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Correspondence should be addressed to Janusz Brzdęk; jbrzdek@up.krakow.pl

Received 31 August 2013; Accepted 26 October 2013

Academic Editor: Bing Xu
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This is a survey paper concerning the notions of hyperstability and superstability, which are connected to the issue of Ulam’s type
stability. We present the recent results on those subjects.

1. Introduction

In this paper we provide some recent results concerning
hyperstability and superstability of functional equations.
Those two notions are very similar but somewhat different.
They are connected with the issue of Ulam’s type stability.

Let us mention that various aspects of Ulam’s type
stability, motivated by a problem raised by Ulam (cf. [1, 2])
in 1940 in his talk at the University of Wisconsin, have been a
very popular subject of investigations for the last nearly fifty
years (see, e.g., [3–11]). For example the following definition
somehow describes the main ideas of such stability notion
for equations in 𝑛 variables (R

+
stands for the set of all

nonnegative reals).

Definition 1. Let 𝐴 be a nonempty set, (𝑋, 𝑑) be a metric
space, E ⊂ C ⊂ R

+

𝐴
𝑛

be nonempty,T be an operator map-
ping C into R

+

𝐴, and F
1
,F
2
be operators mapping a non-

empty set D ⊂ 𝑋
𝐴 into 𝑋𝐴

𝑛

. We say that the operator equa-
tion

F
1
𝜑 (𝑥
1
, . . . , 𝑥

𝑛
) = F

2
𝜑 (𝑥
1
, . . . , 𝑥

𝑛
) (1)

is (E,T)-stable provided for any 𝜀 ∈ E and 𝜑
0
∈ D with

𝑑 (F
1
𝜑
0
(𝑥
1
, . . . , 𝑥

𝑛
) ,F
2
𝜑
0
(𝑥
1
, . . . , 𝑥

𝑛
))

≤ 𝜀 (𝑥
1
, . . . , 𝑥

𝑛
) , 𝑥

1
, . . . , 𝑥

𝑛
∈ 𝐴,

(2)

there exists a solution 𝜑 ∈ D of (1) such that

𝑑 (𝜑 (𝑥) , 𝜑
0
(𝑥)) ≤ T𝜀 (𝑥) , 𝑥 ∈ 𝐴. (3)

(As usual,𝐶𝐷 denotes the family of all functionsmapping
a set 𝐷 ̸= 0 into a set 𝐶 ̸= 0.) Roughly speaking, (E,T)-
stability of (1) means that every approximate (in the sense of
(2)) solution of (1) is always close (in the sense of (3)) to an
exact solution of (1).

The next theorem has been considered to be one of the
most classical results on Ulam’s type stability.

Theorem2. Let𝐸
1
and𝐸

2
be normed spaces,𝐸

2
complete, and

𝑐 ≥ 0 and 𝑝 ̸= 1 fixed real numbers. If 𝑓 : 𝐸
1
→ 𝐸

2
is a

mapping satisfying




𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)






≤ 𝑐 (‖𝑥‖
𝑝

+




𝑦





𝑝

) , 𝑥, 𝑦 ∈ 𝐸
1
\ {0} ,

(4)

then there exists a unique function 𝑇 : 𝐸
1
→ 𝐸
2
such that

𝑇 (𝑥 + 𝑦) = 𝑇 (𝑥) + 𝑇 (𝑦) , 𝑥, 𝑦 ∈ 𝐸
1
,





𝑓 (𝑥) − 𝑇 (𝑥)





≤

𝑐‖𝑥‖
𝑝





2
𝑝−1

− 1





, 𝑥 ∈ 𝐸
1
\ {0} .

(5)

This theorem is composed of the outcomes from [1, 12–
14] and it is known (see [13]; cf. also [15, 16]) that for 𝑝 = 1

an analogous result is not valid. Moreover, it has been shown
in [17] that estimation (5) is optimal for 𝑝 ≥ 0 in the general
case.

Theorem 2 has a very nice simple form, but it has been
improved in [18], where it has been shown that, in the case
𝑝 < 0, each 𝑓 : 𝐸

1
→ 𝐸

2
satisfying (4) must actually be
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additive (and the completeness of 𝐸
2
is not necessary in such

a situation). Namely, we have the following result (N stands
for the set of all positive integers).

Theorem 3. Let 𝐸
1
and 𝐸

2
be normed spaces, 𝑋 ⊂ 𝐸

1
\ {0}

nonempty, 𝑐 ≥ 0, and 𝑝 < 0. Assume also that

−𝑋 = 𝑋, (6)

where −𝑋 := {−𝑥 : 𝑥 ∈ 𝑋}, and there exists a positive integer
𝑚
0
with

−𝑥, 𝑛𝑥 ∈ 𝑋, 𝑥 ∈ 𝑋, 𝑛 ∈ N, 𝑛 ≥ 𝑚
0
. (7)

Then every operator 𝑔 : 𝐸
1
→ 𝐸
2
such that





𝑔 (𝑥 + 𝑦) − 𝑔 (𝑥) − 𝑔 (𝑦)






≤ 𝑐 (‖𝑥‖
𝑝

+




𝑦





𝑝

) , 𝑥, 𝑦 ∈ 𝑋, 𝑥 + 𝑦 ∈ 𝑋

(8)

is additive on𝑋; that is,

𝑔 (𝑥 + 𝑦) = 𝑔 (𝑥) + 𝑔 (𝑦) , 𝑥, 𝑦 ∈ 𝑋, 𝑥 + 𝑦 ∈ 𝑋. (9)

Clearly, since (5) gives the best possible estimation for𝑝 ≥

0 in the general case, a result analogous to Theorem 3 is not
true for 𝑝 ≥ 0.

On account ofTheorem 3, we can reformulateTheorem 2
as follows.

Theorem 4. Let 𝐸
1
and 𝐸

2
be normed spaces and let 𝑐 ≥ 0 and

𝑝 ̸= 1 be fixed real numbers. Assume also that𝑓 : 𝐸
1
→ 𝐸
2
is a

mapping satisfying (4). If 𝑝 ≥ 0 and 𝐸
2
is complete, then there

exists a unique additive function 𝑇 : 𝐸
1
→ 𝐸
2
such that (5)

holds. If 𝑝 < 0, then 𝑓 is additive.

Following the terminology introduced in [19] and next
used in, for example, [20] (see also [3, pages 27–29]), we
can describe the second statement of Theorem 4, for 𝑝 < 0,
as the 𝜑-hyperstability of the additive Cauchy equation for
𝜑(𝑥, 𝑦) ≡ 𝑐(‖𝑥‖

𝑝

+ ‖𝑦‖
𝑝

).
It is interesting that the hyperstability result, described

in Theorem 3, does not remain valid without condition (6),
which is shown in the following remark (R denotes the set of
all reals).

Remark 5. Let 𝑝 < 0, 𝑎 ≥ 0, 𝐼 = (𝑎,∞), and 𝑓, 𝑇 : 𝐼 → R be
given by 𝑇(𝑥) = 0 and 𝑓(𝑥) = 𝑥

𝑝 for 𝑥 ∈ 𝐼. Then clearly




𝑓 (𝑥) − 𝑇 (𝑥)





= 𝑥
𝑝

, 𝑥 ∈ 𝐼. (10)

Note that also




𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)





≤ 𝑥
𝑝

+ 𝑦
𝑝

, 𝑥, 𝑦 ∈ 𝐼. (11)

In fact, fix 𝑥, 𝑦 ∈ 𝐼 and suppose, for instance, that 𝑥 ≤ 𝑦.Then

(𝑥 + 𝑦)
𝑝

≤ (2𝑥)
𝑝

= 2
𝑝

𝑥
𝑝

≤ 𝑥
𝑝

≤ 𝑥
𝑝

+ 𝑦
𝑝 (12)

and consequently




𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)





= 𝑥
𝑝

+ 𝑦
𝑝

− (𝑥 + 𝑦)
𝑝

≤ 𝑥
𝑝

+ 𝑦
𝑝

.

(13)

However, with a somewhat different (though still natural)
form of the function 𝜑, 𝜑-hyperstability still holds even
without (6). Namely, in [21, Theorem 1.3] the subsequent
result has been proved.

Theorem 6. Let 𝐸
1
and 𝐸

2
be normed spaces, 𝑋 ⊂ 𝐸

1
\ {0}

nonempty, 𝑐 ≥ 0, and 𝑝, 𝑞 real numbers with 𝑝+𝑞 < 0. Assume
also that there is an𝑚

0
∈ N such that

𝑛𝑥 ∈ 𝑋, 𝑥 ∈ 𝑋, 𝑛 ∈ N, 𝑛 ≥ 𝑚
0
. (14)

Then every operator 𝑔 : 𝐸
1
→ 𝐸
2
satisfying the inequality





𝑔 (𝑥 + 𝑦) − 𝑔 (𝑥) − 𝑔 (𝑦)






≤ 𝑐‖𝑥‖
𝑝



𝑦





𝑞

, 𝑥, 𝑦 ∈ 𝑋, 𝑥 + 𝑦 ∈ 𝑋

(15)

is additive on𝑋.

We refer the reader to, for example, [22, Theorem 1.1,
Chapter XVIII], [23, Chapter 4], [24, pages 143-144], and
[25, Proposition 3.8] for some information on the following
natural issue: when for an operator 𝑇

0
: 𝐸
1
→ 𝐸

2
that is

additive on 𝑋 ⊂ 𝐸
1
, there is an additive 𝑇 : 𝐸

1
→ 𝐸
2
with

𝑇(𝑥) = 𝑇
0
(𝑥) for 𝑥 ∈ 𝑋.

2. Hyperstability Results for
the Cauchy Equation

Formally, we can introduce the following definition.

Definition 7. Let 𝐴 be a nonempty set, (𝑋, 𝑑) a metric space,
𝜀 ∈ R

+

𝐴
𝑛

, and F
1
,F
2
operators mapping a nonempty set

D ⊂ 𝑋
𝐴 into 𝑋

𝐴
𝑛

. We say that operator equation (1) is 𝜀-
hyperstable provided every 𝜑

0
∈ D satisfying inequality (2)

fulfils (1).

The hyperstability results have various interesting con-
sequences. For instance, note that we deduce at once from
Theorem 6 a bit surprising conclusion that each function 𝑓 :

𝐸
1
→ 𝐸
2
is either additive on𝑋 or satisfies the condition

sup
𝑥,𝑦∈𝑋,𝑥+𝑦∈𝑋





𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)





‖𝑥‖
𝑟



𝑦





𝑠

= ∞ (16)

for any real numbers 𝑟, 𝑠, 𝑟 + 𝑠 > 0, where 𝐸
1
and 𝐸

2
are

normed spaces and𝑋 is a nonempty subset of𝐸
1
\{0} fulfilling

condition (14) for some𝑚
0
∈ N.

Theorem 6 yields also the following two simple corollaries
(see [21]), which correspond to some results from [26–33] on
inhomogeneous Cauchy equation (18) and cocycle equation
(19).

Corollary 8. Let 𝐸
1
and 𝐸

2
be normed spaces, 𝑋 ⊂ 𝐸

1
\ {0}

nonempty, 𝐺 : 𝑋
2
→ 𝐸
2
, and 𝐺(𝑥

0
, 𝑦
0
) ̸= 0 for some 𝑥

0
, 𝑦
0
∈

𝑋with𝑥
0
+𝑦
0
∈ 𝑋. Assume also that (14) holdswith an𝑚

0
∈ N

and there are 𝑝, 𝑞 ∈ R and 𝑐 > 0 such that 𝑝 + 𝑞 < 0 and





𝐺 (𝑥, 𝑦)





≤ 𝑐‖𝑥‖

𝑝



𝑦





𝑞

, 𝑥, 𝑦 ∈ 𝑋, 𝑥 + 𝑦 ∈ 𝑋. (17)
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Then the functional equation

𝑔
0
(𝑥 + 𝑦) = 𝑔

0
(𝑥) + 𝑔

0
(𝑦)

+ 𝐺 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑋, 𝑥 + 𝑦 ∈ 𝑋

(18)

has no solution in the class of functions 𝑔
0
: 𝑋 → 𝐸

2
.

Corollary 9. Let 𝐸
1
and 𝐸

2
be normed spaces, 𝑋 ⊂ 𝐸

1
\ {0}

nonempty, 𝐺 : 𝐸
1

2
→ 𝐸
2
satisfy the cocycle functional equa-

tion

𝐺 (𝑥, 𝑦) + 𝐺 (𝑥 + 𝑦, 𝑧)

= 𝐺 (𝑥, 𝑦 + 𝑧) + 𝐺 (𝑦, 𝑧) , 𝑥, 𝑦, 𝑧 ∈ 𝐸
1
,

(19)

and 𝐺(𝑥, 𝑦) = 𝐺(𝑦, 𝑥) for 𝑥, 𝑦 ∈ 𝐸
1
. Assume also that (14)

holds with an 𝑚
0
∈ N and there are 𝑝, 𝑞 ∈ R and 𝑐 > 0 such

that𝑝+𝑞 < 0 and (17) holds.Then𝐺(𝑥, 𝑦) = 0 for any𝑥, 𝑦 ∈ 𝑋

with 𝑥 + 𝑦 ∈ 𝑋.

The hyperstability results that we have presented so far
have been obtained through the fixed point theorem from
[34] (see also [35, 36]; cf. [4] for a survey on similar methods
using the fixed point results). Now, we provide some further
𝜑-hyperstability results (with functions 𝜑 of some other
natural forms) for the Cauchy additive equation, proved in
[25] by some other methods.

Theorem 10. Let (𝑋, ⟨⋅ | ⋅⟩) be a real inner product space with
dim𝑋 > 1, 𝑌 a normed space, and 𝑔 : 𝑋 → 𝑌. If there are
positive real numbers 𝑝 ̸= 1 and 𝐿 such that




𝑔 (𝑥 + 𝑦) − 𝑔 (𝑥) − 𝑔 (𝑦)





≤ 𝐿





⟨𝑥 | 𝑦⟩






𝑝

, 𝑥, 𝑦 ∈ 𝑋, (20)

then 𝑔 is additive.

If 𝑝 = 1, then 𝑔 does not need to be additive (see [25]).

Theorem 11. Let 𝑋 and 𝑌 be normed spaces, dim𝑋 > 2, and
𝑔 : 𝑋 → 𝑌. Suppose also that there are positive real numbers
𝑝 and 𝐿

0
with




𝑔 (𝑥 + 𝑦) − 𝑔 (𝑥) − 𝑔 (𝑦)






≤ 𝐿
0











𝑥 + 𝑦






2

−




𝑥 − 𝑦






2




𝑝

, 𝑥, 𝑦 ∈ 𝑋.

(21)

If𝑝 ̸= 1 or𝑋 is not a real inner product space, then 𝑔 is additive.

If 𝑋 is a real inner product space and 𝑝 = 1, then 𝑔 does
not need to be additive (see [25]).

Given a normed space𝑋 and 𝐴, 𝐵 : 𝑋 → 𝑋, we simplify
the notations writing 𝐴𝐵 := 𝐴 ∘ 𝐵 and defining the mapping
𝐴 + 𝐵 : 𝑋 → 𝑋 by

(𝐴 + 𝐵) (𝑥) := 𝐴 (𝑥) + 𝐵 (𝑥) , 𝑥 ∈ 𝑋. (22)

Moreover, if 0 ̸=𝑈 ⊂ 𝑉 ⊂ 𝑋 and 𝐶 : 𝑉 → 𝑋, then we put

‖𝐶‖
𝑈

:= inf {𝜉 ∈ R :




𝐶 (𝑥) − 𝐶 (𝑦)





≤ 𝜉





𝑥 − 𝑦





for 𝑥, 𝑦 ∈ 𝑈} .

(23)

Clearly, if𝐴 : 𝑋 → 𝑋 is additive, then we have (with𝑈 = 𝑋)

‖𝐴‖
𝑋
= inf {𝜉 ∈ R : ‖𝐴 (𝑥)‖ ≤ 𝜉 ‖𝑥‖ for 𝑥 ∈ 𝑋} . (24)

Now, we are in a position to present another result from
[25].

Theorem 12. Let 𝑋 and 𝑌 be normed spaces and 0 ̸=𝑈 ⊂ 𝑋.
Assume that 𝐶,𝐷 : 𝑋 → 𝑋 are additive,

𝐶𝐷 = 𝐷𝐶, (25)

𝐶 (𝑥) , 𝐷 (𝑥) , 𝐸 (𝑥) ∈ 𝑈, 𝑥 ∈ 𝑈, (26)

where 𝐸 := 𝐶 + 𝐷. Let, moreover, 𝑝 ∈ R
+
be such that one of

the following two conditions is valid:

(a) 𝐸 is injective, 𝑈 ⊂ 𝐸(𝑈) and

(‖𝐷‖
𝑝

𝑈
+ ‖𝐶‖

𝑝

𝑈
)






𝐸
−1




𝑝

𝑈

< 1; (27)

(b) 𝑈 ⊂ 𝐷(𝑈),𝐷 is injective and

(‖𝐸‖
𝑝

𝑈
+ ‖𝐶‖

𝑝

𝑈
)






𝐷
−1




𝑝

𝑈

< 1. (28)

Then every function 𝑔 : 𝑈 → 𝑌 for which there exists an
𝐿 ∈ R

+
such that





𝑔 (𝑥 + 𝑦) − 𝑔 (𝑥) − 𝑔 (𝑦)






≤ 𝐿




𝐶(𝑥) − 𝐷(𝑦)






𝑝

, 𝑥, 𝑦 ∈ 𝑈, 𝑥 + 𝑦 ∈ 𝑈

(29)

is additive on 𝑈.

Remark 13. Observe that condition (25) holds when 𝐷 = 𝐶
𝑛

with a nonnegative integer 𝑛 or 𝐷(𝑥) = 𝛾𝑥 for 𝑥 ∈ 𝑋 with a
rational number 𝛾 (because 𝐶 is assumed to be additive).

Remark 14. For instance, the inequality in (a) holds for 𝑝 > 1,
𝑈 = 𝑋, and

𝐶 (𝑥) = 𝐷 (𝑥) = 𝜆𝑥, 𝑥 ∈ 𝑋 (30)

with a 𝜆 ∈ R. Analogously, the inequality in (b) is valid when
𝑝 > 1, 𝑈 = 𝑋,

𝐶 (𝑥) = −𝜆𝑥, 𝐷 (𝑥) = 2𝜆𝑥, 𝑥 ∈ 𝑋 (31)

with a 𝜆 ∈ R.
For similar hyperstability results in some situations where

neither condition (a) nor (b) is fulfilled we refer the reader to
[25, Corollaries 3.5 and 3.6].

We end this part of the paperwith onemore hyperstability
result (on a restricted domain) from [25]. To do this, let us
recall some notions.

Given nonempty sets 𝑋,𝑌, I ⊂ 2
𝑋 and 𝑓, 𝑔 : 𝑋 → 𝑌,

we say that 𝑓 = 𝑔 I-almost everywhere (abbreviated toI-
a.e.) in 𝑋 if there is a set 𝑇 ∈ I such that 𝑓(𝑥) = 𝑔(𝑥) for
every 𝑥 ∈ 𝑋 \ 𝑇. If, moreover, 𝑋 is a normed space, then we
also write 𝛼𝑇 := {𝛼𝑥 : 𝑥 ∈ 𝑇} for 𝑇 ⊂ 𝑋 and 𝛼 ∈ R.

Now we are in a position to present [25, Theorem 4.1]
(which actually is a consequence of some previous results).
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Theorem 15. Let𝑋 and𝑌 be normed spaces, 𝑔 : 𝑋 → 𝑌, and
I ⊂ 2

𝑋 a 𝜎-ideal such that

𝑥 + 𝛼𝑇 ∈ I, 𝑇 ∈ I, 𝛼 ∈ R, 𝑥 ∈ 𝑋. (32)

Assume also that one of the following two conditions is fulfilled:

(i) there exist 𝑇 ∈ I, 𝑐, 𝑑 ∈ R, 𝑐𝑑(𝑐 + 𝑑) ̸= 0, 𝐿 > 0 and
𝑝 > 1 such that





𝑔 (𝑥 + 𝑦) − 𝑔 (𝑥) − 𝑔 (𝑦)





≤ 𝐿





𝑐𝑥 − 𝑑𝑦






𝑝

, 𝑥, 𝑦 ∈ 𝑋 \ 𝑇;

(33)

(ii) there exist 𝑇 ∈ I, 𝐶 : 𝑋 → 𝑋 with 𝐶(2𝑥) = 2𝐶(𝑥)

for 𝑥 ∈ 𝑋 and positive reals 𝐿 and 𝑝 ̸= 1 such that




𝑔 (𝑥 + 𝑦) − 𝑔 (𝑥) − 𝑔 (𝑦)






≤ 𝐿




𝐶(𝑥) − 𝐶(𝑦)






𝑝

, 𝑥, 𝑦 ∈ 𝑋 \ 𝑇.

(34)

Then there is a unique additive operator 𝑓 : 𝑋 → 𝑌 with
𝑓 = 𝑔I-a.e. in𝑋.

A hyperstability result for the multi-Cauchy equation
(which actually is a systemof Cauchy equations) can be found
in [37, Corollary 4].

Finally, we would like to call the reader’s attention to
a general theorem in [38] which yields numerous other
hyperstability results for the Cauchy additive equation.

3. Hyperstability of the Linear
Functional Equation

Now, we present the hyperstability results for the linear funct-
ional equation of the form

𝑓 (𝐴𝑥 + 𝐵𝑦) = 𝑎𝑓 (𝑥) + 𝑏𝑓 (𝑦) + 𝑧
0

(35)

in the class of functions𝑓 : 𝑋 → 𝑌, where𝑋 is a linear space
over a field F , 𝑌 is a linear space over a fieldK, 𝑎, 𝑏 ∈ K, 𝑧

0
∈

𝑌, and𝐴, 𝐵 ∈ F . Clearly, for 𝑎 = 𝑏 = 1, 𝑧
0
= 0, and𝐴 = 𝐵 = 1

(35) is the well-known (additive) Cauchy functional equation

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) , (36)

and with 𝑎 = 𝑏 = 1/2, 𝑧
0
= 0, and 𝐴 = 𝐵 = 1/2 it is the

Jensen equation

𝑓(

𝑥 + 𝑦

2

) =

𝑓 (𝑥) + 𝑓 (𝑦)

2

. (37)

If 𝑡 ∈ (0, 1), 𝑎 = 𝑡, 𝑏 = 1 − 𝑡, 𝑧
0
= 0, 𝐴 = 𝑡, and 𝐵 = 1 − 𝑡, then

(35) has the form

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) = 𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦) (38)

and its solution is called a 𝑡-affine function. For further
information and references on (36)–(38) we refer the reader
to [22, 39].

The subsequent theorem has been proved in [40].

Theorem 16. Let𝑋 be a normed space over F ∈ {R,C}, 𝑌 be a
Banach space over K ∈ {R,C}, 𝐴, 𝐵 ∈ F \ {0}, 𝑎, 𝑏 ∈ K, 𝑐 ≤ 0,
𝑝 < 0, and 𝑓 : 𝑋 → 𝑌 satisfy





𝑓 (𝐴𝑥 + 𝐵𝑦) − 𝑎𝑓 (𝑥) − 𝑏𝑓 (𝑦)






≤ 𝑐 (‖𝑥‖
𝑝

+




𝑦





𝑝

) , 𝑥, 𝑦 ∈ 𝑋 \ {0} .

(39)

Then

𝑓 (𝐴𝑥 + 𝐵𝑦) = 𝑎𝑓 (𝑥) + 𝑏𝑓 (𝑦) , 𝑥, 𝑦 ∈ 𝑋 \ {0} . (40)

Similar results, for Jensen equation (37), but on a re-
stricted domain, have been obtained in [41]. Namely, we have
the following three theorems.

Theorem17. Let𝑋 be a normed space,𝑈 be a nonempty subset
of𝑋 \ {0} such that there exists a positive integer 𝑛

0
with

𝑛𝑥 ∈ 𝑈, 𝑥 ∈ 𝑈, 𝑛 ∈ N, 𝑛 ≥ 𝑛
0
, (41)

let 𝑌 be a Banach space, 𝑐 ≥ 0, 𝑝, 𝑞 ∈ R, 𝑝 + 𝑞 < 0, and
𝑓 : 𝑈 → 𝑌 satisfy











𝑓 (

𝑥 + 𝑦

2

) −

𝑓 (𝑥) + 𝑓 (𝑦)

2











≤ 𝑐‖𝑥‖
𝑝



𝑦





𝑞

, 𝑥, 𝑦 ∈ 𝑈,

𝑥 + 𝑦

2

∈ 𝑈.

(42)

Then 𝑓 is Jensen on 𝑈; that is,

𝑓(

𝑥 + 𝑦

2

) =

𝑓 (𝑥) + 𝑓 (𝑦)

2

, 𝑥, 𝑦 ∈ 𝑈,

𝑥 + 𝑦

2

∈ 𝑈. (43)

Theorem 18. Let 𝑋 be a normed space, 𝑈 a nonempty subset
of𝑋 \ {0} such that there exists a positive integer 𝑛

0
with

−

1

𝑛

𝑥,

1

2

(1 −

1

𝑛

) 𝑥 ∈ 𝑈, 𝑥 ∈ 𝑈, 𝑛 ∈ N, 𝑛 ≥ 𝑛
0
, (44)

𝑌 a Banach space, 𝑐 ≥ 0, 𝑝, 𝑞 ∈ R, 𝑝 + 𝑞 > 1, and 𝑓 : 𝑈 → 𝑌

satisfy (42). Then 𝑓 is Jensen on 𝑈.

Theorem 19. Let 𝑋 be a normed space, 𝑈 a nonempty subset
of𝑋 \ {0} such that there exists a positive integer 𝑛

0
with

1

𝑛

𝑥, (2 −

1

𝑛

) 𝑥 ∈ 𝑈, 𝑥 ∈ 𝑈, 𝑛 ∈ N, 𝑛 ≥ 𝑛
0
, (45)

𝑌 a Banach space, 𝑐 ≥ 0, 𝑝, 𝑞 ∈ R, 0 < 𝑝 + 𝑞 < 1, and
𝑓 : 𝑈 → 𝑌 satisfy (42). Then 𝑓 is Jensen on 𝑈.

We finish this section of the paper by proving one more
very simple hyperstability result for (35).

Theorem 20. Let𝑋 be a normed space over a field F ∈ {R,C},
𝑌 a normed space over a field K ∈ {R,C}, 𝑎, 𝑏 ∈ K, 𝑧

0
∈ 𝑌,

𝐴, 𝐵 ∈ F , 𝐿, 𝑝, 𝑞 ∈ R
+
, 𝑝 + 𝑞 > 0, and let one of the following

two conditions be valid:

(i) 𝑞 ̸= 0 and |𝐴|𝑝+𝑞 ̸= |𝑎|;
(ii) 𝑝 ̸= 0 and |𝐵|𝑝+𝑞 ̸= |𝑏|.
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Then every function 𝑔
0
: 𝑋 → 𝑌 satisfying the inequality





𝑔
0
(𝐴𝑥 + 𝐵𝑦) − 𝑎𝑔

0
(𝑥) − 𝑏𝑔

0
(𝑦) − 𝑧

0






≤ 𝐿‖𝑥‖
𝑝



𝑦





𝑞

, 𝑥, 𝑦 ∈ 𝑋

(46)

is a solution of the equation

𝑔
0
(𝐴𝑥 + 𝐵𝑦) = 𝑎𝑔

0
(𝑥) + 𝑏𝑔

0
(𝑦) + 𝑧

0
, 𝑥, 𝑦 ∈ 𝑋. (47)

Proof. First, observe that in the casewhen 𝑎+𝑏 = 1, inequality
(46) with 𝑥 = 𝑦 = 0 implies 𝑧

0
= 0.

Put

𝑧
1
:=

{

{

{

𝑔
0
(0) , 𝑎 + 𝑏 = 1,

𝑧
0

1 − (𝑎 + 𝑏)

, 𝑎 + 𝑏 ̸= 1,

𝑔 (𝑥) := 𝑔
0
(𝑥) − 𝑧

1
, 𝑥 ∈ 𝑋.

(48)

It is easily seen that




𝑔 (𝐴𝑥 + 𝐵𝑦) − 𝑎𝑔 (𝑥) − 𝑏𝑔 (𝑦)





≤ 𝐿‖𝑥‖

𝑝



𝑦





𝑞

, 𝑥, 𝑦 ∈ 𝑋,

(49)

whence with 𝑥 = 𝑦 = 0 we get 𝑔(0) = 0.
We consider only case (i) (case (ii) is analogous). First,

assume that |𝑎| < |𝐴|
𝑝+𝑞. Then (49) with 𝑦 = 0 gives

𝑔 (𝑥) = 𝑎𝑔 (𝐴
−1

𝑥) , 𝑥 ∈ 𝑋. (50)

We show by induction that, for each 𝑛 ∈ N
0
:= N ∪ {0},





𝑔 (𝐴𝑥 + 𝐵𝑦) − 𝑎𝑔 (𝑥) − 𝑏𝑔 (𝑦)






≤ (|𝐴
−1

|
𝑝+𝑞

|𝑎|)

𝑛

𝐿‖𝑥‖
𝑝



𝑦





𝑞

, 𝑥, 𝑦 ∈ 𝑋.

(51)

The case 𝑛 = 0 follows immediately from (49). So take an
𝑙 ∈ N

0
and assume that (51) holds true with 𝑛 = 𝑙. Then, by

(50),




𝑔 (𝐴𝑥 + 𝐵𝑦) − 𝑎𝑔 (𝑥) − 𝑏𝑔 (𝑦)






=






𝑎𝑔 (𝐴

−1

(𝐴𝑥 + 𝐵𝑦)) − 𝑎
2

𝑔 (𝐴
−1

𝑥) − 𝑎𝑏𝑔 (𝐴
−1

𝑦)







= |𝑎|






𝑔 (𝐴𝐴

−1

𝑥 + 𝐵𝐴
−1

𝑦) − 𝑎𝑔 (𝐴
−1

𝑥) − 𝑏𝑔 (𝐴
−1

𝑦)







≤ (|𝐴
−1

|
𝑝+𝑞

|𝑎|)

𝑙

𝐿 |𝑎|






𝐴
−1

𝑥







𝑝




𝐴
−1

𝑦







𝑞

= (|𝐴
−1

|
𝑝+𝑞

|𝑎|)

𝑙+1

𝐿‖𝑥‖
𝑝



𝑦





𝑞

, 𝑥, 𝑦 ∈ 𝑋.

(52)

Thus we have proved that (51) is valid for each 𝑛 ∈ N
0
.

Letting 𝑛 → ∞ in (51) we see that

𝑔 (𝐴𝑥 + 𝐵𝑦) = 𝑎𝑔 (𝑥) + 𝑏𝑔 (𝑦) , 𝑥, 𝑦 ∈ 𝑋, (53)

which implies (47).
If |𝑎| > |𝐴|

𝑝+𝑞, then 𝑎 ̸= 0 and from (49) with 𝑦 = 0 we
obtain

𝑔 (𝑥) =

1

𝑎

𝑔 (𝐴𝑥) , 𝑥 ∈ 𝑋. (54)

Analogously as before we show that, for each 𝑛 ∈ N
0
,





𝑔 (𝐴𝑥 + 𝐵𝑦) − 𝑎𝑔 (𝑥) − 𝑏𝑔 (𝑦)






≤ (

|𝐴|
𝑝+𝑞

|𝑎|

)

𝑛

𝐿‖𝑥‖
𝑝



𝑦





𝑞

, 𝑥, 𝑦 ∈ 𝑋.

(55)

Letting 𝑛 → ∞ in (55) we get (53), and consequently (47)
holds.

Remark 21. Let 𝑔
0
(𝑥) = 𝑥 for 𝑥 ∈ 𝑋 = 𝑌, F = K, 𝑎 ̸=𝐴 and

𝑏 = 𝐵. Then

𝑔
0
(𝐴𝑥 + 𝐵𝑦) − 𝑎𝑔

0
(𝑥) − 𝑏𝑔

0
(𝑦) = (𝐴 − 𝑎) 𝑥, 𝑥, 𝑦 ∈ 𝑋,

(56)

whence




𝑔
0
(𝐴𝑥 + 𝐵𝑦) − 𝑎𝑔

0
(𝑥) − 𝑏𝑔

0
(𝑦)






= |𝐴 − 𝑎| ‖𝑥‖ , 𝑥, 𝑦 ∈ 𝑋.

(57)

Thus 𝑔
0
is an example of a function which satisfies (46) with

𝑧
0
= 0, 𝐿 = |𝐴 − 𝑎|, 𝑞 = 0 and 𝑝 = 1 but is not a solution

of (47).This shows that the assumption 𝑞 ̸= 0 in (i) is not sup-
erfluous.

Remark 22. Let 𝑋 = 𝑌 = R, 𝐴2 = 𝑎, 𝐵2 = 𝑏, and 𝑔
0
(𝑥) = 𝑥

2

for 𝑥 ∈ 𝑋. Then




𝑔
0
(𝐴𝑥 + 𝐵𝑦) − 𝑎𝑔

0
(𝑥) − 𝑏𝑔

0
(𝑦)






= 2 |𝐴𝐵| |𝑥|




𝑦




, 𝑥, 𝑦 ∈ 𝑋.

(58)

Thus 𝑔
0
is an example of a function which satisfies (46) with

𝑧
0
= 0, 𝐿 = 2|𝐴𝐵| and 𝑝 = 𝑞 = 1 but is not a solution of

(47). This proves that assumptions (i) and (ii) of Theorem 20
are not superfluous.

4. Hyperstability of Some Other Equations

In this part of the paper we present the hyperstability results
for some other equations. The first two theorems have been
proved in [19].

Theorem 23. Let 𝑀 : (0, 1] → R be a solution of the func-
tional equation

𝑀(𝑥𝑦) = 𝑀 (𝑥)𝑀 (𝑦) , 𝑥, 𝑦 ∈ (0, 1] (59)

and𝑀(𝑥
0
) > 1 for some 𝑥

0
∈ (0, 1]. Assume also that a func-

tion 𝜓 : (0, 1] → R satisfy the inequality




𝜓 (𝑥𝑦) −𝑀 (𝑥) 𝜓 (𝑦) −𝑀(𝑦)𝜓 (𝑥)





≤ 𝜀, 𝑥, 𝑦 ∈ (0, 1]

(60)

for some 𝜀 > 0. Then

𝜓 (𝑥𝑦) = 𝑀 (𝑥) 𝜓 (𝑦) +𝑀(𝑦)𝜓 (𝑥) , 𝑥, 𝑦 ∈ (0, 1] . (61)

Theorem 24. Let (𝑆, ⋅) be a semigroup and 𝜑
1
, . . . , 𝜑

𝑛
: 𝑆 →

𝑆 pairwise distinct automorphisms of 𝑆 such that the set
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{𝜑
1
, . . . , 𝜑

𝑛
} is a group with the operation of composition of

mappings. Let, moreover, 𝜀 : 𝑆 × 𝑆 → R
+
be a function for

which there exists a sequence (𝑢
𝑘
)
𝑘∈N of elements of 𝑆 satisfying

one of the following two conditions:

lim
𝑘→∞

𝜀 (𝑢
𝑘
𝑠, 𝑡) = 0, 𝑠, 𝑡 ∈ 𝑆;

lim
𝑘→∞

𝜀 (𝑠, 𝑡𝜑
𝑖
(𝑢
𝑘
)) = 0, 𝑠, 𝑡 ∈ 𝑆, 𝑖 ∈ {1, . . . , 𝑛} .

(62)

If a function 𝑓, mapping 𝑆 into a real normed space 𝑋, fulfils
the inequality












𝑓 (𝑠) + 𝑓 (𝑡) −

1

𝑛

𝑛

∑

𝑖=1

𝑓 (𝑠𝜑
𝑖
(𝑡))












≤ 𝜀 (𝑠, 𝑡) , 𝑠, 𝑡 ∈ 𝑆, (63)

then 𝑓 is a solution of the functional equation

𝑓 (𝑠) + 𝑓 (𝑡) =

1

𝑛

𝑛

∑

𝑖=1

𝑓 (𝑠𝜑
𝑖
(𝑡)) , 𝑠, 𝑡 ∈ 𝑆. (64)

The following result, concerning the parametric funda-
mental equation of information, has been obtained in [20].

Theorem 25. Let 𝛼 < 0 and 𝑓 : (0, 1) → R be a function
such that

sup
(𝑥,𝑦)∈𝐷

2









𝑓 (𝑥) + (1 − 𝑥)
𝛼

𝑓(

𝑦

1 − 𝑥

)

−𝑓 (𝑦) − (1 − 𝑦)
𝛼

𝑓(

𝑥

1 − 𝑦

)










< ∞,

(65)

where

𝐷
2
:= {(𝑝

1
, 𝑝
2
) ∈ R
2

: 𝑝
1
, 𝑝
2
, 𝑝
1
+ 𝑝
2
∈ (0, 1)} . (66)

Then

𝑓 (𝑥) + (1 − 𝑥)
𝛼

𝑓(

𝑦

1 − 𝑥

)

= 𝑓 (𝑦) + (1 − 𝑦)
𝛼

𝑓(

𝑥

1 − 𝑦

) , (𝑥, 𝑦) ∈ 𝐷
2
.

(67)

Let us recall (see [20]) that each solution 𝑓 : (0, 1) → R

of (67) is of the form

𝑓 (𝑥) = 𝑐𝑥
𝛼

+ 𝑑(1 − 𝑥)
𝛼

− 𝑑, 𝑥 ∈ (0, 1) (68)

with some 𝑐, 𝑑 ∈ R.
The next two theorems have been proved in [42, 43]

and concern hyperstability of the polynomial and monomial
equations (for details concerning those equations we refer the
reader to [22]).

Theorem 26. Let𝑋 and𝑌 be real normed spaces. If a function
𝑓 : 𝑋 → 𝑌 satisfies the inequality












3

∑

𝑖=0

3!

𝑖! (3 − 𝑖)!

(−1)
(3−𝑖)

𝑓 (𝑖𝑥 + 𝑦)












≤ 𝜀 (‖𝑥‖
𝑝
+




𝑦





𝑝

) , 𝑥, 𝑦 ∈ 𝑋 \ {0}

(69)

with some 𝜀 > 0 and 𝑝 < 0, then
3

∑

𝑖=0

3!

𝑖! (3 − 𝑖)!

(−1)
(3−𝑖)

𝑓 (𝑖𝑥 + 𝑦) = 0, 𝑥, 𝑦 ∈ 𝑋. (70)

Theorem 27. Let 𝑋 and 𝑌 be real normed spaces and 𝑛 a
positive integer. If a function𝑓 : 𝑋 → 𝑌 satisfies the inequality












𝑛

∑

𝑖=0

𝑛!

𝑖! (𝑛 − 𝑖)!

(−1)
(𝑛−𝑖)

𝑓 (𝑖𝑥 + 𝑦) − 𝑛!𝑓 (𝑥)












≤ 𝜀 (‖𝑥‖
𝑝
+




𝑦





𝑝

) , 𝑥, 𝑦 ∈ 𝑋 \ {0}

(71)

with some 𝜀 > 0 and 𝑝 < 0, then
𝑛

∑

𝑖=0

𝑛!

𝑖! (𝑛 − 𝑖)!

(−1)
(𝑛−𝑖)

𝑓 (𝑖𝑥 + 𝑦) = 𝑛!𝑓 (𝑥) , 𝑥, 𝑦 ∈ 𝑋. (72)

The next theorem from [44] contains a hyperstability
result for the Drygas equation.

Theorem28. Assume that𝐷 is a nonempty subset of a normed
space 𝑋 such that 0 ∉ 𝐷 and there exists an 𝑛

0
∈ N with

−𝑥, 𝑛𝑥 ∈ 𝐷, 𝑥 ∈ 𝐷, 𝑛 ∈ N, 𝑛 > 𝑛
0
. (73)

Let 𝑌 be a Banach space and 𝑓 : 𝐷 → 𝑌 fulfill the inequality




𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 𝑓 (𝑦) − 𝑓 (−𝑦)






≤ 𝑐 (‖𝑥‖
𝑝

+




𝑦





𝑝

) , 𝑥, 𝑦 ∈ 𝐷, 𝑥 + 𝑦, 𝑥 − 𝑦 ∈ 𝐷

(74)

for some 𝑐 > 0 and 𝑝 < 0. Then 𝑓 satisfies the conditional
Drygas equation

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)

= 2𝑓 (𝑥) + 𝑓 (𝑦) + 𝑓 (−𝑦) , 𝑥, 𝑦 ∈ 𝐷, 𝑥 + 𝑦, 𝑥 − 𝑦 ∈ 𝐷.

(75)

Theorem 28 yields at once the following characterization
of the inner product spaces.

Corollary 29. Let 𝑋 be a normed space and

sup
𝑥,𝑦∈𝑋\{0}











𝑥 + 𝑦






2

+




𝑥 − 𝑦






2

− 2‖𝑥‖
2
− 2





𝑦





2




‖𝑥‖
𝑝
+




𝑦





𝑝
< ∞ (76)

for some 𝑝 < 0. Then 𝑋 is an inner product space.

Proof. Write 𝑓(𝑥) = ‖𝑥‖
2 for 𝑥 ∈ 𝑋. Then fromTheorem 28

we easily derive that

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)

= 2𝑓 (𝑥) + 𝑓 (𝑦) + 𝑓 (−𝑦) , 𝑥, 𝑦 ∈ 𝑋 \ {0} .

(77)

It is easy to see that this implies

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦) , 𝑥, 𝑦 ∈ 𝑋, (78)

which yields the statement.
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The next hyperstability result has been proved in [45,
Corollary 2.9] and is actually a particular consequence of two
more general theorems proved there.

Theorem 30. Let 𝑋 be a normed space, 𝑌 be a Banach space,
𝑝, 𝑞, 𝜆 ∈ R

+
and 0 < 𝑝 + 𝑞 ̸= 4. Assume also that a mapping

𝑓 : 𝑋 → 𝑌 satisfies the inequality




𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) − 4𝑓 (𝑥 + 𝑦)

− 4𝑓 (𝑥 − 𝑦) − 24𝑓 (𝑥) + 6𝑓 (𝑦)





≤ 𝜆‖𝑥‖
𝑝



𝑦





𝑞

, 𝑥, 𝑦 ∈ 𝑋.

(79)

Then

𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦)

= 4𝑓 (𝑥 + 𝑦) + 4𝑓 (𝑥 − 𝑦) + 24𝑓 (𝑥) − 6𝑓 (𝑦) , 𝑥, 𝑦 ∈ 𝑋.

(80)

A result on hyperstability of the equation of 𝑝-Wright
affine functions has been obtained in [46] and it reads as
follows.

Theorem 31. Let𝑋 be a normed space over a field F ∈ {R,C},
𝑌 a Banach space, 𝑝 ∈ F , 𝐴, 𝑘 > 0, |𝑝|2𝑘 + |1 − 𝑝|2𝑘 < 1 and
𝑔 : 𝑋 → 𝑌 satisfy




𝑔 (𝑝𝑥 + (1 − 𝑝) 𝑦) + 𝑔 ((1 − 𝑝) 𝑥 + 𝑝𝑦) − 𝑔 (𝑥) − 𝑔 (𝑦)






≤ 𝐴‖𝑥‖
𝑘



𝑦





𝑘

, 𝑥, 𝑦 ∈ 𝑋.

(81)

Then 𝑔 is a 𝑝-Wright affine function; that is,

𝑔 (𝑝𝑥 + (1 − 𝑝) 𝑦) + 𝑔 ((1 − 𝑝) 𝑥 + 𝑝𝑦)

= 𝑔 (𝑥) + 𝑔 (𝑦) , 𝑥, 𝑦 ∈ 𝑋.

(82)

The next result has been proved in [47] and concerns the
homogeneity equation.

Theorem 32. Let𝑋 and 𝑌 be normed spaces overK ∈ {R,C},
𝑝, 𝑞 ∈ R, 𝜀 ∈ R

+
, and 𝑔 : 𝑋 → 𝑌 satisfy





𝑔 (𝛼𝑥) − 𝛼𝑔 (𝑥)





< 𝜀 (|𝛼|

𝑝

+ ‖𝑥‖
𝑞

) (83)

for any 𝛼 ∈ K and 𝑥 ∈ 𝑋 such that |𝛼|𝑝 + ‖𝑥‖
𝑞 is defined.

Assume also that 𝑝 < 1 or 𝑞 < 0. Then

𝑔 (𝛼𝑥) = 𝛼𝑔 (𝑥) , 𝑥 ∈ 𝑋 \ {0} , 𝛼 ∈ K \ {0} . (84)

Moreover, if one of the following two conditions is valid:

(a) 𝑝 < 1 and 𝑞 ≥ 0;
(b) 𝑝 > 0 and 𝑞 < 0,

then

𝑔 (𝛼𝑥) = 𝛼𝑔 (𝑥) , 𝑥 ∈ 𝑋, 𝛼 ∈ K. (85)

Some further hyperstability (but also superstability)
results for the homogeneity equation can be found in [48, 49].
Unfortunately, they are too involved to be presented here.
Therefore, we only give below the following simple corollary
(see [48, Corollary 3]).

Theorem 33. Let 𝑋 be a real linear space, 𝑌 a Banach space,
and 𝑔 : 𝑋 → 𝑌 satisfy

sup
𝑥∈𝑋,𝛼∈(−𝛾,0)





𝑔 (𝛼𝑥) − 𝛼𝑔 (𝑥)





< ∞ (86)

with some 𝛾 > 0. Then

𝑔 (𝛼𝑥) = 𝛼𝑔 (𝑥) , 𝑥 ∈ 𝑋, 𝛼 ∈ R. (87)

Pexiderized hyperstability of the functional equation of
biadditivity, of the form

𝑓 (𝑥 + 𝑦, 𝑧 + 𝑤) = 𝑓 (𝑥, 𝑧) + 𝑓 (𝑥, 𝑤) + 𝑓 (𝑦, 𝑧) + 𝑓 (𝑦, 𝑤) ,

(88)

has been considered in [50] (actually, for some reason, it has
been called the bi-Jensen functional equation by the authors),
where the following two theorems have been presented.

Theorem 34. Let𝑋 be a normed space,𝑌 a Banach space, 𝑝 <

0 ≤ 𝜀, and a function 𝑓 : 𝑋 × 𝑋 → 𝑌 satisfy the inequality




𝑓 (𝑥 + 𝑦, 𝑧 + 𝑤) − 𝑓

1
(𝑥, 𝑧)

−𝑓
2
(𝑥, 𝑤) − 𝑓

3
(𝑦, 𝑧) − 𝑓

4
(𝑦, 𝑤)






≤ 𝜀 (‖𝑥‖
𝑝

+




𝑦





𝑝

+ ‖𝑧‖
𝑝

+ ‖𝑤‖
𝑝

) , 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋 \ {0}

(89)

with some mappings 𝑓
1
, 𝑓
2
, 𝑓
3
, 𝑓
4
: 𝑋 × 𝑋 → 𝑌. Then 𝑓 is

biadditive; that is, (88) holds for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋.

Theorem 35. Let𝑋 be a normed space,𝑌 a Banach space, 𝑝 <

0 ≤ 𝜀, and a function 𝑓 : 𝑋 × 𝑋 → 𝑌 satisfy the inequality




𝑓 (𝑥 + 𝑦, 𝑧 + 𝑤) − 𝑓

1
(𝑥, 𝑧)

−𝑓
2
(𝑥, 𝑤) − 𝑓

3
(𝑦, 𝑧) − 𝑓

4
(𝑦, 𝑤)






≤ 𝜀 (‖𝑥‖
𝑝

+




𝑦





𝑝

) (‖𝑧‖
𝑝

+ ‖𝑤‖
𝑝

) , 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋 \ {0}

(90)

with some mappings 𝑓
1
, 𝑓
2
, 𝑓
3
, 𝑓
4
: 𝑋 × 𝑋 → 𝑌. Then 𝑓 is

biadditive.

For some further results, related somehow to the issue of
hyperstability, we refer the reader to:

(i) [51, Theorem 8.3] (for a generalization of the
quadratic equation);

(ii) [52] (for the equations of homomorphism and deriva-
tion in proper JCQ∗-triples);

(iii) [53, Theorem 21.3] (for the equations of homomor-
phism for square symmetric groupoids, considered in
a class of set-valued mappings);
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(iv) [54,Theorem 1] (for a functional equation in one vari-
able in a class of set-valued mappings);

(v) [55] (for functional equations of trigonometric forms
in hypergroups).

5. Superstability

In this part of the paper we present several recent results on
superstability of some functional equations. For numerous
earlier results as well as the historical background of the
subject we refer the reader to [6, 7, 9, 10].

The following definition explains how the notion of
superstability for functional equations (in 𝑛 variables) is
understood nowadays.

Definition 36. Let𝐴 be a nonempty set, (𝑋, 𝑑) ametric space,
andF

1
,F
2
operators mapping a nonempty setD ⊂ 𝑋

𝐴 into
𝑋
𝐴
𝑛

. We say that operator equation (1) is superstable if every
𝜑 ∈ D that is unbounded (i.e., sup

𝑥,𝑦∈𝐴
𝑑(𝜑(𝑥), 𝜑(𝑦)) = ∞)

and satisfies the inequality

sup
𝑥
1
,...,𝑥
𝑛
∈𝐴

𝑑 (F
1
𝜑 (𝑥
1
, . . . , 𝑥

𝑛
) ,F
2
𝜑 (𝑥
1
, . . . , 𝑥

𝑛
)) < ∞ (91)

is a solution of (1).

Let us start with the results that Moszner has proved in
[56] (modificating the proofs from [57, 58]), and which con-
cern the sine, homomorphism, Lobachevski and cosine equa-
tions.

Theorem 37. Let 𝐺 be a uniquely 2-divisible commutative
group and𝐴 a finite-dimensional commutative normed algebra
without the zero divisors. Then every unbounded function 𝑓 :

𝐺 → 𝐴 such that

sup
𝑥,𝑦∈𝐺






𝑓 (𝑥 + 𝑦)𝑓 (𝑥 − 𝑦) − 𝑓(𝑥)

2

+ 𝑓(𝑦)
2



< ∞ (92)

is a solution of the sine equation

𝑓 (𝑥 + 𝑦)𝑓 (𝑥 − 𝑦) = 𝑓(𝑥)
2

− 𝑓(𝑦)
2

, 𝑥, 𝑦 ∈ 𝐺. (93)

Theorem38. Let (𝐺, ⋅) be a commutative semigroup and (𝐴, ⋅)
a groupoid equipped with

(i) an operation R
+
× 𝐴 ∋ (𝜆, 𝑎) → 𝜆𝑎 ∈ 𝐴 such that

𝜆 (𝑎𝑏) = (𝜆𝑎) 𝑏 = 𝑎 (𝜆𝑏) , 𝑎, 𝑏 ∈ 𝐴, 𝜆 ∈ R
+
; (94)

(ii) an element 0 ∈ 𝐴 such that 𝜆0 = 0 for 𝜆 ∈ R
+
and

𝑎
2

̸= 0 for 𝑎 ∈ 𝐴 \ {0};
(iii) a metric 𝜌 satisfying the condition

𝜌 (𝜆𝑎, 𝜆𝑏) ≤ 𝜆𝜌 (𝑎, 𝑏) , 𝑎, 𝑏 ∈ 𝐴, 𝜆 > 0. (95)

Moreover, assume that each nonzero element of 𝐴 is cancella-
tive on the left or on the right, the groupoid operation in 𝐴 is

continuous, and the unit sphere is compact in 𝐴. Then every
unbounded function 𝑓 : 𝐺 → 𝐴 such that

sup
𝑥,𝑦∈𝐺

𝜌 (𝑓 (𝑥𝑦) , 𝑓 (𝑥) 𝑓 (𝑦)) < ∞ (96)

is a homomorphism; that is,

𝑓 (𝑥𝑦) = 𝑓 (𝑥) 𝑓 (𝑦) , 𝑥, 𝑦 ∈ 𝐺. (97)

Theorem 39. Let 𝐺 be a uniquely 2-divisible commutative
monoid and𝐴 a finite-dimensional commutative normed alge-
bra without the zero divisors. Then every unbounded function
𝑓 : 𝐺 → 𝐴 such that

sup
𝑥,𝑦∈𝐺










𝑓(

𝑥 + 𝑦

2

)

2

− 𝑓 (𝑥) 𝑓 (𝑦)










< ∞ (98)

is a solution of the Lobachevski equation

𝑓(

𝑥 + 𝑦

2

)

2

= 𝑓 (𝑥) 𝑓 (𝑦) , 𝑥, 𝑦 ∈ 𝐺. (99)

Theorem 40. Let 𝐺 be a commutative group and 𝐴 a finite-
dimensional unital normed algebra without the zero divisors.
Then every unbounded function 𝑓 : 𝐺 → 𝐴 such that

sup
𝑥,𝑦∈𝐺





𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) 𝑓 (𝑦)





< ∞ (100)

is a solution of the cosine equation

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) 𝑓 (𝑦) , 𝑥, 𝑦 ∈ 𝐺. (101)

The next theorem, proved byMoszner in [56], generalizes
Batko’s result from [59].

Theorem 41. Let 𝐺 be a groupoid and 𝐴 a finite-dimensional
normed algebra without the zero divisors. Then every
unbounded function 𝑓 : 𝐺 → 𝐴 such that

sup
𝑥,𝑦∈𝐺





(𝑓 (𝑥) + 𝑓 (𝑦)) (𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦))





< ∞

(102)

is a solution of the Dhombres equation

(𝑓 (𝑥) + 𝑓 (𝑦)) (𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)) = 0, 𝑥, 𝑦 ∈ 𝐺.

(103)

Using themethod from the proof ofTheorem 41,Moszner
also got the superstability of the Mikusiński equation

𝑓 (𝑥 + 𝑦) (𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)) = 0. (104)

This result reads as follows.

Theorem 42. Let 𝐺 be a group and 𝐴 a finite-dimensional
normed algebra without the zero divisors. Then every un-
bounded function 𝑓 : 𝐺 → 𝐴 such that

sup
𝑥,𝑦∈𝐺





𝑓 (𝑥 + 𝑦) (𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦))





< ∞ (105)

is a solution of (104).
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The above theorem generalizes (to some extent) the fol-
lowing result, which has been obtained in [60], by another
method of proof and under stronger assumptions.

Theorem 43. Let 𝜀 ≥ 0 and 𝐺 be a commutative group. If a
function 𝑓 : 𝐺 → C satisfies





𝑓 (𝑥 + 𝑦) (𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦))





≤ 𝜀, 𝑥, 𝑦 ∈ 𝐺,

(106)

then 𝑓 is additive or





𝑓 (𝑥)





≤ 2√6𝜀, 𝑥 ∈ 𝐺. (107)

Chahbi in [61] has dealt with the equation

𝑓(𝑥 + 𝑓(𝑥)
𝑘

𝑦 + 𝑓(𝑥)
𝑘

𝑓(𝑦)
𝑘

𝑧) = 𝑓 (𝑥) 𝑓 (𝑦) 𝑓 (𝑧) , (108)

where 𝑘 ∈ N, and showed the following result on its super-
stability.

Theorem 44. Let 𝑋 be a linear space over K ∈ {R,C} and
𝑓 : 𝑋 → K, 𝜑 : 𝑋 × 𝑋 → R

+
hemicontinuous (see [61] for

the definition) at the origin functions such that







𝑓 (𝑥 + 𝑓(𝑥)
𝑘

𝑦 + 𝑓(𝑥)
𝑘

𝑓(𝑦)
𝑘

𝑧) − 𝑓 (𝑥) 𝑓 (𝑦) 𝑓 (𝑧)








≤ 𝜑 (𝑦, 𝑧) , 𝑥, 𝑦, 𝑧 ∈ 𝑋.

(109)

Then 𝑓 is bounded or satisfies (108) for every 𝑥, 𝑦, 𝑧 ∈ 𝑋.

The form of (108) has been motivated by the Gołąb-
Schinzel equation

𝑓 (𝑥 + 𝑓 (𝑥) 𝑦) = 𝑓 (𝑥) 𝑓 (𝑦) (110)

and some other equations related to it. A survey on super-
stability results for such equations can be found in [3, pages
29–32] (formore information and further references on those
equations see also [62]).

The following result comes from [63].

Theorem 45. Assume that 𝜀 > 0 and 𝑎 ≥ 1. If a function
𝑓 : R → R fulfills the inequality








𝑓 (𝑥 + 𝑦) − 𝑎
𝑥
2

𝑦+𝑥𝑦
2

𝑓 (𝑥) 𝑓 (𝑦)








< 𝜀, 𝑥, 𝑦 ∈ R, (111)

then either 𝑓 is bounded or it is a solution of the equation

𝑓 (𝑥 + 𝑦) = 𝑎
𝑥
2

𝑦+𝑥𝑦
2

𝑓 (𝑥) 𝑓 (𝑦) , 𝑥, 𝑦 ∈ R. (112)

Let 𝑅 be a ring (not necessarily commutative) uniquely
divisible by 2 and𝐻 := 𝑅

3. Then (𝐻, ⋅), where

(𝑥, 𝑦, 𝑧) ⋅ (𝑥


, 𝑦


, 𝑧


)

:= (𝑥 + 𝑥


, 𝑦 + 𝑦


, 𝑧 + 𝑧


+

1

2

(𝑥𝑦


− 𝑦𝑥


)) ,

(𝑥, 𝑦, 𝑧) , (𝑥


, 𝑦


, 𝑧


) ∈ 𝐻,

(113)

is a noncommutative group, which in the case when 𝑅 = R

is isomorphic to the Heisenberg group. Denote by 𝑖 a selfmap
of𝐻 given by

𝑖 (𝑥, 𝑦, 𝑧) := (𝑦, 𝑥, −𝑧) , (𝑥, y, 𝑧) ∈ 𝐻. (114)

With this notations, we have the following theorem
(proved in [64]) on the superstability of a functional equation
connected with the d’Alembert and Stetkær equations.

Theorem 46. Assume that 𝜀 > 0. If a function 𝑓 : 𝐻 → C

fulfills the inequality




𝑓 (𝑎𝑏) + 𝑓 (𝑎𝑖 (𝑏)) − 2𝑓 (𝑎) 𝑓 (𝑏)





≤ 𝜀, 𝑎, 𝑏 ∈ 𝐻, (115)

then either





𝑓 (𝑎)





≤

1 + √1 + 2𝜀

2

, 𝑎 ∈ 𝐻 (116)

or

𝑓 (𝑎𝑏) + 𝑓 (𝑎𝑖 (𝑏)) = 2𝑓 (𝑎) 𝑓 (𝑏) , 𝑎, 𝑏 ∈ 𝐻. (117)

The next result has been proved in [65].

Theorem 47. Assume that 𝑋 is a normed space over F ∈

{R,C} and 𝑌 is a Banach algebra over F in which the norm
is multiplicative, that is,

‖𝑎𝑏‖ = ‖𝑎‖ ‖𝑏‖ , 𝑎, 𝑏 ∈ 𝑌. (118)

If a mapping 𝑓 : 𝑋 → 𝑌 fulfills

𝛿 := sup
𝑥,𝑦∈𝑋





𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) 𝑓 (𝑦)





< ∞, (119)

then either





𝑓 (𝑥)





≤

1 + √1 + 4𝛿

2

, 𝑥 ∈ 𝑋 (120)

or

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) 𝑓 (𝑦) , 𝑥, 𝑦 ∈ 𝑋. (121)

In [66], Kim dealt with the pexiderized Lobachevski
equation

𝑓(

𝑥 + 𝑦

2

)

2

= 𝑔 (𝑥) ℎ (𝑦) (122)

and proved the following theorem.

Theorem 48. Let 𝜀 ≥ 0 and 𝐺 be a uniquely 2-divisible com-
mutative semigroup. If nonzero and nonconstant functions
𝑓, 𝑔, ℎ : 𝐺 → R satisfy the inequality










𝑓(

𝑥 + 𝑦

2

)

2

− 𝑔 (𝑥) ℎ (𝑦)










≤ 𝜀, 𝑥, 𝑦 ∈ 𝐺, (123)

then either there exist 𝐶
1
, 𝐶
2
, 𝐶
3
> 0 such that





𝑔 (𝑥)





≤ 𝐶
1
, |ℎ (𝑥)| ≤ 𝐶

2
,





𝑓 (𝑥)





≤ 𝐶
3
, 𝑥 ∈ 𝐺 (124)

or both 𝑔 and ℎ satisfy (99).
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An immediate consequence of Theorem 48 is the follow-
ing corollary.

Corollary 49. Let 𝜀 ≥ 0 and 𝐺 be a uniquely 2-divisible
commutative semigroup. If nonzero and nonconstant functions
𝑓, 𝑔 : 𝐺 → R satisfy the inequality










𝑓(

𝑥 + 𝑦

2

)

2

− 𝑔 (𝑥) 𝑓 (𝑦)










≤ 𝜀, 𝑥, 𝑦 ∈ 𝐺, (125)

then either there exist 𝐶
1
, 𝐶
2
> 0 such that





𝑔 (𝑥)





≤ 𝐶
1
,





𝑓 (𝑥)





≤ 𝐶
2
, 𝑥 ∈ 𝐺 (126)

or both 𝑔 and 𝑓 satisfy (99).

The below superstability outcomes for the functional
equations

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) 𝑔 (𝑦) + 𝑓 (𝑦) , (127)

𝑓 (𝑥𝑦) = 𝑓 (𝑥) 𝑔 (𝑦) + 𝑓 (𝑦) (128)

have been obtained in [67] ((127) and (128) with 𝑔(𝑥) ≡

1 become the classical Cauchy equations and therefore we
exclude this case here).

Theorem 50. Let 𝑉 be a linear space and let functions 𝑓, g :

𝑉 → C be such that

sup
𝑥,𝑦∈𝑉





𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) 𝑔 (𝑦) − 𝑓 (𝑦)





< ∞. (129)

Then the following three statements hold:

(i) if 𝑓(𝑥) ≡ 0, then 𝑔 is arbitrary;
(ii) if 𝑓 is nonzero and bounded or 𝑓(0) ̸= 0, then 𝑔 is also

bounded;
(iii) if 𝑓 is unbounded, then 𝑓(0) = 0, 𝑔 is unbounded, and

(127) holds for all 𝑥, 𝑦 ∈ 𝑉.

Theorem 51. Let 𝑉 be a linear space. If functions 𝑓, 𝑔 : 𝑉 →

C are such that

sup
𝑥,𝑦∈𝑉





𝑓 (𝑥𝑦) − 𝑓 (𝑥) 𝑔 (𝑦) − 𝑓 (𝑦)





< ∞, (130)

then the following three statements hold:

(i) if 𝑓(𝑥) ≡ 0, then 𝑔 is arbitrary;
(ii) if 𝑓 is nonzero and bounded or 𝑓(1) ̸= 0, then 𝑔 is also

bounded;
(iii) if 𝑓 is unbounded, then 𝑓(1) = 0, 𝑔 is unbounded, and

(128) holds for all 𝑥, 𝑦 ∈ 𝑉.

The next two theorems have been obtained in [68]. It is
assumed in them that𝑋 is a commutative group, Λ is a finite
subgroup of the group of automorphisms of 𝑋 (the action of
𝜆 ∈ Λ on 𝑥 ∈ 𝑋 is denoted by 𝜆𝑥), and𝑁 is the cardinality of
Λ.

Theorem52. LetK ∈ {R,C}. If𝑓, 𝑔, ℎ : 𝑋 → K, the function

𝑋 × 𝑋 ∋ (𝑥, 𝑦)

→

1

𝑁

∑

𝜆∈Λ

𝑓 (𝑥 + 𝜆𝑦) − 𝑓 (𝑥) 𝑔 (𝑦) − ℎ (𝑦) ∈ K
(131)

is bounded, and the function𝑓 is unbounded, then the function
𝑔 satisfies the functional equation

1

𝑁

∑

𝜆∈Λ

𝑔 (𝑥 + 𝜆𝑦) = 𝑔 (𝑥) 𝑔 (𝑦) , 𝑥, 𝑦 ∈ 𝑋. (132)

Theorem53. LetK ∈ {R,C}. If𝑓, 𝑔, ℎ : 𝑋 → K, the function

𝑋 × 𝑋 ∋ (𝑥, 𝑦)

→

1

𝑁

∑

𝜆∈Λ

𝑓 (𝑥 + 𝜆𝑦) − 𝑓 (𝑦) 𝑔 (𝑥) − ℎ (𝑥) ∈ K
(133)

is bounded, and the function𝑓 is unbounded, then the function
𝑔 satisfies (132).

The next three theorems do not actually provide super-
stability results in the sense of Definition 36. However, we
present them here, because they seem to be of some inter-
est and are attempts to extend the notion of superstability ana-
logously to the notion of 𝜑-hyperstability.

The subsequent theorem, proved in [69], gives a partial
affirmative answer to a problem posed by Th. M. Rassias
during the 31st ISFE (R𝑧 and I𝑧 denote the real and imag-
inary parts of a complex number 𝑧, resp.).

Theorem 54. Let (𝑆, ⋅) be a commutative semigroup, 𝜑 : 𝑆
2
→

R
+
, 𝜓 : 𝑆 → R

+
, and 𝑓 : 𝑆 → {𝑧 ∈ C : −𝜋 < I𝑧 ≤ 𝜋}

functions such that




𝑓 (𝑥 ⋅ 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)





≤ 𝜑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑆,





𝑓 (𝑥)





≤ 𝜓 (𝑥) , 𝑥 ∈ 𝑆.

(134)

Assume also that there exists a 𝑝 ∈ {𝑠 ∈ 𝑆 : R𝑓(𝑠) > 0} with
∞

∑

𝑚=0

𝜑 (𝑝, 𝑝
𝑚+1

) < ∞,

𝜓 (𝑥 ⋅ 𝑝) ≤ 𝜓 (𝑥) , 𝑥 ∈ 𝑆.

(135)

Then 𝑓 satisfies the Cauchy equation

𝑓 (𝑥 ⋅ 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) , 𝑥, 𝑦 ∈ 𝑆. (136)

The next result has been proved in [70].

Theorem55. Let𝐺 be a commutative group and𝜑 : 𝐺 → R
+
.

If 𝑓 : 𝐺 → C is an unbounded function such that




𝑓 (𝑥 + 𝑦 + 𝑧) + 𝑓 (𝑥 + 𝑦 − 𝑧) + 𝑓 (𝑦 + 𝑧 − 𝑥)

+ 𝑓 (𝑧 + 𝑥 − 𝑦) − 4𝑓 (𝑥) 𝑓 (𝑦) 𝑓 (𝑧)





≤ 𝜑 (𝑥) , 𝑥, 𝑦, 𝑧 ∈ 𝐺,

(137)
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then

𝑓 (𝑥 + 𝑦 + 𝑧)+𝑓 (𝑥 + 𝑦 − 𝑧)+𝑓 (𝑦 + 𝑧 − 𝑥)+𝑓 (𝑧 + 𝑥 − 𝑦)

= 4𝑓 (𝑥) 𝑓 (𝑦) 𝑓 (𝑧) , 𝑥, 𝑦, 𝑧 ∈ 𝐺.

(138)

The last presented theorem is the main result of [71] and
includes a few outcomes from [72–74].

Theorem 56. Assume that 𝐺 is a commutative group and 𝜑 :

𝐺 → R
+
. If nonzero functions 𝑓, 𝑔, ℎ, 𝑘 : 𝐺 → C fulfill





𝑓 (𝑥 + 𝑦) − 𝑔 (𝑥 − 𝑦) − 2ℎ (𝑥) 𝑘 (𝑦)





≤ 𝜑 (𝑥) , 𝑥 ∈ 𝐺,

(139)

then either 𝑘 is bounded or there is a sequence (𝑦
𝑛
)
𝑛∈N of ele-

ments of 𝐺 such that the limit

lim
𝑛→∞

𝑘 (𝑦
𝑛
+ 𝑦) + 𝑘 (𝑦

𝑛
− 𝑦)

𝑘 (𝑦
𝑛
)

=: 𝑙 (𝑦) (140)

exists for every 𝑦 ∈ 𝐺 and ℎ, 𝑙 satisfy the functional equation

ℎ (𝑥 + 𝑦) + ℎ (𝑥 − 𝑦) = ℎ (𝑥) 𝑙 (𝑦) , 𝑥, 𝑦 ∈ 𝐺. (141)
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