable, at the same time, to

(𝑔𝑥
1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) and to (𝑔𝑦

1
, 𝑔𝑦
2
, . . . , 𝑔𝑦

𝑛
).

Then, 𝐹 and 𝑔 have a unique Υ-coincidence point
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) ∈ 𝑋
𝑛 such that 𝑔𝑧

𝑖
= 𝑧
𝑖
for all 𝑖.

It is natural to say that 𝑔 is injective on the set of all Υ-
coincidence points of 𝐹 and 𝑔when 𝑔𝑥

𝑖
= 𝑔𝑦
𝑖
for all 𝑖 implies

𝑥
𝑖
= 𝑦
𝑖
for all 𝑖when (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑋
𝑛 are

twoΥ-coincidence points of𝐹 and 𝑔. For example, this is true
that 𝑔 is injective on𝑋.

Corollary 24. In addition to the hypotheses of Theorem 23,
suppose that 𝑔 is injective on the set of all Υ-coincidence points
of 𝐹 and 𝑔. Then, 𝐹 and 𝑔 have a unique Υ-coincidence point.

Proof. If (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) and (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) are two Υ-

coincidence points of 𝐹 and 𝑔, we have proved in (A.1) that
𝑔𝑥
𝑖
= 𝑔𝑦
𝑖
for all 𝑖. As 𝑔 is injective on these points, then

𝑥
𝑖
= 𝑦
𝑖
for all 𝑖.

Corollary 25. In addition to the hypotheses of Theorem 23,
suppose that (𝑧

𝜎𝑖(1)
, 𝑧
𝜎𝑖(2)

, . . . , 𝑧
𝜎𝑖(𝑛)

) is comparable to (𝑧
𝜎𝑗(1)

,

𝑧
𝜎𝑗(2)

, . . . , 𝑧
𝜎𝑗(𝑛)

) for all 𝑖, 𝑗. Then, 𝑧
1
= 𝑧
2
= ⋅ ⋅ ⋅ = 𝑧

𝑛
.

In particular, there exists a unique 𝑧 ∈ 𝑋 such that
𝐹(𝑧, 𝑧, . . . , 𝑧) = 𝑧, which verifies 𝑔𝑧 = 𝑧.

Proof. Let𝑀 = max
1≤𝑖,𝑗≤𝑛

𝑑(𝑧
𝑖
, 𝑧
𝑗
) and we are going to show

that 𝑀 = 0 by contradiction. Assume that 𝑀 > 0 and let
𝑗
0
, 𝑠
0
∈ {1, 2, . . . , 𝑛} such that 𝑑(𝑧

𝑗0
, 𝑧
𝑠0
) = 𝑀. As (𝑧

𝜎𝑗0
(1)
,

𝑧
𝜎𝑗0
(2)
, . . . , 𝑧

𝜎𝑗0
(𝑛)
) is comparable to (𝑧

𝜎𝑠0
(1)
, 𝑧
𝜎𝑠0
(2)
, . . . , 𝑧

𝜎𝑠0
(𝑛)
),

then either 𝑧
𝜎𝑗0
(𝑖)
≼
𝑖
𝑧
𝜎𝑠0
(𝑖)

for all 𝑖 or 𝑧
𝜎𝑠0
(𝑖)
≼
𝑖
𝑧
𝜎𝑗0
(𝑖)

for all 𝑖.
Since 𝑔𝑧

𝑖
= 𝑧
𝑖
for all 𝑖, we know that either 𝑔𝑧

𝜎𝑗0
(𝑖)
≼
𝑖
𝑔𝑧
𝜎𝑠0
(𝑖)

for all 𝑖 or 𝑔𝑧
𝜎𝑠0
(𝑖)
≼
𝑖
𝑔𝑧
𝜎𝑗0
(𝑖)

for all 𝑖. Now, we have to
distinguish between two cases.

If 𝑔𝑧
𝜎𝑗0
(𝑖)
= 𝑔𝑧
𝜎𝑠0
(𝑖)

for all 𝑖 (i.e., 𝑧
𝜎𝑗0
(𝑖)
= 𝑧
𝜎𝑠0
(𝑖)

for all 𝑖),
then

𝑧
𝑗0
= 𝑔𝑧
𝑗0
= 𝐹 (𝑧

𝜎𝑗0
(1)
, 𝑧
𝜎𝑗0
(2)
, . . . , 𝑧

𝜎𝑗0
(𝑛)
)

= 𝐹 (𝑧
𝜎𝑠0
(1)
, 𝑧
𝜎𝑠0
(2)
, . . . , 𝑧

𝜎𝑠0
(𝑛)
) = 𝑔𝑧

𝑠0
= 𝑧
𝑠0
,

(38)

which is impossible since 𝑑(𝑧
𝑗0
, 𝑧
𝑠0
) = 𝑀 > 0. Now, suppose

that max
1≤𝑖≤𝑛

𝑑(𝑔𝑧
𝜎𝑗0
(𝑖)
, 𝑔𝑧
𝜎𝑠0
(𝑖)
) > 0. In this case, item 1 of

Lemma 15 guarantees that

𝑀 = 𝑑(𝑧
𝑗0
, 𝑧
𝑠0
) = 𝑑 (𝑔𝑧

𝑗0
, 𝑔𝑧
𝑠0
)

= 𝑑 (𝐹 (𝑧
𝜎𝑗0
(1)
, 𝑧
𝜎𝑗0
(2)
, . . . , 𝑧

𝜎𝑗0
(𝑛)
) ,

𝐹 (𝑧
𝜎𝑠0
(1)
, 𝑧
𝜎𝑠0
(2)
, . . . , 𝑧

𝜎𝑠0
(𝑛)
))

< max
1≤𝑖≤𝑛

𝑑 (𝑔𝑧
𝜎𝑗0
(𝑖)
, 𝑔𝑧
𝜎𝑠0
(𝑖)
) ≤ max
1≤𝑖,𝑗≤𝑛

𝑑 (𝑔𝑧
𝑖
, 𝑔𝑧
𝑗
)

= max
1≤𝑖,𝑗≤𝑛

𝑑 (𝑧
𝑖
, 𝑧
𝑗
) = 𝑀,

(39)

which also is impossible. This contradiction proves that𝑀 =

0; that is, 𝑧
𝑖
= 𝑧
𝑗
for all 𝑖, 𝑗.

Remark 26. Notice that amixed strict monotone mapping 𝐹 :
𝑋 × 𝑋 → 𝑋 in the sense of [36, Definition 2.1] is always a
mixed monotone mapping in our sense (where 𝑛 = 2 and
𝑔 is the identity mapping on 𝑋). Then, Theorems 2.1, 2.2,
2.3, and 2.4 in [36] (and, by extension, theorems by Gnana
Bhaskar and Lakshmikantham [10]) are consequence of our
main results.

Example 27. Let 𝑋 = R and 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| be usual
metric onR. Consider the mapping 𝐹(𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
) =

(2𝑥
1
− 3𝑥
2
+ 𝑥
3
− 𝑥
4
+ 𝑥
5
− 𝑥
6
)/12 and 𝑔(𝑥) = 𝑥. It is

clear that 𝐹 is monotone nonincreasing in odd arguments
and 𝐹 is monotone nondecreasing in even arguments. All
conditions ofTheorems 22 and 23 are satisfied. It is clear that
(0, 0, 0, 0, 0, 0) is the unique fixed point.

Example 28. Let 𝑋 = R be provided with its usual partial
order ≤ and its usual metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. Let 𝑛 ∈ N,
and let 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
∈ R \ {0} real numbers such that there

exist 𝑖
0
, 𝑗
0
∈ {1, 2, . . . , 𝑛} verifying 𝑎

𝑖0
< 0 < 𝑎

𝑗0
. Let𝑁 > |𝑎

1
|+

|𝑎
2
|+⋅ ⋅ ⋅+|𝑎

𝑛
|, and consider 𝐹(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (𝑎

1
𝑥
1
+𝑎
2
𝑥
2
+

⋅ ⋅ ⋅ + 𝑎
𝑛
𝑥
𝑛
)/𝑁 and 𝑔𝑥 = 𝑥, for all 𝑥, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋. Then,

𝐹 is monotone nondecreasing in those arguments for which
𝑎
𝑖
> 0 and monotone nonincreasing in those arguments for
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which 𝑎
𝑖
< 0. Furthermore, taking 𝑘 = (|𝑎

1
| + |𝑎
2
| + ⋅ ⋅ ⋅ +

|𝑎
𝑛
|)/𝑁 ∈ (0, 1), Corollary 19 shows that𝐹 is a𝑔-Meir-Keeler-

type mapping. Actually, all conditions ofTheorems 22 and 23
are satisfied. Indeed, it is clear that (0, 0, . . . , 0) is the unique
fixed point of 𝐹.

Appendix

Proof of Theorem 23

Proof. From Theorem 22, the set of Υ-coincidence points of
𝐹 and 𝑔 is nonempty. The proof is divided in two steps.
Step 1. We claim that if (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈

𝑋
𝑛are two Υ-coincidence points of 𝐹 and 𝑔, then

𝑔𝑥
𝑖
= 𝑔𝑦
𝑖

∀𝑖. (A.1)

Let (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑋

𝑛 be two Υ-
coincidence points of 𝐹 and 𝑔, and let (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ 𝑋

𝑛

be a point such that (𝑔𝑢
1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) is comparable, at the

same time, to (𝑔𝑥
1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) and to (𝑔𝑦

1
, 𝑔𝑦
2
, . . . , 𝑔𝑦

𝑛
).

Using (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) define the following sequences. Let 𝑢𝑖

0
=

𝑢
𝑖
for all 𝑖. Reasoning as in Theorem 22, we can determine

sequences {𝑢1
𝑚
}
𝑚≥0

, {𝑢2
𝑚
}
𝑚≥0

, . . . , {𝑢
𝑛

𝑚
}
𝑚≥0

such that 𝑔𝑢𝑖
𝑚+1

=

𝐹(𝑢
𝜎𝑖(1)

𝑚
, 𝑢
𝜎𝑖(2)

𝑚
, . . . , 𝑢

𝜎𝑖(𝑛)

𝑚
) for all 𝑚 and all 𝑖. We are going to

prove that 𝑔𝑥
𝑖
= lim
𝑚→0

𝑔𝑢
𝑖

𝑚
= 𝑔𝑦
𝑖
for all 𝑖, and so (A.1) will

be true.
Firstly, we reason with (𝑔𝑢

1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) and

(𝑔𝑥
1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
), and the same argument will be true for

(𝑔𝑢
1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) and (𝑔𝑦

1
, 𝑔𝑦
2
, . . . , 𝑔𝑦

𝑛
). As (𝑔𝑢

1
,

𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) and (𝑔𝑥

1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) are comparable, we

can suppose that (𝑔𝑢
1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) ≤ (𝑔𝑥

1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
)

(the other case is similar); that is, 𝑔𝑢𝑖
0
= 𝑔𝑢

𝑖
≤
𝑖
𝑔𝑥
𝑖
for all

𝑖. Using that 𝐹 has the mixed 𝑔-monotone property and
reasoning as in Theorem 22, it is possible to prove that
𝑔𝑢
𝑖

𝑚
≤
𝑖
𝑔𝑥
𝑖
for all𝑚 ≥ 1 and all 𝑖. This condition implies that,

for all 𝑗 and all𝑚 ≥ 1,

either [𝑔u𝜎𝑗(𝑖)
𝑚

≤
𝑖
𝑔𝑥
𝜎𝑗(𝑖)

∀𝑖]

or [𝑔𝑥
𝜎𝑗(𝑖)

≤
𝑖
𝑔𝑢
𝜎𝑗(𝑖)

𝑚
∀𝑖] .

(A.2)

Define 𝛽
𝑚
= max

1≤𝑖≤𝑛
𝑑(𝑔𝑢
𝑖

𝑚
, 𝑔𝑥
𝑖
) for all 𝑚. Reasoning as

in Theorem 22, one can observe that {𝛽
𝑚
}
𝑚≥1

→ 0, which
means that lim

𝑚→∞
𝛽
𝑚
= lim
𝑚→∞

(max
1≤𝑖≤𝑛

𝑑(𝑔𝑢
𝑖

𝑚
, 𝑔𝑥
𝑖
)) =

0. As 0 ≤ 𝑑(𝑔𝑢𝑖
𝑚
, 𝑔𝑥
𝑖
) ≤ 𝛽
𝑚
for all𝑚 and all 𝑖, we deduce that

{𝑑(𝑔𝑢
𝑖

𝑚
, 𝑔𝑥
𝑖
)}
𝑚≥1

→ 0 for all 𝑖; that is,

lim
𝑚→∞

𝑔𝑢
𝑖

𝑚
= 𝑔𝑥
𝑖

∀𝑖. (A.3)

If we had supposed that (𝑔𝑥
1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
) ≤ (𝑔𝑢

1
,

𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
), we would have obtained the same property

(A.3). And as (𝑔𝑢
1
, 𝑔𝑢
2
, . . . , 𝑔𝑢

𝑛
) also is comparable to

(𝑔𝑦
1
, 𝑔𝑦
2
, . . . , 𝑔𝑦

𝑛
), we can reason in the same way to prove

that 𝑔𝑦
𝑖
= lim
𝑚→0

𝑔𝑢
𝑖

𝑚
= 𝑔𝑥
𝑖
for all 𝑖.

Let (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛 be a Υ-coincidence point of 𝐹
and 𝑔, and define 𝑧

𝑖
= 𝑔𝑥

𝑖
for all 𝑖. As (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
) =

(𝑔𝑥
1
, 𝑔𝑥
2
, . . . , 𝑔𝑥

𝑛
), Remark 6 assures us that (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
)

also is a Υ-coincidence point of 𝐹 and 𝑔.
Step 2. We claim that (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
) is the unique Φ-

coincidence point of 𝐹 and 𝑔 such that 𝑔𝑧
𝑖
= 𝑧
𝑖
for all 𝑖. It

is similar to Step 2 inTheorem 11 in [35].
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orems for nonlinear contractions in partially ordered metric
spaces,”NonlinearAnalysis.Theory,Methods&Applications, vol.
70, no. 12, pp. 4341–4349, 2009.

[30] T.-C. Lim, “On characterizations of Meir-Keeler contractive
maps,” Nonlinear Analysis. Theory, Methods & Applications, vol.
46, no. 1, pp. 113–120, 2001.

[31] N. V. Luong and N. X. Thuan, “Coupled fixed point theorems
in partially ordered metric spaces,” Bulletin of Mathematical
Analysis and Applications, vol. 2, no. 4, pp. 16–24, 2010.

[32] N. V. Luong and N. X.Thuan, “Coupled fixed points in partially
ordered metric spaces and application,” Nonlinear Analysis.
Theory,Methods&Applications, vol. 74, no. 3, pp. 983–992, 2011.

[33] N. V. Luong and N. X. Thuan, “Coupled fixed point theorems
for mixed monotone mappings and an application to integral
equations,”Computers&Mathematics with Applications, vol. 62,
no. 11, pp. 4238–4248, 2011.

[34] A. Meir and E. Keeler, “A theorem on contraction mappings,”
Journal of Mathematical Analysis and Applications, vol. 28, pp.
326–329, 1969.

[35] A. Roldán, J. Mart́ınez-Moreno, and C. Roldán, “Multidimen-
sional fixed point theorems in partially ordered completemetric
spaces,” Journal of Mathematical Analysis and Applications, vol.
396, no. 2, pp. 536–545, 2012.

[36] B. Samet, “Coupled fixed point theorems for a generalized
Meir-Keeler contraction in partially ordered metric spaces,”
Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no.
12, pp. 4508–4517, 2010.
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