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We introduce nonsmooth vector quasi-variational-like inequalities (NVQVLI) by means of a bifunction. We establish some
existence results for solutions of these inequalities by using Fan-KKM theorem and a maximal element theorem. By using the
technique and methodology adopted in Al-Homidan et al. (2012), one can easily derive the relations among these inequalities and
a vector quasi-optimization problem. Hence, the existence results for a solution of a vector quasi-optimization problem can be
derived by using our results. The results of this paper extend several known results in the literature.

1. Introduction

The theory of quasi-variational inequalities (QVI)was started
with a pioneerwork of A. Bensoussan and J. L. Lions in
1973, perhapsmotivated by the stochastic control and impulse
control problems. It was the paper of Bensoussan et al. [1] in
which the term quasi-variational inequality was introduced.
The quasi-variational inequality is an extension of a varia-
tional inequality [2] in which the underlying set depends on
the solution itself. For further details on quasi-variational
inequalities, we refer to [3–5] and the references therein. In
1980, Giannessi [6] initiated the theory of vector variational
inequalities with applications to vector optimization. Since
then, it has been growing up in different directions. One
of such directions is the application to the theory of vector
optimization. However, if the underlying objective function
is not differentiable and not convex, then we need to define
a nonsmooth vector variational-like inequality by means of
Dini directional derivatives or Clarke directional derivatives.
For studying such problems by using vector variational-
like inequalities, Alshahrani et al. [7], Al-Homidan et al.
[8], Ansari and Lee [9], Crespi et al. [10], and Lalitha
and Mehta [11] considered a vector variational inequality,
defined by means of Dini directional derivatives, called
nonsmooth vector variational inequality. The nonsmooth
vector optimization is studied in these references by using

nonsmooth vector variational inequalities. Motivated by
the extension of variational inequalities for vector-valued
functions, several researchers started to study the QVI for
vector-valued functions, known as vector quasi-variational
inequalities (VQVI); see, for example, [12–16] and the refer-
ences therein. An optimization problem in which the feasible
set depends on the solution itself is called quasi-optimization
problem [14]. Such problems can be solved by using the
vector quasi-variational inequality technique. To the best of
our knowledge, no study has been done in the literature
to study nonsmooth quasi-variational inequalities which are
defined by means of a bifunction, in particular by means
of Dini or Clarke directional derivatives. This paper can be
treated as the beginning of the study of nonsmooth (vector)
quasi-variational inequalities and nonsmooth vector quasi-
optimization problem.

In this paper, we consider the vector quasi-variational-
like inequality problems defined bymeans of a bifunction and
present some existence results for solutions of these problems
by using Fan-KKM theorem and amaximal element theorem.
By using the technique and methodology adopted in [8], one
can easily derive the relations among these inequalities and
a vector quasi-optimization problem. Hence, the existence
results for a solution of a vector quasi-optimization problem
can be derived by using our results. The results of this paper
extend several known results in the literature.
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2. Formulations

We adopt the following ordering relations. We consider the
cones 𝐶 = Rℓ

+
and
∘

𝐶 := intRℓ
+
, where Rℓ

+
is the nonnegative

orthant of Rℓ, and 0 is the origin of Rℓ; let 𝐷 be a set of Rℓ
+
.

Then for all 𝑥, 𝑦 ∈ 𝐷,

𝑥≥
𝐶
𝑦 ⇐⇒ 𝑥 − 𝑦 ∈ 𝐶; 𝑥 ̸≥

𝐶
𝑦 ⇐⇒ 𝑥 − 𝑦 ∉ 𝐶;

𝑥 ≤
𝐶
𝑦 ⇐⇒ 𝑦 − 𝑥 ∈ 𝐶; 𝑥 ≰

𝐶
𝑦 ⇐⇒ 𝑦 − 𝑥 ∉ 𝐶;

𝑥 ≥ ∘
𝐶

𝑦 ⇐⇒ 𝑥 − 𝑦 ∈
∘

𝐶; 𝑥 ̸≥ ∘
𝐶

𝑦 ⇐⇒ 𝑥 − 𝑦 ∉
∘

𝐶;

𝑥 ≤ ∘
𝐶

𝑦 ⇐⇒ 𝑦 − 𝑥 ∈
∘

𝐶; 𝑥 ≰ ∘
𝐶

𝑦 ⇐⇒ 𝑦 − 𝑥 ∉
∘

𝐶 .

(1)

Let 𝑔 : R𝑛 → R be a real-valued function. The upper
Dini directional derivative of 𝑔 at 𝑥 ∈ 𝐾 in the direction 𝑑 ∈
R𝑛 is defined as

𝑔
𝐷
(𝑥; 𝑑) = lim sup

𝑡→0
+

𝑔 (𝑥 + 𝑡𝑑) − 𝑔 (𝑥)

𝑡
. (2)

For further details on Dini directional derivatives, we refer to
the recent book [2].

Let 𝐾 be a nonempty subset of R𝑛, 𝐴 : 𝐾 → 2
𝐾 a set-

valued map, and 𝜂 : 𝐾 × 𝐾 → R𝑛 a mapping. Let ℎ =
(ℎ
1
, . . . , ℎ

ℓ
) : 𝐾×R𝑛 → Rℓ be a vector-valued function such

that, for each fixed 𝑥 ∈ 𝐾, ℎ(𝑥; 𝑑) is positively homogeneous
in 𝑑. In particular, we consider ℎ(𝑥; 𝑑) = 𝑓

𝐷
(𝑥; 𝑑) where

𝑓 = (𝑓
1
, . . . , 𝑓

ℓ
) : R𝑛 → Rℓ a vector-valued function and

𝑓
𝐷
(𝑥; 𝑑) = (𝑓

𝐷

1
(𝑥; 𝑑) , . . . , 𝑓

𝐷

ℓ
(𝑥; 𝑑)) . (3)

The nonsmooth (Stampacchia or Minty type) vector
quasi-variational-like inequality problems are defined as
follows.

Nonsmooth Stampacchia Vector Quasi-Variational-Like Ine-
quality Problem (NSVQVLIP). Find 𝑥 ∈ 𝐾 such that 𝑥 ∈ 𝐴(𝑥)
and

ℎ (𝑥; 𝜂 (𝑦, 𝑥))

= (ℎ
1
(𝑥; 𝜂 (𝑦, 𝑥)) , . . . , ℎ

ℓ
(𝑥; 𝜂 (𝑦, 𝑥))) ≰ ∘

𝐶

0,

∀𝑦 ∈ 𝐴 (𝑥) .

(4)

Minty Vector Quasi-Variational-Like Inequality Problem
(NMVQVLIP). Find 𝑥 ∈ 𝐾 such that 𝑥 ∈ 𝐴(𝑥) and

ℎ (𝑦; 𝜂 (𝑥, 𝑦))

= (ℎ
1
(𝑦; 𝜂 (𝑥, 𝑦)) , . . . , ℎ

ℓ
(𝑦; 𝜂 (𝑥, 𝑦))) ̸≥ ∘

𝐶

0,

∀𝑦 ∈ 𝐴 (𝑥) .

(5)

When 𝐴(𝑥) = 𝐾, for all 𝑥 ∈ 𝐾, then these problems were
studied in [8, 9, 11] with applications to vector optimization.
Furthermore, if we consider the previous Dini directional
derivative as a bifunction ℎ(𝑥; 𝑑), with 𝑥 referring to a point
inR𝑛 and𝑑 referring to a direction fromR𝑛, that is, if ℎ(𝑥; ⋅) =
𝑓
𝐷
(𝑥; ⋅), then the previously mentioned problems are studied

in [7, 8, 10] and the references therein.

The main motivation of this paper is to establish
some existence results for solutions of NMVQVLIP and
NSVQVLIP by using Fan-KKM theorem or a maximal
element theorem. Of course, by using the technique of [8],
we can easily establish some results on the relations among
NMVQVLIP, NSVQVLIP, and vector quasi-optimization
problems [14]. Since the results are straightforward, we are
not including them here.

3. Preliminaries

Let 𝐾 ⊆ R𝑛 be a nonempty set. We denote by 𝐾, int𝐴, and
co(𝐾) the closure of𝐾, the interior of𝐾, and the convex hull
of 𝐾, respectively.

Definition 1. Let𝐾 ⊆ R𝑛 be a nonempty set and 𝜂 : 𝐾×𝐾 →

𝑋 a mapping.The set𝐾 is said to be invex with respect to 𝜂 if,
for all 𝑥, 𝑦 ∈ 𝐾 and all 𝑡 ∈ [0, 1], we have 𝑥 + 𝑡𝜂(𝑦, 𝑥) ∈ 𝐾.

We say that the map 𝜂 is skew if, for all 𝑥, 𝑦 ∈ 𝐾
𝜂 (𝑦, 𝑥) + 𝜂 (𝑥, 𝑦) = 0. (6)

Condition C. Let 𝐾 ⊆ R𝑛 be an invex set with respect to 𝜂 :
𝐾 × 𝐾 → R𝑛. Then, for all 𝑥, 𝑦 ∈ 𝐾, 𝑡 ∈ [0, 1], we have

𝜂 (𝑥, 𝑥 + 𝑡𝜂 (𝑦, 𝑥)) = −𝑡𝜂 (𝑦, 𝑥) . (7)
We adopt the following definition of affineness.
A vector-valued function 𝑔 : R𝑛 → Rℓ is called affine

if, for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
∈ R𝑛 and 𝑡

𝑖
≥ 0 for all 𝑖 = 1, 2, . . . , 𝑚

with ∑𝑚
𝑖=1
𝑡
𝑖
= 1, we have

𝑔(

𝑚

∑

𝑖=1

𝑡
𝑖
𝑥
𝑖
) =

𝑚

∑

𝑖=1

𝑡
𝑖
𝑔 (𝑥
𝑖
) . (8)

The following lemma can be easily proved.

Lemma 2 (see [17]). Let 𝐾 be a nonempty convex subset of a
vector space𝑋 and 𝜂 : 𝐾×𝐾 → 𝑋 a mapping. If 𝜂 is affine in
the first argument and skew, then it is also affine in the second
argument.

Definition 3 (see [18, 19]). Let 𝐾 ⊆ R𝑛 be a nonempty set. A
vector-valued function 𝑔 : 𝐾 → Rℓ is said to be 𝐶-lower
semicontinuous (resp., 𝐶-upper semicontinuous) at 𝑥 ∈ 𝐾 if
for any neighborhood𝑉 of 𝑔(𝑥), there exists a neighborhood
𝑈 of 𝑥 such that 𝑔(𝑦) ∈ 𝑉 + 𝐶 for all 𝑦 ∈ 𝑈 ∩ 𝐾 (resp.,
𝑔(𝑦) ∈ 𝑉 − 𝐶 for all 𝑦 ∈ 𝑈 ∩ 𝐾). 𝑔 is said to be 𝐶-lower
semicontinuous (resp.,𝐶-upper semicontinuous) on𝐾 if it is𝐶-
lower semicontinuous (resp.,𝐶-upper semicontinuous) at every
point 𝑥 ∈ 𝐾.

It is shown in [18] that a function 𝑔 : 𝐾 → Rℓ is 𝐶-
lower semicontinuous if and only if, for all 𝛼 ∈ Rℓ, the set
{𝑥 ∈ 𝐾 : 𝑔(𝑥) ̸≥ ∘

𝐶

𝛼} is closed in𝐾.

Definition 4. Let𝐾 ⊆ R𝑛 be a nonempty convex set. A vector-
valued function 𝑔 : 𝐾 → Rℓ is said to be 𝐶-convex if, for all
𝑥, 𝑦 ∈ 𝐾 and all 𝑡 ∈ [0, 1],

𝑔 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤𝐶 𝑡𝑔 (𝑥) + (1 − 𝑡) 𝑔 (𝑦) . (9)
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Definition 5 (see [18, 19]). Let𝐾 ⊆ R𝑛 be a nonempty convex
set. A vector-valued function 𝑔 : 𝐾 → Rℓ is said to be 𝐶-
quasiconvex if, for all 𝛼 ∈ R𝑛, the set {𝑥 ∈ 𝐾 : 𝑔(𝑥) ≤

𝐶
𝛼} is

convex.

It is shown in [18] that if 𝑔 is 𝐶-quasiconvex, then the set
{𝑥 ∈ 𝐾 : 𝑔(𝑥) ≤ ∘

𝐶

𝛼} is convex.
A vector-valued function 𝑔 : R𝑛 → Rℓ is called posi-

tively homogeneous if for all 𝑥 ∈ R𝑛 and all 𝑟 > 0, 𝑔(𝑟𝑥) =
𝑟𝑔(𝑥).

Definition 6. Let 𝑈 be a nonempty subset of a topological
vector space 𝐸. A set-valued map 𝑇 : 𝑈 → 2

𝑈 is said to be
a KKM map provided and co(𝑀) ⊆ 𝑇(𝑀) = ⋃

𝑥∈𝑀
𝑇(𝑥) for

each finite subset𝑀 of 𝑈, where co(𝑀) denotes the convex
hull of𝑀.

The following Fan-KKM theorem [20] will be used in the
sequel.

Theorem 7 (see [20]). Let 𝑈 be a nonempty subset of a
Hausdorff topological vector space 𝐸. Assume that 𝑇 : 𝑈 →

2
𝑈
\ {0} is a KKM map satisfying the following conditions:

(i) for each 𝑥 ∈ 𝑈, 𝑇(𝑥) is closed;
(ii) for at least one 𝑥 ∈ 𝑈, 𝑇(𝑥) is compact.

Then,⋂
𝑥∈𝑈
𝑇(𝑥) ̸= 0.

We will use the following maximal element theorem to
prove the existence of solutions of nonsmooth vector quasi-
variational-like inequality problems.

Theorem 8 (see [21, Corollary 3.2]). Let 𝐾 be a nonempty
convex subset of a Hausdorff topological vector space 𝑋 and
𝑆, 𝑇 : 𝐾 → 2

𝐾 two set-valuedmaps. Assume that the following
conditions hold:

(i) for all 𝑥 ∈ 𝐾, co(𝑆(𝑥)) ⊆ 𝑇(𝑥);
(ii) for all 𝑥 ∈ 𝐾, 𝑥 ∉ 𝑇(𝑥) and 𝑆−1(𝑦) = {𝑥 ∈ 𝐾 : 𝑦 ∈
𝑆(𝑥)} is open in 𝐾;

(iii) there exist a nonempty compact convex subset 𝐷 ⊆ 𝐾
and a nonempty compact subset 𝐵 of 𝐾 such that for
each 𝑥 ∈ 𝐾 \ 𝐵, there exists 𝑦 ∈ 𝐷 such that 𝑥 ∈
int 𝑆−1(𝑦).

Then, there exists 𝑥 ∈ 𝐾 such that 𝑆(𝑥) = 0.

4. Existence Results

Definition 9 (see [8]). Let 𝐾 ⊆ R𝑛 be a nonempty set and
𝜂 : 𝐾 × 𝐾 → R𝑛 a mapping. A vector-valued bifunction
ℎ = (ℎ

1
, . . . , ℎ

ℓ
) : 𝐾 ×R𝑛 → Rℓ is said to be

(a) 𝐶-pseudomonotone with respect to 𝜂 on 𝐾 if, for all
𝑥, 𝑦 ∈ 𝐾,

ℎ (𝑥; 𝜂 (𝑦, 𝑥)) ≰ ∘
𝐶

0

implies ℎ (𝑦; 𝜂 (𝑥, 𝑦)) ̸≥ ∘
𝐶

0,
(10)

(b) 𝐶-properly subodd if

ℎ (𝑥; 𝑑
1
) + ℎ (𝑥; 𝑑

2
) + ⋅ ⋅ ⋅ + ℎ (𝑥; 𝑑

𝑚
) ≥
𝐶
0, (11)

for every 𝑑
𝑖
∈ R𝑛, 𝑖 = 1, 2, . . . , 𝑚 with∑𝑚

𝑖=1
𝑑
𝑖
= 0 and

𝑥 ∈ 𝐾.

The definition of proper suboddness is considered in [11].
Of course, if 𝑚 = 2, the definition of proper suboddness
reduces to the definition of suboddness.

Definition 10. Let 𝐾 be a nonempty convex subset of R𝑛. A
function 𝑔 : 𝐾 → Rℓ is said to be hemicontinuous if, for all
𝑥, 𝑦 ∈ 𝐾, the mapping 𝑡 󳨃→ 𝑔(𝑦+ 𝑡(𝑥−𝑦)) is continuous.The
upper and lower hemicontinuity can be defined analogously.

Definition 11. Let 𝐾 ⊆ R𝑛 be an invex set with respect to
𝜂 : 𝐾 × 𝐾 → R𝑛. A function 𝑔 : 𝐾 → Rℓ is said
to be 𝜂-hemicontinuous if, for all 𝑥, 𝑦 ∈ 𝐾, the mapping
𝑡 󳨃→ 𝑔(𝑦 + 𝑡𝜂(𝑥, 𝑦)) is continuous. The upper and lower 𝜂-
hemicontinuity can be defined analogously.

The following concept of 𝜂-upper sign continuity for the
bifunction ℎ is considered in [8].

Definition 12 (see [8]). Let 𝐾 ⊆ R𝑛 be a nonempty invex set
with respect to 𝜂 : 𝐾 × 𝐾 → R𝑛. A vector-valued bifunction
ℎ = (ℎ

1
, . . . , ℎ

ℓ
) : 𝐾 × R𝑛 → Rℓ is said to be 𝜂-upper sign

continuous if, for all 𝑥, 𝑦 ∈ 𝐾 and 𝑡 ∈ (0, 1),

ℎ (𝑥 + 𝑡𝜂 (𝑦, 𝑥) ; 𝜂 (𝑦, 𝑥)) ≰ ∘
𝐶

0

implies ℎ (𝑥; 𝜂 (𝑦, 𝑥)) ≰ ∘
𝐶

0.
(12)

Remark 13. It can be easily seen that if 𝜂 is skew and ℎ is
𝜂-upper hemicontinuous in the first argument, then it is 𝜂-
upper sign continuous, but the converse is not true in general.

The following result provides the relations between
NSVQVLIP and NMVQVLIP when the set-valued map 𝐴 :
𝐾 → 2

𝐾 is invex valued.

Proposition 14. Let 𝐾 ⊆ R𝑛 be a nonempty invex set with
respect to 𝜂 : 𝐾 × 𝐾 → R𝑛 such that Condition C holds. Let
𝐴 : 𝐾 → 2

𝐾 be a set-valued map such that, for each 𝑥 ∈
𝐾, 𝐴(𝑥) is a nonempty and invex set with respect to 𝜂. Let the
vector-valued bifunction ℎ : 𝐾 × R𝑛 → Rℓ be 𝐶-properly
subodd,𝐶-pseudomonotone with respect to 𝜂, and 𝜂-upper sign
continuous such that, for each fixed 𝑥 ∈ 𝐾, ℎ(𝑥; ⋅) is positively
homogeneous. Then, 𝑥 ∈ 𝐾 is a solution of NSVQVLIP if and
only if it is a solution of NMVQVLIP.

Proof. It is similar to the proof of Proposition 7.7 in [8].
However, we include it for the sake of completeness of the
paper.

The 𝐶-pseudomonotonicity of ℎ with respect to 𝜂

implies that every solution of NSVQVLIP is a solution of
NMVQVLIP.
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Conversely, let 𝑥 ∈ 𝐾 be a solution of NMVQVLIP.Then,
𝑥 ∈ 𝐴(𝑥), and

ℎ (𝑦; 𝜂 (𝑥, 𝑦)) ̸≥ ∘
𝐶

0, ∀𝑦 ∈ 𝐴 (𝑥) . (13)

Since 𝐴(𝑥) is invex, we have 𝑦
𝑡
= 𝑥 + 𝑡𝜂(𝑦, 𝑥) ∈ 𝐴(𝑥) for all

𝑡 ∈ (0, 1), and therefore, (13) becomes

ℎ (𝑦
𝑡
; 𝜂 (𝑥, 𝑦

𝑡
)) ̸≥ ∘
𝐶

0. (14)

By Condition C, 𝜂(𝑥, 𝑦
𝑡
) = −𝑡𝜂(𝑦, 𝑥), and thus,

ℎ (𝑦
𝑡
; −𝑡𝜂 (𝑦, 𝑥)) ̸≥ ∘

𝐶

0. (15)

By positive homogeneity and 𝐶-proper suboddness of ℎ, we
have

ℎ (𝑦
𝑡
; 𝜂 (𝑦, 𝑥)) ≰ ∘

𝐶

0. (16)

Thus, the 𝜂-upper sign continuity of ℎ yields 𝑥 ∈ 𝐾 is a
solution of NSVQVLIP.

The following result gives the equivalence between
NSVQVLIP and NMVQVLIP when the set-valued map 𝐴 :
𝐾 → 2

𝐾 is convex valued.

Proposition 15. Let 𝐾 ⊆ R𝑛 be a nonempty convex set, and
let 𝜂 : 𝐾 × 𝐾 → R𝑛 be affine in the first argument and
skew. Let 𝐴 : 𝐾 → 2

𝐾 be a set-valued map such that, for
each 𝑥 ∈ 𝐾, 𝐴(𝑥) is a nonempty and convex set. Let the
vector-valued bifunction ℎ : 𝐾 × R𝑛 → Rℓ be 𝐶-properly
subodd,𝐶-pseudomonotone with respect to 𝜂, and 𝜂-upper sign
continuous such that, for each fixed 𝑥 ∈ 𝐾, ℎ(𝑥; ⋅) is positively
homogeneous. Then, 𝑥 ∈ 𝐾 is a solution of NSVQVLIP if and
only if it is a solution of NMVQVLIP.

Proof. It is similar to the proof of Proposition 7.8 in [8].
However, we include it for the sake of completeness of the
paper.

The 𝐶-pseudomonotonicity of ℎ with respect to 𝜂

implies that every solution of NSVQVLIP is a solution of
NMVQVLIP.

Conversely, let 𝑥 ∈ 𝐾 be a solution of NMVQVLIP.Then,
𝑥 ∈ 𝐴(𝑥), and

ℎ (𝑦; 𝜂 (𝑥, 𝑦)) ̸≥ ∘
𝐶

0, ∀𝑦 ∈ 𝐴 (𝑥) . (17)

Since 𝐴(𝑥) is convex, we have 𝑦
𝑡
= 𝑥 + 𝑡(𝑦 − 𝑥) ∈ 𝐴(𝑥) for all

𝑡 ∈ (0, 1), and therefore, (17) becomes

ℎ (𝑦
𝑡
; 𝜂 (𝑥, 𝑦

𝑡
)) ̸≥ ∘
𝐶

0. (18)

Since 𝜂 is affine in the first argument and skew, by Lemma 2,
𝜂 is also affine in the second argument. Since 𝜂(𝑥, 𝑥) = 0 by
skewness of 𝜂, we obtain

ℎ (𝑦
𝑡
; 𝜂 (𝑥, 𝑦

𝑡
)) = ℎ (𝑦

𝑡
; 𝑡𝜂 (𝑥, 𝑦) + (1 − 𝑡) 𝜂 (𝑥, 𝑥))

= ℎ (𝑦
𝑡
; 𝑡𝜂 (𝑥, 𝑦)) ̸≥ ∘

𝐶

0.
(19)

By positive homogeneity of ℎ in the second argument, we
have

ℎ (𝑦
𝑡
; 𝜂 (𝑥, 𝑦)) ̸≥ ∘

𝐶

0. (20)

Since 𝜂(𝑦, 𝑥) + 𝜂(𝑥, 𝑦) = 0 by skewness of 𝜂, the 𝐶-proper
suboddness of ℎ implies that

ℎ (𝑦
𝑡
; 𝜂 (𝑦, 𝑥)) ≰ ∘

𝐶

0. (21)

The 𝜂-upper sign continuity of ℎ yields 𝑥 ∈ 𝐾 is a solution of
NSVQVLIP.

Throughout the rest of the paper, unless otherwise spec-
ified, we assume that 𝐴 : 𝐾 → 2

𝐾 is a set-valued map such
that 𝐴(𝑥) is nonempty convex for all 𝑥 ∈ 𝐾, 𝐴−1(𝑦) is open
for all 𝑦 ∈ 𝐾, and the setF = {𝑥 ∈ 𝐾 : 𝑥 ∈ 𝐴(𝑥)} is closed.

We present some existence results for the solutions of
NSVQVLIP andNMVQVLIP without boundedness assump-
tion on the underlying set𝐾.

Theorem 16. Let 𝐾 ⊆ R𝑛 be a nonempty convex set, and
𝜂 : 𝐾 × 𝐾 → R𝑛 be skew, affine, and lower semicontinuous
in the first argument. Let ℎ = (ℎ

1
, . . . , ℎ

ℓ
) : 𝐾 × R𝑛 → Rℓ

be 𝐶-properly subodd, positively homogeneous in the second
argument, and 𝐶-pseudomonotone with respect to 𝜂 such that
𝑥 󳨃→ ℎ(𝑦; 𝜂(𝑥, 𝑦)) is continuous. Assume that there exist a
nonempty compact convex subset𝐷 of𝐾 and 𝑦 ∈ 𝐷 such that,
for all 𝑥 ∈ 𝐾 \ 𝐷, 𝑦 ∈ 𝐴(𝑥) and ℎ(𝑥; 𝜂(𝑦, 𝑥)) ≤ ∘

𝐶

0Then, there
exists a solution 𝑥 ∈ 𝐾 of MVQVLIP.

Furthermore, if ℎ is 𝜂-upper sign continuous, then 𝑥 ∈ 𝐾
is a solution of SVQVLIP.

Proof. For all 𝑥 ∈ 𝐾, we define two set-valued maps 𝑆
1
, 𝑆
2
:

𝐾 → 2
𝐾 by

𝑆
1 (𝑥) = {𝑦 ∈ 𝐾 : ℎ (𝑥; 𝜂 (𝑦, 𝑥)) ≤ ∘

𝐶

0} ,

𝑆
2 (𝑥) = {𝑦 ∈ 𝐾 : ℎ (𝑦; 𝜂 (𝑥, 𝑦)) ≥ ∘

𝐶

0} .
(22)

For all 𝑥, 𝑦 ∈ 𝐾 and for each 𝑖 = 1, 2, we also define other two
set-valued maps 𝑃

𝑖
: 𝐾 → 2

𝐾 and 𝑄
𝑖
: 𝐾 → 2

𝐾 by

𝑃
𝑖 (𝑥) = {

𝐴 (𝑥) ∩ 𝑆𝑖 (𝑥) , if𝑥 ∈ F,
𝐴 (𝑥) , if𝑥 ∈ 𝐾 \F,

𝑄
𝑖
(𝑦) = 𝐾 \ 𝑃

−1

𝑖
(𝑦) .

(23)

For each 𝑖 = 1, 2 and for all 𝑦 ∈ 𝐾, we have (see, e.g., [22])

𝑃
−1

𝑖
(𝑦) = [(𝐾 \F) ∪ 𝑆

−1

𝑖
(𝑦)] ∩ 𝐴

−1
(𝑦) , (24)

and therefore,

𝑄
𝑖
(𝑦) = [F ∩ (𝐾 \ 𝑆

−1

𝑖
(𝑦))] ∪ [𝐾 \ 𝐴

−1
(𝑦)] . (25)

The rest of the proof is divided into the following four steps.
(a) We claim that 𝑄

1
is a KKMmap on 𝐾.
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Assume the contrary that 𝑄
1
is not a KKM map. Then,

there exist a finite set {𝑦
1
, . . . , 𝑦

𝑚
} in 𝐾 and 𝑡

1
, . . . , 𝑡

𝑚
≥ 0

with ∑𝑚
𝑖=1
𝑡
𝑖
= 1 such that 𝑥 = ∑𝑚

𝑖=1
𝑡
𝑖
𝑦
𝑖
∉ 𝑄
1
(𝑦
𝑖
) for all 𝑖 =

1, . . . , 𝑚; that is,

𝑥 ∈ 𝑃
−1

1
(𝑦
𝑖
) ⇐⇒ 𝑦

𝑖
∈ 𝑃
1 (𝑥) ∀𝑖 = 1, . . . , 𝑚. (26)

If 𝑥 ∈ F, then 𝑃
1
(𝑥) = 𝐴(𝑥) ∩ 𝑆

1
(𝑥), and therefore,

𝑦
𝑖
∈ 𝑆
1 (𝑥) , 𝑦

𝑖
∈ 𝐴 (𝑥) ∀𝑖 = 1, . . . , 𝑚. (27)

Hence,

ℎ (𝑥; 𝜂 (𝑦
𝑖
, 𝑥)) ≤ ∘

𝐶

0, 𝑦
𝑖
∈ 𝐴 (𝑥) ∀𝑖 = 1, . . . , 𝑚. (28)

Since
∘

𝐶 is a convex cone and 𝑡
𝑖
≥ 0 with ∑𝑚

𝑖=1
𝑡
𝑖
= 1, we have

𝑚

∑

𝑖=1

𝑡
𝑖
ℎ (𝑥; 𝜂 (𝑦

𝑖
, 𝑥)) ≤ ∘

𝐶

0. (29)

Since 𝜂 is skew, we have 𝜂(𝑥, 𝑥) = 0. By the affineness of 𝜂 in
the first argument, we have

𝑚

∑

𝑖=1

𝑡
𝑖
𝜂 (𝑦
𝑖
, 𝑥) = 𝜂(

𝑚

∑

𝑖=1

𝑡
𝑖
𝑦
𝑖
, 𝑥) = 𝜂 (𝑥, 𝑥) = 0. (30)

Since ℎ is 𝐶-proper subodd, we have
𝑚

∑

𝑖=1

ℎ (𝑥; 𝑡
𝑖
𝜂 (𝑦
𝑖
, 𝑥)) ≥

𝐶
0. (31)

By positive homogeneity of ℎ, we obtain
𝑚

∑

𝑖=1

𝑡
𝑖
ℎ (𝑥; 𝜂 (𝑦

𝑖
, 𝑥)) ≥

𝐶
0, (32)

a contradiction of (29).
If 𝑥 ∈ 𝐾 \F, then 𝑥 ∉ 𝐴(𝑥). By the definition of 𝑄

1
, we

have 𝑃
1
(𝑥) = 𝐴(𝑥), and therefore, 𝑦

𝑖
∈ 𝑃
1
(𝑥) = 𝐴(𝑥) for all

𝑖 = 1, . . . , 𝑚. Since 𝐴(𝑥) is convex, we obtain 𝑥 ∈ 𝐴(𝑥), again
a contradiction. Hence, 𝑄

1
is a KKMmap.

(b) We show that 𝑄
1
(𝑦) = 𝐾 \ 𝑃

−1

1
(𝑦) ⊆ 𝐷, where 𝑦 and

𝐷 are the same as in the hypothesis.
Indeed, if 𝑥 ∈ 𝑄

1
(𝑦)\𝐷, then 𝑥 ∈ [F∩(𝐾\𝑆−1

1
(𝑦))]∪[𝐾\

𝐴
−1
(𝑦)]; that is, either 𝑥 ∈ F∩(𝐾\𝑆−1

1
(𝑦)) or 𝑥 ∈ 𝐾\𝐴−1(𝑦).

If 𝑥 ∈ F ∩ (𝐾 \ 𝑆
−1

1
(𝑦)), then 𝑥 ∈ F and 𝑥 ∈ 𝐾 \ 𝑆−1

1
(𝑦);

that is, 𝑥 ∈ 𝐴(𝑥) and ℎ(𝑥; 𝜂(𝑦, 𝑥)) ≰ ∘
𝐶

0, a contradiction to our
assumption that ℎ(𝑥; 𝜂(𝑦, 𝑥)) ≤ ∘

𝐶

0.
If 𝑥 ∈ 𝐾 \ 𝐴−1(𝑦), then 𝑥 ∉ 𝐴−1(𝑦) if and only if 𝑦 ∉

𝐴(𝑥), again a contradiction to our assumption that 𝑦 ∈ 𝐴(𝑥).
Hence, 𝑄

1
(𝑦) ⊆ 𝐷.

(c) We show that⋂
𝑦∈𝐾
𝑄
1
(𝑦) ̸= 0.

Since 𝐷 is compact, 𝑄
1
(𝑦) is also compact. Moreover,

since 𝑄
1
is a KKMmap,

co {𝑦
1
, . . . , 𝑦

𝑚
} ⊆

𝑚

⋃

𝑖=1

𝑄
1
(𝑦
𝑖
) ⊆

𝑚

⋃

𝑖=1

𝑄
1
(𝑦
𝑖
), (33)

for each finite subset {𝑦
1
, . . . , 𝑦

𝑚
} of 𝐾. Then by Theorem 7,

we get⋂
𝑦∈𝐾
𝑄
1
(𝑦) ̸= 0.

(d) Next, we claim that⋂
𝑦∈𝐾
𝑄
1
(𝑦) ⊆ ⋂

𝑦∈𝐾
𝑄
2
(𝑦).

Let 𝑧 ∈ ⋂
𝑦∈𝐾
𝑄
1
(𝑦); then 𝑧 ∈ 𝑄

1
(𝑦) for each 𝑦 ∈ 𝐾. For

an arbitrary element 𝑦 ∈ 𝐾, we have to show that 𝑧 ∈ 𝑄
2
(𝑦).

Since 𝑧 ∈ 𝑄
1
(𝑦), there exists a sequence {𝑧

𝑚
} ⊆ 𝑄

1
(𝑦)

such that {𝑧
𝑚
} converges to 𝑧. Since {𝑧

𝑚
} ⊆ 𝑄
1
(𝑦), we have

{𝑧
𝑚
} ⊆ 𝐾 \ 𝑃

−1

1
(𝑦) = [F ∩ (𝐾 \ 𝑆

−1

1
(𝑦))] ∪ [𝐾 \ 𝐴

−1
(𝑦)] .

(34)

Then, either {𝑧
𝑚
} ⊆ F ∩ (𝐾 \ 𝑆

−1

1
(𝑦)) or {𝑧

𝑚
} ⊆ 𝐾 \ 𝐴

−1
(𝑦).

If {𝑧
𝑚
} ⊆ F ∩ (𝐾 \ 𝑆

−1

1
(𝑦)), then {𝑧

𝑚
} ⊆ F and {𝑧

𝑚
} ⊆

𝐾 \ 𝑆
−1

1
(𝑦). It follows that {𝑧

𝑚
} ⊆ F and ℎ(𝑧

𝑚
; 𝜂(𝑦, 𝑧

𝑚
)) ≰ ∘
𝐶

0.
Since F is closed and 𝑧

𝑚
→ 𝑧, we have 𝑧 ∈ F; that is, 𝑧 ∈

𝐴(𝑧). By 𝐶-pseudomonotonicity of ℎ, we obtain

𝑧 ∈ 𝐴 (𝑧) , ℎ (𝑦; 𝜂 (𝑧
𝑛
, 𝑦)) ̸≥ 0. (35)

By the continuity of 𝑥 󳨃→ ℎ(𝑦; 𝜂(𝑥, 𝑦))ℎ, we get
ℎ(𝑦, 𝜂(𝑧, 𝑦)) ̸≥ ∘

𝐶

0. This implies that 𝑧 ∈ 𝐴(𝑧) and 𝑦 ∉ 𝑆
2
(𝑧);

that is, 𝑧 ∉ (𝐾 \ F) ∪ 𝑆−1
2
(𝑦), and hence, 𝑧 ∉ 𝑃

−1

2
(𝑦).

Therefore, 𝑧 ∈ 𝐴(𝑧), and 𝑧 ∈ 𝐾 \ 𝑃−1
2
(𝑦) = 𝑄

2
(𝑦).

Let {𝑧
𝑚
} ⊆ 𝐾 \ 𝐴

−1
(𝑦). Since 𝐴−1(𝑦) is open in 𝐾, for all

𝑦 ∈ 𝐾, 𝐾 \ 𝐴−1(𝑦) is closed in 𝐾. Since 𝑧
𝑚
→ 𝑧, we have

𝑧 ∈ 𝐾 \ 𝐴
−1
(𝑦). Hence, 𝑧 ∉ 𝐴−1(𝑦) ⇔ 𝑦 ∉ 𝐴(𝑧), which

implies that

𝑦 ∉ 𝑃
2 (𝑧) ⇐⇒ 𝑧 ∉ 𝑃

−1

2
(𝑦)

⇐⇒ 𝑧 ∈ 𝐾 \ 𝑃
−1

2
(𝑦) ⇐⇒ 𝑧 ∈ 𝑄

2
(𝑦) .

(36)

From (c), we get ⋂
𝑦∈𝐾
𝑄
2
(𝑦) ̸= 0. Hence, there exists 𝑥 ∈

𝐾 such that

𝑥 ∈ ⋂

𝑦∈𝐾

[𝐾 \ 𝑃
−1

2
(𝑦)] = 𝐾 \ ⋃

𝑦∈𝐾

𝑃
−1

2
(𝑦) . (37)

This implies that 𝑃
2
(𝑥) = 0.

If 𝑥 ∈ 𝐾 \ F, then 𝑃
2
(𝑥) = 𝐴(𝑥) = 0, a contradiction.

Otherwise, 𝑥 ∈ F; then 0 = 𝑃
2
(𝑥) = 𝐴(𝑥) ∩ 𝑆

2
(𝑥). Therefore,

𝑥 ∈ 𝐴(𝑥) such that ℎ(𝑦; 𝜂(𝑥, 𝑦)) ̸≥
𝐶0
0 for all 𝑦 ∈ 𝐴(𝑥). From

Proposition 15, 𝑥 ∈ 𝐾 is a solution of SVQVLIP.

Remark 17. (a)Theorem 16 extends and generalizes [8, Theo-
rem 7.34], [9, Theorem 5.1], and [11, Theorem 2.2].

(b) If 𝐴 is a closed map, then the set F = {𝑥 ∈ 𝐾 : 𝑥 ∈

𝐴(𝑥)} is closed.

By using maximal element Theorem 8, we present the
following existence result for solutions of NSVQVLIP
and NMVQVLIP without boundedness assumption on the
underlying set.

Theorem 18. Let 𝐾 ⊆ R𝑛 be a nonempty convex set, and let
𝜂 : 𝐾 × 𝐾 → R be skew. Let ℎ : 𝐾 × R𝑛 → Rℓ be 𝐶-
pseudomonotone with respect to 𝜂 such that ℎ(𝑥; 0) = 0 for all
𝑥 ∈ 𝐾; the set𝑀 = {𝑦 ∈ 𝐾 : ℎ(𝑥, 𝜂(𝑦, 𝑥)) ≤ ∘

𝐶

0} is convex, and
the set 𝐿 = {𝑥 ∈ 𝐾 : ℎ(𝑦, 𝜂(𝑥, 𝑦)) ̸≥ ∘

𝐶

0} is closed in 𝐾. Assume
that there exist a nonempty compact convex subset𝐷 ⊆ 𝐾 and
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a nonempty compact subset𝐵 of𝐾 such that, for each 𝑥 ∈ 𝐾\𝐵,
there exists 𝑦 ∈ 𝐷 such that 𝑦 ∈ 𝐴(𝑥) and ℎ(𝑦; 𝜂(𝑥, 𝑦)) ≥ ∘

𝐶

0.
Then, there exists a solution 𝑥 ∈ 𝐾 of NMVQVLIP.

Furthermore, if ℎ is 𝐶-properly subodd, 𝜂-upper sign
continuous, and for each fixed 𝑥 ∈ 𝐾, ℎ(𝑥; ⋅) is positively
homogeneous, then 𝑥 ∈ 𝐾 is a solution of NSVQVLIP.

Proof. For each 𝑥 ∈ 𝐾, define two set-valued maps 𝑃,𝑄 :

𝐾 → 2
𝐾 by

𝑃 (𝑥) = {𝑦 ∈ 𝐾 : ℎ (𝑦; 𝜂 (𝑥, 𝑦)) ≥ ∘
𝐶

0} ,

𝑄 (𝑥) = {𝑦 ∈ 𝐾 : ℎ (𝑥; 𝜂 (𝑦, 𝑥)) ≤ ∘
𝐶

0} .
(38)

Then, 𝑥 ∉ 𝑄(𝑥) for all 𝑥 ∈ 𝐾. Indeed, by skewness of 𝜂,
𝜂(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐾. By assumption, 0 = ℎ(𝑥; 𝜂(𝑥, 𝑥)) =
ℎ(𝑥; 0) = 0≰ ∘

𝐶

0. Thus, 𝑥 ∉ 𝑄(𝑥).
By hypothesis, the complement of 𝑃−1(𝑦) in 𝐾,

[𝑃
−1
(𝑦)]
𝑐

= {𝑥 ∈ 𝐾 : ℎ (𝑦, 𝜂 (𝑥, 𝑦)) ̸≥ ∘
𝐶

0} , (39)

is closed in 𝐾 for each 𝑦 ∈ 𝐾. Therefore, 𝑃−1(𝑦) is open in 𝐾
for all 𝑦 ∈ 𝐾.

Define other two set-valued maps 𝑆, 𝑇 : 𝐾 → 2
𝐾 by

𝑆 (𝑥) = {
𝐴 (𝑥) ∩ 𝑃 (𝑥) , if 𝑥 ∈ F,
𝐴 (𝑥) , if 𝑥 ∈ 𝐾 \F,

𝑇 (𝑥) = {
𝐴 (𝑥) ∩ 𝑄 (𝑥) , if 𝑥 ∈ F,
𝐴 (𝑥) , if 𝑥 ∈ 𝐾 \F.

(40)

Since, for all 𝑥 ∈ 𝐾, 𝑥 ∉ 𝑄(𝑥), we have 𝑥 ∉ 𝑇(𝑥).
By 𝐶-pseudomonotonicity of ℎ, we have 𝑃(𝑥) ⊆ 𝑄(𝑥) for

all 𝑥 ∈ 𝐾. Since 𝐴(𝑥) and 𝑄(𝑥) are convex, for all 𝑥 ∈ 𝐾, we
have

𝑆 (𝑥) ⊆ 𝑇 (𝑥) 󳨐⇒ co (𝑆 (𝑥)) ⊆ co (𝑇 (𝑥)) = 𝑇 (𝑥) . (41)

Since, for each 𝑦 ∈ 𝐾, 𝐴−1(𝑦) and 𝑃−1(𝑦) are open in 𝐾,
(𝐴 ∩ 𝑃)

−1
(𝑦) = 𝐴

−1
(𝑦) ∩ 𝑃

−1
(𝑦) is open in𝐾. Also, since, for

each 𝑦 ∈ 𝐾,

𝑆
−1
(𝑦) = (𝐴

−1
(𝑦) ∩ 𝑃

−1
(𝑦)) ∪ ((𝐾 \F) ∩ 𝐴

−1
(𝑦)) (42)

(see, e.g., the proof of [23, Lemma 2.3]) and𝐾 \F is open in
𝐾, we have that 𝑆−1(𝑦) is open in𝐾.Therefore, byTheorem 8,
there exists 𝑥 ∈ 𝐾 such that 𝑆(𝑥) = 0. If 𝑥 ∈ 𝐾 \ F, then
𝐴(𝑥) = 0, a contradiction to our assumption. So, 𝑥 ∈ F, and
thus, 𝐴(𝑥) ∩ 𝑃(𝑥) = 0. Therefore,

𝑥 ∈ 𝐴 (𝑥) , ℎ (𝑦; 𝜂 (𝑥, 𝑦)) ̸≥ ∘
𝐶

0, ∀𝑦 ∈ 𝐴 (𝑥) . (43)

Thus, 𝑥 is a solution of NMVQVLIP.

By Proposition 15, 𝑥 ∈ 𝐾 is a solution of NSVQVLIP.

Remark 19. If, for each fixed 𝑥 ∈ 𝐾, the vector-valued
function 𝑦 󳨃→ ℎ(𝑥, 𝜂(𝑦, 𝑥)) is 𝐶-quasiconvex, then the set
𝑀 = {𝑦 ∈ 𝐾 : ℎ(𝑥, 𝜂(𝑦, 𝑥)) ≤ ∘

𝐶

0} is convex.

Remark 20. For all 𝑥 ∈ 𝐾, the set 𝑀 = {𝑦 ∈ 𝐾 :

ℎ(𝑥, 𝜂(𝑦, 𝑥)) ≤ ∘
𝐶

0} is convex, if 𝜂 is affine in the first argument
and ℎ is 𝐶-convex in the second argument.

Indeed, let 𝑦
1
, 𝑦
2
∈ 𝑀. Since

∘

𝐶 is a convex cone, for all
𝑡 ∈ (0, 1), we have

𝑡ℎ (𝑥; 𝜂 (𝑦
1
, 𝑥)) ≤ ∘

𝐶

0, (1 − 𝑡) ℎ (𝑥; 𝜂 (𝑦2, 𝑥)) ≤ ∘
𝐶

0.
(44)

By adding these relations, we get

𝑡ℎ (𝑥; 𝜂 (𝑦
1
, 𝑥)) + (1 − 𝑡) ℎ (𝑥; 𝜂 (𝑦2, 𝑥)) ≤ ∘

𝐶

0. (45)

Since ℎ is 𝐶-convex in the second argument, we have

ℎ (𝑥; 𝑡𝜂 (𝑦
1
, 𝑥) + (1 − 𝑡) 𝜂 (𝑦2, 𝑥))

≤
𝐶
𝑡ℎ (𝑥; 𝜂 (𝑦

1
, 𝑥)) + (1 − 𝑡) ℎ (𝑥; 𝜂 (𝑦2, 𝑥)) .

(46)

By combining relations (45) and (46), we obtain

ℎ (𝑥; 𝑡𝜂 (𝑦
1
, 𝑥) + (1 − 𝑡) 𝜂 (𝑦2, 𝑥)) ≤ ∘

𝐶

0. (47)

Since 𝜂 is affine in the first argument, we get

ℎ (𝑥; 𝜂 (𝑡𝑦
1
+ (1 − 𝑡) 𝑦2, 𝑥)) ≤ ∘

𝐶

0, (48)

and hence, 𝑡𝑦
1
+ (1 − 𝑡)𝑦

2
∈ 𝑀. Thus, for all 𝑥 ∈ 𝐾,𝑀 is a

convex set.

Remark 21. The set 𝐿 = {𝑥 ∈ 𝐾 : ℎ(𝑦, 𝜂(𝑥, 𝑦)) ̸≥ ∘
𝐶

0} is closed
in 𝐾 if the vector-valued function 𝑥 󳨃→ ℎ(𝑦, 𝜂(𝑥, 𝑦)) is 𝐶-
lower semicontinuous for each fixed 𝑦 ∈ 𝐾.

5. Conclusions

In this paper, we defined vector quasi-variational-like
inequality problems bymeans of a bifunction and established
two existence results for solutions of these problems. One
can treat upper Dini directional derivative as a bifunction,
and hence, the bifunction can be replaced by upper Dini
directional derivative. Then, we get the so-called nonsmooth
vector quasi-variational-like inequality problem. By using the
technique andmethodology given in [8], one can easily derive
some relations between vector quasi-variational-like inequal-
ity problems and a vector quasi-optimization problem. Since
the results are straightforward, we have not included them in
this paper. Of course, the results of this paper extend several
known results in the literature, namely, [9, Theorem 5.1], [11,
Theorem 3.1], and [8, Theorem 7.34] from vector variational
(-like) inequality problems to vector quasi-variational (-like)
inequality problems. This paper can be treated as the first in
this direction.
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