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A higher-order convergent iterative method is provided for calculating the generalized inverse over Banach spaces.We also use this
iterative method for computing the generalized Drazin inverse 𝑎𝑑 in Banach algebra. Moreover, we estimate the error bounds of
the iterative methods for approximating 𝐴(2)

𝑇,𝑆
or 𝑎𝑑.

1. Introduction

It is well known that the outer generalized inverse has been
widely used in various fields, for instance, in statistics, control
theory, power systems, nonlinear equations, optimization
and numerical analysis, and so on (see [1–15]). Recently, in
[16], the authors discussed the iteration (1) for computing
𝐴
(2)

𝑇,𝑆
of a given matrix.
Throughout this paper, let 𝑋 and 𝑌 be arbitrary Banach

spaces. Then, the symbol B(X,Y) denotes the set of all
bounded linear operators from X to Y, in particular,
B(X) := B(X,X). For any 𝐴 ∈ B(X,Y), we denote its
range, null space, and norm by R(𝐴), N(𝐴), and ‖𝐴‖,
respectively. Further, we say that 𝐴 is regular if there exists
an𝑋 ∈ B(Y,X) such that𝐴𝑋𝐴 = 𝐴 and that𝐴 has a {2} (or
outer) inverse if there exists an 𝑋 ∈ B(Y,X) such that
𝑋𝐴𝑋 = 𝑋. If 𝐴 ∈ B(X), then we denote its spectrum and
spectral radius by 𝜎(𝐴) and 𝜌(𝐴), respectively. Let the symbol
𝐿 ⊂ X denote that 𝐿 is a subspace of X. If 𝐴 ∈ B(X,Y)

and 𝐿 ⊂ X, then the restriction 𝐴|𝐿 of 𝐴 on 𝐿 is defined by
𝑥 󳨃→ 𝐴𝑥, 𝑥 ∈ 𝐿. Let 𝐿,𝑀 ⊂ X with 𝐿 ⊕ 𝑀 = X. Then, the
symbol 𝑃𝐿,𝑀 stands for an operator that is called a projection
from X onto 𝐿 if it is a bounded linear map from X onto 𝐿

and 𝑃
2

𝐿,𝑀
= 𝑃𝐿,𝑀. It is well known that a closed subspace 𝐿 of

a Banach spaceX is complemented inX if and only if there
exists a projection fromX onto 𝐿.

Let𝐴 ∈ B(X,Y) be close; there exists a unique operator
𝑋 ∈ B(Y,X) such that

(1) 𝐴𝑋𝐴 = 𝐴 (2) 𝑋𝐴𝑋 = 𝑋

(3) (𝐴𝑋)
∗
= 𝐴𝑋 (4) (𝑋𝐴)

∗
= 𝑋𝐴.

(1)

Then,𝑋 is called theMoore-Penrose inverse of𝐴, denoted by
𝑋 = 𝐴

†. It is well known that 𝐴 is regular ⇔ 𝑅(𝐴) is closed
⇔ 𝐴
† exists.
Throughout this paper, letA be a complex Banach algebra

with the unit 1. The symbols 𝑎𝑛𝑛
𝑙
(𝑎) and 𝑎𝑛𝑛

𝑟
(𝑎), respec-

tively, stand for the left and right annihilators of 𝑎 in A. Let
𝑝 ∈ A be idempotent. Then, 𝑝A𝑝 = {𝑝𝑎𝑝 : 𝑎 ∈ A} is a
subalgebra of A with unit 𝑝. Thus, for 𝑎 ∈ A, if there exists
an element 𝑏 ∈ 𝑝A𝑝 such that 𝑎𝑏 = 𝑏𝑎 = 𝑝, then we say that
𝑎 is invertible in 𝑝A𝑝, and 𝑏 is denoted by 𝑎|−1

𝑝A𝑝. Recall that
an element 𝑏 ∈ A is the generalized Drazin inverse of 𝑎 (or
Koliha-Drazin inverse of 𝑎), if the following hold:

𝑏𝑎𝑏 = 𝑏, 𝑏𝑎 = 𝑎𝑏,

𝑎 (1 − 𝑎𝑏) is quasinilpotent.
(2)

If the generalized Drazin inverse of 𝑎 exists, then it is denoted
by 𝑎
𝑑 (see [15] for more details). In particular, if 𝑏 = 𝑎

𝑑 and
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𝑎(1 − 𝑎𝑏) = 0, then 𝑏 is called the group inverse of 𝑎 and is
denoted by 𝑎𝑔.

In [17], W. G. Li and Z. Li defined the iterative formula

𝑋𝑘+1

= 𝑋𝑘 [𝑘𝐼 −

𝑘 (𝑘 − 1)

2

𝐴𝑋𝑘 + ⋅ ⋅ ⋅ + (−1)
𝑘−1

(𝐴𝑋𝑘)
𝑘−1

] ,

𝑘 = 2, 3, . . . .

(3)

In [18], Chen and Wang extended the iterative method (3)
proposed byW.G. Li andZ. Li to compute theMoore-Penrose
inverse of a matrix. In [19], Liu et al provided the higher-
order convergent iterative method (3) in order to calculate
the generalized inverse 𝐴(2)

𝑇,𝑆
of a given matrix. In this paper,

we will extend the iterative method proposed byW. G. Li and
Z. Li in [17] to compute the {2}-inverse, generalized inverse
𝐴
(2)

𝑇,𝑆
over Banach space and also consider the iterative scheme

for computing the generalized Drazin inverse 𝑎
𝑑 in Banach

algebra.
The paper is organized as follows. Some lemmas will be

presented in the remainder of this section. In Section 2, we
consider iterative scheme of [19] to compute the generalized
inverses 𝐴

(2)

𝑇,𝑆
in Banach space. In Section 3, we present

iterative formulas for computing the generalized Drazin
inverse 𝑎𝑑 of Banach algebra element 𝑎.

The following lemmas are needed in what follows.

Lemma 1 (see [14, Chapter 1]). Let 𝑎 ∈ A. Then

(i) 𝜎(𝑎) is a nonempty closed subset of C.

(ii) (Spectral mapping theorem for polynomials) if 𝑓 is a
polynomial, then

𝜎 (𝑓 (𝑎)) = 𝑓 (𝜎 (𝑎)) . (4)

(iii) lim𝑛→0𝑎
𝑛
= 0 if and only if 𝜌(𝑎) < 1.

Lemma 2 (see [15, Section 4]). Let𝑋 and𝑌 be Banach spaces,
and let𝐴 ∈ B(X,Y),𝑇 and 𝑆, respectively, be closed subspaces
of𝑋 and 𝑌. Then, the following statements are equivalent.

(i) 𝐴 has a {2}-inverse 𝐵 ∈ 𝐵(𝑌,𝑋) such that R(𝐵) = 𝑇

andN(𝐵) = 𝑆.

(ii) 𝑇 is a complemented subspace of 𝑋, 𝐴(𝑇) is closed,
𝐴|𝑇 : 𝑇 → 𝐴(𝑇) is invertible, and 𝐴(𝑇) ⊕ 𝑆 = 𝑌.

In the case when (𝑖) or (𝑖𝑖) holds, 𝐵 is unique and is denoted
by 𝐴(2)
𝑇,𝑆
.

Lemma 3. Suppose that the conditions of Lemma 2 are satis-
fied. Then, 𝐴𝐴(2)

𝑇,𝑆
= 𝑃𝐴(𝑇),𝑆 and 𝐴

(2)

𝑇,𝑆
𝐴 = 𝑃𝑇,𝑇

1

where 𝑇1 =

N(𝐴
(2)

𝑇,𝑆
𝐴). Moreover, for any 𝐺 ∈ B(Y,X), 𝑃𝑇,𝑇

1

𝐺 = 𝐺 ⇔

R(𝐺) ⊂ 𝑇; 𝐺𝑃𝐴(𝑇),𝑆 = 𝐺 ⇔ N(𝐺) ⊃ 𝑆.

2. Higher-Order Convergent Iterative Method
for Computing the Generalized Inverse over
Banach Spaces

In this section, we will consider higher-order convergent iter-
ativemethod for computing the generalized inverse𝐴(2)

𝑇,𝑆
over

Banach spaces. First, we deduce convergent conditions and
error bounds of our iterative methods.

Theorem4. Let𝐴 ∈ B(X,Y),𝑌 ∈ B(Y,X), and let𝑇 ⊂ X
and 𝑆 ⊂ Y both be complemented subspaces, respectively, with
R(𝑌) = 𝑇,N(𝑌) = 𝑆. Define the sequence {𝑋𝑘} inB(Y,X)

in the following way:

𝑋0 = 𝛼𝑌,

𝑋𝑘 = [𝐶
1

𝑡
𝐼 − 𝐶
2

𝑡
𝑋𝑘−1𝐴 + ⋅ ⋅ ⋅ + (−1)

𝑡−1
𝐶
𝑡

𝑡
(𝑋𝑘−1𝐴)

𝑡−1
]𝑋𝑘−1;

(5)

it converges to 𝑋∞ and 𝑋∞ ∈ 𝐴{2} with 𝑅(𝑋∞) = 𝑇 if and
only if 𝜌(𝛼𝑌𝐴 − 𝑃) < 1 for some scalar 𝛼 ∈ C \ {0}, where
𝑡 ≥ 2 is an arbitrary positive integer, 𝑋∞ = lim𝑋𝑘, and 𝑃 is
projection fromX onto 𝑇. Moreover,

(i) ifN(𝑋∞) = 𝑆, then 𝐴
(2)

𝑇,𝑆
exists if and only if 𝜌(𝛼𝑌𝐴 −

𝑃) < 1 for 𝛼 ∈ C \ {0};
(ii) ifN(𝑋∞) = 𝑆, then 𝐴

(2)

𝑇,𝑆
exists.

In particular, if𝐴(2)
𝑇,𝑆

exists, lim𝑋𝑘 = 𝐴
(2)

𝑇,𝑆
and 𝑞 = ‖𝛼𝑌𝐴−

𝑃‖, then
󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
(2)

𝑇,𝑆
− 𝑋𝑘

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
(2)

𝑇,𝑆

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝑞
𝑡
𝑘

, 𝑘 ≥ 0. (6)

Proof. From (5), we obtain

[𝐶
1

𝑡
𝐼 − 𝐶
2

𝑡
𝑋𝑘−1𝐴 + ⋅ ⋅ ⋅ + (−1)

𝑡−1
𝐶
𝑡

𝑡
(𝑋𝑘−1𝐴)

𝑡−1
]𝑋𝑘−1

= 𝑋𝑘−1 [𝐶
1

𝑡
𝐼 − 𝐶
2

𝑡
𝐴𝑋𝑘−1 + ⋅ ⋅ ⋅ + (−1)

𝑡−1
𝐶
𝑡

𝑡
(𝐴𝑋𝑘−1)

𝑡−1
] .

(7)

Note that R(𝑋𝑘) ⊂ R(𝑋𝑘−1), 𝑘 ≥ 1 from (7). Similarly, it is
easy to prove that𝑁(𝑋𝑘) ⊇ 𝑁(𝑋𝑘−1), 𝑘 ≥ 1.

Since R(𝑋0) = R(𝛼𝑌) = 𝑇 and N(𝑋0) = N(𝛼𝑌) = 𝑆,
then

R (𝑋𝑘) ⊂ 𝑇, N (𝑋𝑘) ⊃ 𝑆, (8)

for 𝑘 ≥ 0.
From (5), we have

𝑋𝑘𝐴 − 𝐼 = (−1)
𝑡+1

(𝑋𝑘−1𝐴 − 𝐼)
𝑡

= (−1)
𝑡+1

(𝑋0𝐴 − 𝐼)
𝑡
𝑘

.

(9)

By (8), we get 𝑃𝑋𝑘 = 𝑋𝑘. Premultiplying (9) by 𝑃, then (9)
yields

𝑋𝑘𝐴 − 𝑃 = (−1)
𝑡+1

(𝑋0𝐴 − 𝑃)
𝑡
𝑘

. (10)
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Next, we will investigate the necessary and sufficient
condition for the convergent property of the iterative scheme
(5). Assume that lim𝑋𝑘 exists; denote by 𝑋∞ ∈ 𝐴{2} and
R(𝑋∞𝐴) = 𝑇.Then,R(𝑋∞) = R(𝑋∞𝐴𝑋∞) ⊂ R(𝑋∞𝐴) ⊂

R(𝑋∞). Thus, R(𝑋∞𝐴) = 𝑇 and X = 𝑇 ⊕ 𝑁(𝑋∞𝐴); we
obtain 𝑋∞𝐴 = 𝑃𝑇,𝑁(𝑋

∞
𝐴), a projection from X onto 𝑇, and

𝑋∞𝐴𝑋𝑘 = 𝑋𝑘 by (8).
Since 𝑃𝑇,𝑁(𝑋

∞
𝐴)𝑋0 = 𝑋0, and 𝑋𝑘𝐴 − 𝑃𝑇,𝑁(𝑋

∞
𝐴) =

(−1)
𝑡+1

(𝑋0𝐴 − 𝑃𝑇,𝑁(𝑋
∞
𝐴))
𝑡
𝑘

by (10). Thus,

0 = lim𝑋𝑘𝐴 − 𝑋∞𝐴 = lim𝑋𝑘𝐴 − 𝑃𝑇,𝑁(𝑋
∞
𝐴)

= lim (−1)
𝑡−1

(𝑋0𝐴 − 𝑃𝑇,𝑁(𝑋
∞
𝐴))

𝑡
𝑘

,

(11)

and then 𝜌(𝛼𝑌𝐴 − 𝑃𝑇,𝑁(𝑋
∞
𝐴)) < 1.

Conversely, suppose that 𝜌(𝛼𝑌𝐴 − 𝑃) < 1 for some scalar
𝛼 ∈ C \ {0}, where 𝑃 denotes a projection from X to 𝑇 and
𝑋 is complement. Then, lim𝑋𝑘𝐴 = 𝑃 by (10), and therefore
lim𝑘→∞𝑋𝑘 = (𝐴|𝑇)

−1 and 𝑇 = R(𝑃) ⊂ R(lim𝑋𝑘).
By (8), 𝑅(lim𝑋𝑘) ⊂ 𝑇 because 𝑇 is close, and then

R(𝑋∞) = 𝑇. Hence, we obtain lim𝑋𝑘𝐴 lim𝑋𝑘 = lim𝑋𝑘.
Thus, lim𝑋𝑘 ∈ 𝐴{2}. It is easy to know that if𝑁(lim𝑋𝑘) = 𝑆,
then lim𝑋𝑘 = 𝐴

(2)

𝑇,𝑆
. Thus, 𝐴(2)

𝑇,𝑆
exists.

Assume that 𝐴(2)
𝑇,𝑆

exists. By (8),𝑁(lim𝑋𝑘) ⊃ 𝑆 because 𝑆
is closed complement. If 𝑦 ∈ 𝑁(lim𝑋𝑘) ∪ 𝐴𝑇, then 𝑦 = 𝐴𝑧

for some 𝑧 ∈ 𝑇. Thus, 0 = lim𝑋𝑘𝑦 = lim𝑋𝑘𝐴𝑧 = 𝑃𝑧 =

𝑧. Thus, 𝑦 = 0. Therefore, 𝑁(lim𝑋𝑘) ∪ 𝐴𝑇 = {0} and then
𝑁(lim𝑋𝑘) = 𝑆 by Lemma 2. Consequently, lim𝑋𝑘 = 𝐴

(2)

𝑇,𝑆
.

Since 𝑁(𝑋𝑘) = 𝑆, 𝑋𝑘𝐴𝐴
(2)

𝑇,𝑆
= 𝑋𝑘. Thus, postmultiplying

(10) by 𝐴(2)
𝑇,𝑆

yields

𝑋𝑘 − 𝐴
(2)

𝑇,𝑆
= (−1)

𝑡+1
(𝛼𝑌𝐴 − 𝑃)

𝑡
𝑘

𝐴
(2)

𝑇,𝑆
. (12)

Since 𝐴(2)
𝑇,𝑆

= 𝑃𝐴
(2)

𝑇,𝑆
, we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
(2)

𝑇,𝑆
− 𝑋𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝛼𝑌𝐴 − 𝑃)
𝑡
𝑘

𝐴
(2)

𝑇,𝑆

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ ‖𝛼𝑌𝐴 − 𝑃‖
𝑡
𝑘 󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
(2)

𝑇,𝑆

󵄩
󵄩
󵄩
󵄩
󵄩

= 𝑞
𝑡
𝑘 󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
(2)

𝑇,𝑆

󵄩
󵄩
󵄩
󵄩
󵄩
.

(13)

Hence, we get (6).

Similarly, we have the dual result as below.

Theorem 5. Let 𝐴 ∈ B(X,Y), 𝑌 ∈ B(Y,X), and let 𝑇 ⊂

X and 𝑆 ⊂ Y both be closed, respectively, with R(𝑌) = 𝑇,
N(𝑌) = 𝑆. Define the sequence {𝑋𝑘} ∈ B(Y,X) such that

𝑋0 = 𝛼𝑌,

𝑋𝑘 = 𝑋𝑘−1 [𝐶
1

𝑡
𝐼 − 𝐶
2

𝑡
𝐴𝑋𝑘−1 + ⋅ ⋅ ⋅ + (−1)

𝑡−1
𝐶
𝑡

𝑡
(𝐴𝑋𝑘−1)

𝑡−1
] ;

(14)

it converges to 𝑋∞ and 𝑋∞ ∈ 𝐴{2} with N(𝑋∞) = 𝑆 if and
only if 𝜌(𝛼𝐴𝑌 − 𝑄) < 1 for some scalar 𝛼 ∈ C \ {0}, where

𝑡 ≥ 2 is an arbitrary positive integer, 𝑋∞ = lim𝑋𝑘, and 𝑄 is a
projection fromY onto 𝑆. Moreover,

(i) if R(Ψ) = 𝑇, then 𝐴
(2)

𝑇,𝑆
exists if and only if 𝜌(𝛼𝐴𝑌 −

𝑄) < 1 for 𝛼 ∈ C \ {0};

(ii) ifR(Ψ) = 𝑇, then 𝐴
(2)

𝑇,𝑆
exists.

In particular, if𝐴(2)
𝑇,𝑆

exists,𝑋∞ = 𝐴
(2)

𝑇,𝑆
and 𝑞 = ‖𝛼𝐴𝑌−𝑄‖,

then ‖𝐴
(2)

𝑇,𝑆
− 𝑋𝑘‖/‖𝐴

(2)

𝑇,𝑆
‖ ≤ 𝑞
𝑡
𝑘

, 𝑘 ≥ 0 ⋅ ⋅ ⋅ .

Remark 6. Now, we consider how to choose a suitable scalar
𝛼 ∈ C \ {0} for the iterative scheme (5) such that it converges
more faster to 𝐴

(2)

𝑇,𝑆
.

SinceR(𝑌𝐴) ⊂ 𝑇 and for any 𝛼 ∈ C \ {0}, 𝜌(𝑃 − 𝛼𝑌𝐴) =

𝜌(𝑃−𝛼(𝑌𝐴)|𝑇) = max |1−𝛼𝜇|(𝜇 ∈ 𝜎(𝑌𝐴)|𝑇).Therefore, 𝜌(𝑃−
𝛼𝑌𝐴) < 1 if and only if 0 ∉ 𝜎((𝑌𝐴)|𝑇) and max𝜇∈(𝑌𝐴)\{0}|1 −

𝛼𝜇| < 1. Thus, there exists 𝜆0 ∈ (𝑌𝐴) \ {0} with |1 − 𝛼𝜆0| =

𝜌(𝑃 − 𝛼𝑌𝐴).
Let 𝜆0 = |𝜆0|(cos 𝜃 + 𝑖 sin 𝜃) and 𝛼 = |𝛼|(cos𝜑 + 𝑖 sin𝜑),

where 𝜃 = arg(𝜆0), 𝜑 = arg(𝛼). Then, 𝜌(𝑃 − 𝛼𝑌𝐴) = [|𝛼𝜆0|
2
+

1 − 2|𝛼𝜆0| cos(𝜃 + 𝜑)]
1/2. Thus, 𝜌(𝑃 − 𝛼𝑌𝐴) < 1 if and only if

0 < |𝛼𝜆0| < 2 cos(𝜃 + 𝜑) and 0 ∉ 𝜎((𝑌𝐴)|𝑇).
Hence, by 0 ∉ 𝜎((𝑌𝐴)|𝑇) and 𝛼 satisfing 0 < |𝛼| <

2 cos(𝜃 + 𝜑)/𝜌(𝑌𝐴), we have 𝜌(𝑃 − 𝛼𝑌𝐴) < 1. In practice,
once such a 𝜆0 is determined, 𝛼 is taken to satisfy arg(𝛼) =

− arg(𝜆0) and 0 < |𝛼| < 2/𝜌(𝑌𝐴). If 𝜎(𝑌𝐴) is a subset of R,
then we take 𝛼 satisfying 0 < |𝛼| < 2/𝜌(𝑌𝐴) and sgn𝛼 =

sgn 𝜆0, where𝜆0 ∈ 𝜎(𝑌𝐴), so as to ensure that 𝜌(𝑃−𝛼𝑌𝐴) < 1.
Assume that 0 ∉ 𝜎((𝑌𝐴)|𝑇) hold. In the following, we will

obtain the best value 𝛼opt such that 𝜌(𝑃−𝛼𝑌𝐴)minimizes for
achieving good convergence. Unfortunately, it may be rather
difficult. If 𝜎(𝑌𝐴) is a subset of R and 𝜆min = min{𝜆 : 𝜆 ∈

𝜎(𝑌𝐴)|𝑇} > 0 analogous to [8, Example 4.1], we can have

𝛼opt =
2

𝜆min + 𝜌 (𝑌𝐴)

. (15)

In practice, because 𝜌(𝑌𝐴) is not easily obtained, we often
utilize ‖𝑌𝐴‖ instead of it in the above inequations and (15)
to choose 𝛼, which is followed from 𝜌(𝑌𝐴) ≤ ‖𝑌𝐴‖.

3. Higher-Order Convergent Iterative Method
for Computing the Generalized Inverse over
Banach Algebra

In the section, we will investigate a higher-order conver-
gent iterative method for computing the generalized Drazin
inverse 𝑎𝑑 over Banach algebra.

Theorem 7. Let 𝑎 ∈ A, 𝑝 ∈ A be idempotents with 𝑎𝑝 = 𝑝𝑎,
and 𝑦 ∈ A with (1 − 𝑝)𝑦 = 𝑦(1 − 𝑝) = 𝑦. Define the sequence
{𝑥𝑘} inA such that

𝑥0 = 𝛼𝑦, ∀𝑥0 ∈ A,

𝑥𝑘 = [𝐶
1

𝑡
− 𝐶
2

𝑡
𝑥𝑘−1𝑎 + ⋅ ⋅ ⋅ + (−1)

𝑡−1
𝐶
𝑡

𝑡
(𝑥𝑘−1𝑎)

𝑡−1
] 𝑥𝑘−1,

(16)
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where 𝛼 ∈ C \ {0} and 𝑡 ≥ 2. Then the iteration (16) converges
to lim𝑥𝑘 and 𝑝𝑥0 = 0 if and only if 𝜌(1 − 𝑝 − 𝛼𝑦𝑎) < 1. In this
case, assume that 𝑎𝑛𝑛𝑙(𝑦) ∩ (1 − 𝑝)A(1 − 𝑝) = {0}. Then

(i) 𝑎𝑑 exists and the iteration (16) converges to 𝑎
𝑑 if and

only if 𝑎𝑝 is quasinilpotent inA;

(ii) if 𝑞 = (1 − 𝑝 − 𝛼𝑦𝑎) < 1, then ‖𝑎
𝑑
− 𝑥𝑘‖ ≤ 𝑞

𝑡
𝑘

‖𝑦‖ ⋅

‖𝛼‖/‖𝑝 + 𝛼𝑦𝑎‖.

Proof. (i) By (1 − 𝑝)𝑦 = 𝑦(1 − 𝑝) = 𝑦 and 𝑥0 = 𝛼𝑦, it implies
that (1 − 𝑝)𝑥0 = 𝑥0. By induction on 𝑘, we have

(1 − 𝑝) 𝑥𝑘

= (1 − 𝑝) [𝐶
1

𝑡
− 𝐶
2

𝑡
𝑥𝑘−1𝑎 + ⋅ ⋅ ⋅ + (−1)

𝑡−1
𝐶
𝑡

𝑡
(𝑥𝑘−1𝑎)

𝑡−1
] 𝑥𝑘−1

= 𝑥𝑘.

(17)

By (16), we obtain

𝑥𝑘𝑎 − 1 = (−1)
𝑡−1

(𝑥𝑘−1𝑎 − 1)
𝑡

= (−1)
(𝑡−1)
𝑘

(𝑥0𝑎 − 1)
𝑡
𝑘

.

(18)

From (17) and (18), we get

(1 − 𝑝) (𝑥𝑘𝑎 − 1) = 𝑥𝑘𝑎 − (1 − 𝑝)

= (−1)
(𝑡−1)
𝑘

(𝑥0𝑎 − (1 − 𝑝))
𝑡
𝑘

.

(19)

The right-hand side of the last equality of (19) implies that

0 = lim
𝑡→∞

(−1)
𝑡−1

(𝑥0𝑎 − (1 − 𝑝))
𝑡
𝑘

. (20)

By (20), we easily have 𝜌(𝑥0𝑎 − (1 −𝑝)) = 𝜌(1 −𝑝−𝛼𝑦𝑎) < 1.
Conversely, assume that 𝜌(1−𝑝−𝛼𝑦𝑎) < 1. Since𝑝𝑎 = 𝑎𝑝

and (1 −𝑝)𝑦 = 𝑦(1−𝑝) = 𝑦, (1 −𝑝−𝛼𝑦𝑎) ∈ (1−𝑝)A(1 −𝑝),
and then 𝑦𝑎 is invertible in (1 − 𝑝)A(1 − 𝑝). We will show
that 𝑎𝑦 is invertible in (1 − 𝑝)A(1 − 𝑝). Clearly, 𝑎𝑦 ∈ (1 −

𝑝)A(1 − 𝑝), if 𝑎𝑦𝑐 = 0 for some 𝑐 ∈ (1 − 𝑝)A(1 − 𝑝), then
𝑦𝑐 = [(𝑦𝑎)]

−1

(1−𝑝)A𝑦𝑎𝑐. Hence, 𝑐 ∈ 𝑎𝑛𝑛
𝑟
(𝑦)∩(1−𝑝)A(1−𝑝) =

{0} and 𝑐 = 0. Hence, 0 ∉ [(𝑎𝑦)](1−𝑝)A(1−𝑝), and then 𝑎𝑦 is
invertible in (1 − 𝑝)A(1 − 𝑝).

(i) In the following, we will consider the result (i). It is
similar to the deduction of (10), we can write (16) as

𝑥𝑘𝑎 = (1 − 𝑝) + (−1)
𝑡−1

(𝑥0𝑎 − (1 − 𝑝))
𝑡
𝑘

. (21)

Thus, postmultiplying (21) by 𝑦 yields to

𝑥𝑘𝑎𝑦 = (1 − 𝑝) 𝑦 + (−1)
𝑡−1

(𝑥0𝑎 − (1 − 𝑝))
𝑡
𝑘

𝑦. (22)

By Lemma 1 and (22), we prove that 𝑥𝑘 converges to
𝑦[(𝑎𝑦)]

−1

(1−𝑝)A(1−𝑝) and is denoted by 𝑥∞ = 𝑦[(𝑎𝑦)]
−1

(1−𝑝)A(1−𝑝).
Therefore, 𝑦[(𝑎𝑦)]−1 = [(𝑦𝑎)]

−1
𝑦 in (1 − 𝑝)A(1 − 𝑝); then

𝑥∞𝑎 = 𝑦[(𝑎𝑦)]
−1

(1−𝑝)A(1−𝑝)
𝑎

= (𝑦𝑎)
−1

(1−𝑝)A(1−𝑝)
𝑦𝑎

= 1 − 𝑝 = 𝑎𝑦[(𝑎𝑦)]
−1

(1−𝑝)A(1−𝑝)

= 𝑎𝑥∞.

(23)

Thus, we obtain 𝑎 − 𝑎
2
𝑥∞ = 𝑎𝑝. Since 𝑥∞𝑎𝑥∞ =

𝑎𝑦[(𝑎𝑦)]
−1

(1−𝑝)A(1−𝑝)𝑥∞ = 𝑥∞, we have that 𝑥∞ = 𝑎
𝑑 if and

only if 𝑎𝑝 is quasinilpotent inA.
(ii) Since 𝑝 is idempotent and 𝑎𝑝 = 𝑝𝑎, and

(1 − 𝑝) 𝑦 = 𝑦 (1 − 𝑝) = 𝑦,

𝑝 (𝑝 + 𝛼𝑎𝑦) 𝑎𝑦 = 𝑝 (𝑝 + 𝛼𝑦𝑎) ,

(24)

then

𝛼(𝑝 + 𝛼𝑎𝑦)
−1
𝑎𝑦 = 1 − (𝑝 + 𝛼𝑎𝑦)

−1
𝑝 = 1 − 𝑝

= 1 − 𝑝 (𝑝 + 𝛼𝑎𝑦)

= 𝛼𝑎𝑦(𝑝 + 𝛼𝑎𝑦)
−1
.

(25)

Therefore, we obtain (𝑎𝑦)
−1

= 𝛼(𝑝+𝛼𝑎𝑦)
−1 in (1−𝑝)A(1−𝑝).

By (10), we have

𝑥𝑘𝑎𝑦 = [(1 − 𝑝) + (−1)
𝑡+1

[𝛼𝑎𝑦 − (1 − 𝑝)]
𝑡
𝑘

] 𝑦. (26)

Hence, by the argument in (i) and (26), we have

𝑎
𝑑
− 𝑥𝑘 = 𝑥∞ − 𝑥𝑘

= 𝑦[(𝑎𝑦)]
−1

(1−𝑝)A(1−𝑝)

− [(1 − 𝑝) + (−1)
𝑡+1

[𝛼𝑎𝑦 − (1 − 𝑝)]
𝑡
𝑘

] 𝑦

× [(𝑎𝑦)]
−1

(1−𝑝)A(1−𝑝)

= (−1)
𝑡+2

[𝛼𝑎𝑦 − (1 − 𝑝)]
𝑡
𝑘

𝑦

× [(𝑎𝑦)]
−1

(1−𝑝)A(1−𝑝)
.

(27)

Taking limit in (27), then it reduces to (ii).

Similarly, we have the following.

Theorem 8. Let 𝑎 ∈ A, 𝑝 ∈ A be idempotents with 𝑎𝑝 = 𝑝𝑎,
and 𝑦 ∈ A with (1 − 𝑝)𝑦 = 𝑦(1 − 𝑝) = 𝑦. Define the sequence
{𝑥𝑘} inA such that

𝑥0 = 𝛼𝑦, ∀𝑥0 ∈ A,

𝑥𝑘 = 𝑥𝑘−1 [𝐶
1

𝑡
− 𝐶
2

𝑡
𝑎𝑥𝑘−1 + ⋅ ⋅ ⋅ + (−1)

𝑡−1
𝐶
𝑡

𝑡
(𝑎𝑥𝑘−1)

𝑡−1
] ,

(28)
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where 𝛼 ∈ C \ {0} and 𝑡 ≥ 2. Then, the iteration (28) converges
to lim𝑥𝑘 and 𝑝𝑥0 = 0 if and only if 𝜌(1 − 𝑝 − 𝑎𝛼𝑦) < 1. In this
case, assume that 𝑎𝑛𝑛𝑙(𝑦) ∩ (1 − 𝑝)A(1 − 𝑝) = {0}. Then

(i) 𝑎𝑑 exists and the iteration (28) converges to 𝑎
𝑑 if and

only if 𝑎𝑝 is quasinilpotent inA;

(ii) if 𝑞 = (1 − 𝑝 − 𝛼𝑦𝑎) < 1, then ‖𝑎
𝑑
− 𝑥𝑘‖ ≤ 𝑞

𝑡
𝑘

‖𝑦‖ ⋅

‖𝛼‖/‖𝑝 + 𝛼𝑦𝑎‖.
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