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The work is the analysis of a mathematical model of cheese whey fermentation for single-cell protein production with impulsive
state feedback control.Through the analysis, the sufficient conditions of existence and stability of positive order-1 periodic solution
are obtained. It is shown that the system either tends to a stable state or has a periodic solution, which depends on the feedback state,
the control parameter of the dilution rate, and the initial concentrate of microorganism and substrate. For some special cases, it is
also shown that the systemmay exist in order-2 periodic solution. Furthermore, our findings are confirmed by means of numerical
simulations.

1. Introduction

Single-cell protein (SCP) is the protein extracted from culti-
vated microbial biomass. It can be used for protein supple-
mentation of a staple diet by replacing costly conventional
sources like soymeal and fishmeal to alleviate the problem
of protein scarcity. Increasing demand for protein sources of
high nutrition value have stimulated the application of single-
cell proteins, yeast, bacteria, and algae in human foods or ani-
mal feeds [1].The interest in agricultural and industrial wastes
as substrates for the production of single-cell proteins has
increased recently (see [2–5] and the references therein).
For example, Kurbanoglu and Algur [6] studied single-cell
protein production from ram horm hydrolysate by bacteria,
and El-Saadany et al. [7] studied the production of single cell
protein from agricultural wastes by fungi.

The production of microbial biomass is done mainly by
a continuous fermentation system [8]. According to dif-
ferent reactions and differential control technologies, many
dynamic models concerning the culture of microorganisms
in the continuous bioreactor have been established [9–13].
However, there are a lot of factors affecting the growth and
reproduction of the microorganisms in the process of biore-
acts [14]. For example, for some aerobic microorganisms, the
dissolved oxygen (DO) is a key factor to the growth of the

aerobic microorganisms. In order to maintain the dissolved
oxygen concentration in an appropriate range, it is necessary
to regulate the microorganisms’ concentration to not exceed
a set level [15].

As shown in Figure 1, if the microorganisms’ concentra-
tion reaches the preset value, the valve is opened by the pho-
toelectric control devices, and a certain amount of regulator
solution is input. Then, the microorganisms’ concentration
is decreased and less than the preset value. At this time, the
valve is closed by the control system until the next moment at
which the microorganisms’ concentration reaches the preset
value once again. Therefore, the microorganism concentra-
tion can be decreased through the control methods such as
replenishing water or other regulator solution to reduce the
concentration of the microorganism.

In recent years, in order to obtain the optimal conditions
for microorganism growth and decrease the inhibition of
the microorganism concentration or other negative effects,
many authors introduced the state-dependent impulsion into
the microorganism culture process and analyzed the system’s
dynamic behavior [16–18]. However, so far, no papers have
discussed the mathematical model of cheese whey fermenta-
tion for single-cell protein production with impulsive feed-
back control.
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Figure 1: Schematic diagram of microorganism culture systemwith
feedback control.

This paper aims to propose a mathematical model of
cheese whey fermentation for single-cell protein production
with feedback control. We will discuss the existence and
stability of periodic solution of the system with impulsive
feedback control by using the existence criteria [19] and the
stability theorem [20]. The paper is organized as follows. The
mathematical model and some preliminary results are intro-
duced in Section 2. In Section 3, the qualitative analysis of
the system without impulsive effect is given. In Section 4,
the existence and stability of order-1 periodic solution of the
systemwith impulsive state feedback control are investigated.
Numerical simulations and some discussion are provided in
Section 5.

2. Model Formulation

Ghaly et al. [8] proposed the following mathematical model
of cheese whey fermentation for the production of single-cell
protein:

𝑆
󸀠

(𝑡) = −
𝜇𝑆𝑥

𝛿
1
(𝐾
𝑠
+ 𝑆)

− 𝑚𝑥 + 𝐷 (𝑆
𝑖
− 𝑆) ,

𝑥
󸀠

(𝑡) =
𝜇𝑆𝑥

𝐾
𝑠
+ 𝑆
− (𝐾
𝑑
+ 𝐷) 𝑥,

(1)

where 𝑥 denotes the concentration of the microorganism
(g/L) and 𝑆 denotes the concentration of the limiting sub-
strate (g/L) in the bioreactor at time 𝑡. 𝑆

𝑖
denotes the influent

substrate concentration (g/L). 𝐷 is the dilution rate; 𝜇 is the
maximum special growth rate; 𝐾

𝑠
is the saturation constant,

equal to the substrate concentration at one-half themaximum
special growth rate (g/L); 𝐾

𝑑
is the endogenous microbial

decay coefficient (ℎ−1); 𝛿
1
is the yield coefficient; 𝑚 is the

maintenance coefficient; and𝑚𝑥 denotes the substrate uptake
rate for the microorganism maintenance.

In some cases, if the concentration of microorganism is
lower than a critical value (a preset value given by experi-
ments), it is not necessary to take the control measures. But
if the concentration reaches the critical value, some negative
effects such as airborne inhibition and production inhibition
and so on may happen, and the control methods such as
liquefying medium and replenishing water should be taken
to decrease the concentration of themicroorganism.Once the
concentration is decreased, it also should take some time to
reach the critical value.Therefore, the system (1) can be mod-
ified as follows by introducing the impulsive state feedback
control:

𝑆
󸀠
(𝑡) = −

𝜇𝑆𝑥

𝛿
1
(𝐾
𝑠
+ 𝑆)

− 𝑚𝑥 + 𝐷 (𝑆
𝑖
− 𝑆)

𝑥
󸀠
(𝑡) =

𝜇𝑆

𝐾
𝑠
+ 𝑆
𝑥 − (𝐾

𝑑
+ 𝐷) 𝑥,

𝑥 < ℎ,

Δ𝑆 (𝑡) = −𝑏𝑆,

Δ𝑥 (𝑡) = −𝑏𝑥,
𝑥 = ℎ,

𝑆 (0) = 𝑆
𝑖
, 𝑥 (0) = 𝑥

0
< ℎ,

(2)

where Δ𝑥 = 𝑥(𝑡+) − 𝑥(𝑡), Δ𝑆 = 𝑆(𝑡+) − 𝑆(𝑡), 0 < 𝑏 < 1,
is the fraction of the concentration of microorganism and
substrate that decreases due to the feedback control when the
microorganism concentrate 𝑥 reaches the critical value ℎ.

In the following, we mainly discuss the existence of
periodic solution of (2) by the existence criteria of the general
impulsive autonomous system. Before starting our main
results, we give some topological definitions about impulsive
differential equations.

Definition 1 (Laksmikantham et al. [21]). A triple (𝑋, 𝜋, 𝑅
+
)

is said to be a semidynamical system if 𝑋 is metric space, 𝑅
+

is the set of all nonnegative reals, and 𝜋 : 𝑋 × 𝑅
+
→ 𝑋 is a

continuous function such that

(i) 𝜋(𝑥, 0) = 𝑥 for all 𝑥 ∈ 𝑋;
(ii) 𝜋(𝜋(𝑥, 𝑡), 𝑠) = 𝜋(𝑥, 𝑡 + 𝑠) for all 𝑥 ∈ 𝑋 and 𝑡, 𝑠 ∈ 𝑅

+
.

We denote sometimes a semidynamical system (𝑋, 𝜋, 𝑅
+
)

by (𝑋, 𝜋).
For any 𝑥 ∈ 𝑋, the function 𝜋

𝑥
: 𝑅
+
→ 𝑋 defined by

𝜋
𝑥
(𝑡) = 𝜋(𝑥, 𝑡) is continuous, and we call 𝜋

𝑥
the trajectory of

𝑥. The set

𝐶
+

(𝑥) = {𝜋 (𝑥, 𝑡) | 𝑡 ∈ 𝑅
+
} (3)

is called the positive orbit of 𝑥. For any subset𝑀 of𝑋, we let

𝑀
+

(𝑥) = 𝐶
+

(𝑥) ∩ 𝑀 − 𝑥, 𝑀
−
= 𝐺 (𝑥) ∩𝑀 − 𝑥, (4)

where

𝐺 (𝑥) = ∪ {𝐺 (𝑥, 𝑡) | 𝑡 ∈ 𝑅
+
} ,

𝐺 (𝑥, 𝑡) = {𝑦 | 𝜋 (𝑦, 𝑡) = 𝑥}

(5)

is the attainable set of 𝑥 at 𝑡 ∈ 𝑅
+
. Finally, we set 𝑀(𝑥) =

𝑀
+
(𝑥) ∪ 𝑀

−
(𝑥).
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Definition 2 (Laksmikantham et al. [21]). An impulsive semi-
dynamical system (𝑋, 𝜋; 𝑀, 𝐼) consists of a semidynamical
system (𝑋, 𝜋) together with a nonempty closed subset𝑀 of
𝑋 and a continuous function 𝐼 : 𝑀 → 𝑋 such that the
following properties hold:

(i) no point 𝑥 ∈ 𝑋 is a limit point of𝑀(𝑥),

(ii) [𝑡 | 𝐺(𝑥, 𝑡) ∩ 𝑀 ̸= 0] is a closed subset of 𝑅
+
.

We write 𝑁 = 𝐼(𝑀) = {𝑦 ∈ 𝑋 | 𝑦 = 𝐼(𝑥), 𝑥 ∈ 𝑀} and
for any 𝑥 ∈ 𝑋, 𝐼(𝑥) = 𝑥+. We call𝑀 the impulsive set and 𝐼
the impulsive function.

We define a functionΦ : 𝑋 → 𝑅
+
∪ {∞} as follows:

Φ (𝑥) =
{

{

{

∞ if 𝑀+ (𝑥) = 𝜙,

𝑠 if 𝜋 (𝑥, 𝑡) ∉ 𝑀 for 0 < 𝑡 < 𝑠, 𝜋 (𝑥, 𝑠) ∈ 𝑀;
(6)

here, we call 𝑠 the time without impulse of 𝑥, that is 𝑠 is the
first time when 𝜋(𝑥, 0) hits𝑀.

Definition 3 (Laksmikantham et al. [21]). Let (𝑋, 𝜋; 𝑀, 𝐼) be
an impulsive semidynamical system, and let 𝑥 ∈ 𝑋 and 𝑥 ∉
𝑀.The trajectory of 𝑥 is a function 𝜋̃

𝑥
defined on subset [0, 𝑠)

of 𝑅
+
(𝑠may be∞) to𝑋 inductively as follows:

𝜋̃
𝑥
(𝑡) = 𝜋 (𝑥

+

𝑛+1
, 𝑡) , 𝜏

𝑛−1
≤ 𝑡 ≤ 𝜏

𝑛
, (7)

where {𝑥
𝑛
} is the sequence of impulse points of 𝑥, which

satisfied 𝜋(𝑥+
𝑛−1
, Φ(𝑥
+

𝑛−1
)) = 𝑥

𝑛
. 𝜏
𝑛
is the sequence of time of

impulses relative to {𝑥
𝑛
}, 𝜏
𝑛
= ∑
𝑛−1

𝑘=0
Φ(𝑥
+

𝑘
).

Definition 4 (Laksmikantham et al. [21]). A trajectory 𝜋̃
𝑥
is

said to be periodic of period 𝜏 and order 𝑘 if there exist
positive integers 𝑚 ≥ 1 and 𝑘 ≥ 1 such that 𝑘 is the smallest
integer for which 𝑥+

𝑚
= 𝑥
+

𝑚+𝑘
and 𝜏 = ∑𝑚+𝑘−1

𝑖=𝑚
Φ(𝑥
+

𝑖
).

Theorem 5 (Brouwer’s fixed-point theorem (Griffel [22])).
Every continuous mapping of a closed bounded convex set in
𝑅
𝑛 into itself has a fixed point.

Zeng et al. [19] have proved the existence criteria of peri-
odic solution of an impulsive autonomous system by means
of Browers’ fixed-point theorem. For convenience of reading,
we repeat the main results as follows.

Consider the following general autonomous impulsive
differential equations:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑃 (𝑥, 𝑦)

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑄 (𝑥, 𝑦)

(𝑥, 𝑦) ∉ 𝑀,

Δ𝑥 = 𝐼
1
(𝑥, 𝑦)

Δ𝑦 = 𝐼
2
(𝑥, 𝑦)

(𝑥, 𝑦) ∈ 𝑀.

(8)

Here, (𝑥, 𝑦) ∈ 𝑅2, 𝑃, 𝑄, 𝐼
1
, and 𝐼

2
are all functions mapping

𝑅
2 into 𝑅, and𝑀 ⊂ 𝑅

2 is the set of impulse, and we assume

(H1) 𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦) are all continuous with respect to 𝑥,
𝑦 in 𝑅2;

(H2) 𝑀 ⊂ 𝑅
2 is a line, and 𝐼

1
(𝑥, 𝑦) and 𝐼

2
(𝑥, 𝑦) are linear

functions of 𝑥 and 𝑦.
For each point, 𝑆(𝑥, 𝑦) ∈ 𝑀, and we define that 𝐼 :
𝑅
2
→ 𝑅
2:

𝐼 (𝑆) = 𝑆
+
= (𝑥
+
, 𝑦
+
) ∈ 𝑅
2
,

𝑥
+
= 𝑥 + 𝐼

1
(𝑥, 𝑦) , 𝑦

+
= 𝑦 + 𝐼

2
(𝑥, 𝑦) .

(9)

Obviously, 𝑁 = 𝐼(𝑀) is also a line of 𝑅2 or a subset of
a line, and we assume that 𝑁 ∩ 𝑀 = 𝜙. From Definition 2,
we know that (8) is an impulsive semidynamical system. The
following theorem gives the conditions on which (8) has an
order-1 periodic solution defined by Definition 4.

Theorem 6 (see [19]). If system (8) satisfies assumptions (H1)
and (H2), there exists a bounded closed simply connected region
𝐷 which has the following properties:

(i) there is no singularity in it, and the boundary 𝜕𝐷 of 𝐷
satisfies (𝐷 − 𝜕𝐷) ∩𝑀 = 0;

(ii) 𝐿
1
= 𝐷 ∩𝑀 cannot be tangent with trajectories of (8)

except at end points and 𝐼(𝐿
1
) ⊂ 𝐷;

(iii) trajectories with initial point in 𝜕𝐷 − 𝐿
1
will enter into

interior of𝐷; then, there must exist an order-1 periodic
solution of system (8) in region𝐷.

3. Qualitative Analysis of System (1)
Before discussing the periodic solution of system (2), we
should consider the qualitative characteristic of system (2)
without impulsive effect, that is, consider the qualitative
characteristic of system (1).

Lemma 7. The system (1) is uniformly bounded.

Proof. From the first equation of system (1), we have

𝑆
󸀠

(𝑡) = −
𝜇𝑆𝑥

(𝐾
𝑠
+ 𝑆) 𝛿

1

− 𝑚𝑥 + 𝐷 (𝑆
𝑖
− 𝑆) . (10)

The isocline 𝑆󸀠(𝑡) = 0, that is, 𝑥 = 𝐷(𝑆
𝑖
− 𝑆)(𝐾

𝑠
+ 𝑆)𝛿
1
/((𝜇 +

𝑚𝛿
1
)𝑆+𝑚𝐾

𝑠
𝛿
1
), which intersects the 𝑆-axis at points (−𝐾

𝑠
, 0)

and (𝑆
𝑖
, 0), and 𝑥 < 𝐷(𝑆

𝑖
−𝑆)(𝐾

𝑠
+𝑆)𝛿
1
/((𝜇+𝑚𝛿

1
)𝑆+𝑚𝐾

𝑠
𝛿
1
),

𝑆
󸀠
(𝑡) > 0. Furthermore, 𝑥 → +∞, when 𝑆 → −(𝑚𝛿

1
𝐾
𝑠
/(𝜇+

𝑚𝛿
1
)) from the right; therefore, there exists 𝑆 = 𝛿 and −𝐾

𝑠
<

𝛿 < −(𝑚𝛿
1
𝐾
𝑠
/(𝜇 + 𝑚𝛿

1
)) such that 𝑆󸀠(𝑡) > 0. Let the straight

line 𝑆 = 𝑆
𝑖
, and 𝑆 = 𝛿 intersect 𝑥 = 0 at the points 𝐴(𝑆

𝑖
, 0),

𝐷(𝛿, 0), respectively. Define a function𝑉(𝑆, 𝑥) = 𝑆+(1/𝛿
1
)𝑥−

𝐾, where 𝐾 > 𝑆
𝑖
. The function 𝑉(𝑆, 𝑥) intersects the line

𝑆 = 𝑆
𝑖
and 𝑆 = 𝛿 at the points 𝐵 and 𝐶, respectively. Then,

we have (𝑑𝑉/𝑑𝑡)|
𝐵𝐶
= −(𝐷𝑥(𝑡)/𝛿

1
) − (𝐾

𝑑
𝑥(𝑡)/𝛿

1
) − 𝑚𝑥(𝑡) +

𝐷(𝑆
𝑖
− 𝑆(𝑡)) = −(𝐾

𝑑
𝑥(𝑡)/𝛿

1
) − 𝑚𝑥(𝑡) + 𝐷(𝑆

𝑖
− 𝐾) < 0,
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(𝑑𝑆/𝑑𝑡)|
𝐷𝐶
> 0, (𝑑𝑆/𝑑𝑡)|

𝐴𝐵
= −(𝜇𝑆

𝑖
/(𝐾
𝑠
+𝑆
𝑖
)𝛿
1
)𝑥(𝑡)−𝑚𝑥(𝑡) <

0. Hence, the system (1) is uniformly bounded. The proof is
completed. We denote that the region Ω is formed by four
points 𝐴, 𝐵, 𝐶, and𝐷.

The equilibriumpoints of system (1) satisfies the following
equation.

−
𝜇𝑆

(𝐾
𝑠
+ 𝑆) 𝛿

1

𝑥 − 𝑚𝑥 + 𝐷 (𝑆
𝑖
− 𝑆) = 0,

𝜇𝑆

𝐾
𝑠
+ 𝑆
𝑥 − (𝐾

𝑑
+ 𝐷) 𝑥 = 0.

(11)

It can be seen that system (11) has a boundary equilibrium
𝑄(𝑆
𝑖
, 0) and a positive equilibrium 𝐻(𝑆∗, 𝑥∗) if 𝑆

𝑖
− (𝐾
𝑑
+

𝐷)𝐾
𝑠
/(𝜇 − (𝐾

𝑑
+ 𝐷)) > 0, where 𝑆∗ = (𝐾

𝑑
+ 𝐷)𝐾

𝑠
/(𝜇 −

(𝐾
𝑑
+ 𝐷)), 𝑥∗ = 𝐷𝛿

1
(𝑆
𝑖
− 𝑆
∗
)/(𝐾
𝑑
+ 𝐷 + 𝑚𝛿

1
).

In the following, we will analyze the stability of equi-
librium 𝑄(𝑆

𝑖
, 0) and 𝐻(𝑆∗, 𝑥∗) of system (1). If 𝑆

𝑖
− (𝐾
𝑑
+

𝐷)𝐾
𝑠
/(𝜇− (𝐾

𝑑
+𝐷)) < 0, the positive equilibrium point does

not exist, and the boundary equilibrium is stable. That is, we
have the following result.

Theorem 8. The equilibrium 𝑄(𝑆
𝑖
, 0) is locally asymptotically

stable if 𝑅 < 1, where 𝑅 = 𝑆
𝑖
(𝜇 − (𝐾

𝑑
+ 𝐷))/(𝐾

𝑑
+ 𝐷)𝐾

𝑠
.

Otherwise, it is unstable.

Proof. The Jacobian matrix 𝐽
𝑄
= 𝐽(𝑆

𝑖
, 0) of system (1) at 𝐴

takes the form of

(

−𝐷 −
𝜇𝑆
𝑖

(𝐾
𝑠
+ 𝑆
𝑖
) 𝛿
1

− 𝑚

0
𝜇𝑆
𝑖

𝐾
𝑠
+ 𝑆
𝑖

− (𝐾
𝑑
+ 𝐷)

) . (12)

It is easy to obtain that the eigenvalues for thematrix 𝐽
𝑄
=

𝐽(𝑆
𝑖
, 0) are 𝜆

1
= −𝐷 < 0, 𝜆

2
= (𝜇𝑆
𝑖
/(𝐾
𝑠
+ 𝑆
𝑖
)) − (𝐾

𝑑
+𝐷). For

𝑅 < 1, then (𝜇𝑆
𝑖
/(𝐾
𝑠
+𝑆
𝑖
))−(𝐾

𝑑
+𝐷) < 0, that is,𝜆

2
< 0; hence,

𝑄(𝑆
𝑖
, 0) is locally asymptotically stable. Otherwise, 𝐴(𝑆

𝑖
, 0) is

unstable. This completes the proof.

Theorem 9. The equilibrium point 𝑄(𝑆
𝑖
, 0) is globally asymp-

totically stable if𝑅 < 1, where𝑅 = 𝑆
𝑖
(𝜇−(𝐾

𝑑
+𝐷))/(𝐾

𝑑
+𝐷)𝐾

𝑠
.

Proof. Consider the Lyapunov function 𝑉(𝑡) = 𝑥(𝑡); we can
obtain the result immediately.

Theorem 10. If 𝑅 > 1, then the positive equilibrium point𝐻 is
locally asymptotically stable.

Proof. The Jacobian matrix 𝐽
𝐻
= 𝐽(𝑆
∗
, 𝑥
∗
) of system (1) at𝐻

takes the form of

𝐽
𝐻
= (

−
𝜇𝐾
𝑠
𝑥
∗

𝛿
1
(𝐾
𝑠
+ 𝑆∗)
2
− 𝐷 −

(𝐾
𝑑
+ 𝐷)

𝛿
1

− 𝑚

𝜇𝐾
𝑠
𝑥
∗

(𝐾
𝑠
+ 𝑆∗)
2

0

) . (13)

The eigenvalue problem for the 𝐽
𝐻
= 𝐽(𝑆

∗
, 𝑥
∗
) provides the

following characteristic equation:

𝜆
2
+ 𝑄
1
𝜆 + 𝑄

2
= 0, (14)

where the coefficients 𝑄
1
, 𝑄
2
are

𝑄
1
=

𝜇𝐾
𝑠
𝑥
∗

𝛿
1
(𝐾
𝑠
+ 𝑆∗)
2
+ 𝐷,

𝑄
2
=

𝜇𝐾
𝑠
𝑥
∗

(𝐾
𝑠
+ 𝑆∗)
2
(
(𝐾
𝑑
+ 𝐷)

𝛿
1

+ 𝑚) .

(15)

Note that 𝑄
1
> 0; 𝑄

2
> 0, then, we have that 𝐻 is locally

asymptotically stable.

In the following, we will discuss the global stability of
system (1). Firstly, we will give the following lemma.

Lemma 11. Suppose that Γ(𝑇) = (𝑆(𝑡), 𝑥(𝑡)) is a periodic orbit
with 𝑇 of system (1), and R is the set which consists of all the
points in Phase plane Γ.

Denote

𝑁 = ∫

𝑇

0

(
𝜕𝑓
1

𝜕𝑆
(𝑆 (𝑡) , 𝑥 (𝑡)) +

𝜕𝑓
2

𝜕𝑥
(𝑆 (𝑡) , 𝑥 (𝑡))) 𝑑𝑡, (16)

where 𝑆󸀠(𝑡) = 𝑓
1
(𝑆(𝑡), 𝑥(𝑡)), 𝑥󸀠(𝑡) = 𝑓

2
(𝑆(𝑡), 𝑥(𝑡)); then, we

can obtain𝑁 < 0.

Proof

𝑁 = ∫

𝑇

0

[−
𝜇𝐾
𝑠
𝑥

𝛿
1
(𝐾
𝑠
+ 𝑆)
2
− 2𝐷 − 𝐾

𝑑
+

𝜇𝑆

𝐾
𝑠
+ 𝑆
]𝑑𝑡

= ∫

𝑇

0

[−
𝜇𝐾
𝑠
𝑥

𝛿
1
(𝐾
𝑠
+ 𝑆)
2
− 𝐷 + (

𝜇𝑆

𝐾
𝑠
+ 𝑆
− 𝐷 − 𝐾

𝑑
)]𝑑𝑡,

(17)

for 𝑥(𝑡) is a period function with 𝑇, so ∫𝑇
0
((𝜇𝑆/𝐾

𝑠
+ 𝑆) − 𝐷 −

𝐾
𝑑
)𝑑𝑡 = ∫

𝑇

0
𝑑 ln𝑥(𝑡) = 0; hence,

𝑁 = ∫

𝑇

0

[−
𝜇𝐾
𝑠
𝑥

𝛿
1
(𝐾
𝑠
+ 𝑆)
2
− 𝐷]𝑑𝑡. (18)

It is evident that𝑁 < 0; the proof is completed.

Theorem 12. If 𝑅 > 1, the positive equilibrium𝐻 of system (1)
is globally asymptotically stable.

Proof. From Theorem 10, we know that 𝐻 is locally stable.
According to Lemma 11, we can obtain if there exists periodic
solution (𝑆(𝑡), 𝑥(𝑡)) around 𝐻(𝑆∗, 𝑥∗); then, it is stable for
any periodic solution. This is impossible. According to the
Poincare-Bendixson theorem, limit set 𝜔 of all orbits must be
equilibrium point 𝐻. This implies that 𝐻(𝑆∗, 𝑥∗) is globally
asymptotically stable inΩ. This completes the proof.
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Figure 2: Illustration of (2) when 𝑅 > 1, ℎ < 𝑥∗, 𝑥(0) ≤ ℎ, and
𝑆
𝐷
≥ 𝑆
∗.
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Figure 3: Illustration of (2) when 𝑅 > 1, ℎ < 𝑥∗, 𝑥(0) ≤ ℎ, and
𝑆
𝐷
< 𝑆
∗.

4. Existence and Stability of Periodic Solution
of System (2)

4.1. Existence of Order-1 Periodic Solution. From discussions
of the qualitative characteristic of system (2) without the
impulsive effects, we can see that if 𝑅 > 1, 𝐻(𝑆∗, 𝑥∗) is
globally stable. For the initial points which satisfy 𝑥(0) < 𝑥∗
and (𝑑𝑆/𝑑𝑡)|

(𝑆0 ,𝑥0)
≥ 0, if ℎ > 𝑥∗, then all the solutions of

system (2) will tend to the positive equilibrium (𝑆∗, 𝑥∗) after
at most finite times impulsive effects. Therefore, we mainly
focus our attention on the cases ℎ < 𝑥∗, 𝑥(0) < 𝑥∗ and
𝑆(0) < 𝑆

𝑖
.

According to the existence criteria (Theorem 6), our ideas
to prove the existence of periodic solution is to construct a
closed region such that all the solutions of (2) enter the closed
region and retain there.The ideas will be illustrated as follows
using Figures 2 and 3.

From Figure 2, we can see that the line 𝑥 = ℎ interacts
with the line 𝑆 = 𝑆∗ at the point 𝐴(𝑆

𝐴
, ℎ), where 𝑆

𝐴
= 𝑆
∗.

The impulsive set𝑀 ⊆ 𝐴𝐵,𝐴𝐵 = {(𝑆, 𝑥) | 𝑥 = ℎ, 𝑆∗ ≤ 𝑆 ≤ 𝑆
𝑖
}.

The impulsive functions 𝐼
1
and 𝐼
2
map the impulsive set 𝑀

into𝑁 = 𝐼(𝑀) ⊆ 𝐶𝐷,𝐶𝐷 = {(𝑆, 𝑥) | 𝑥 = (1−𝑏)ℎ, (1−𝑏)𝑆∗ ≤
𝑆 ≤ (1 − 𝑏)𝑆

𝑖
}, where 𝐶 = (𝑆

𝐶
, (1 − 𝑏)ℎ), 𝐷 = (𝑆

𝐷
, (1 − 𝑏)ℎ),

𝑆
𝐶
= (1−𝑏)𝑆

∗, and 𝑆
𝐷
= (1−𝑏)𝑆

𝑖
. From the third equation of

(2), we know that 𝑆∗+ = (1−𝑏)𝑆∗ for 𝑥 = ℎ, and furthermore,
𝑆
𝐶
= (1−𝑏)𝑆

𝐴
< 𝑆
𝐴
. Since the straight lines𝐴𝐶 and𝐵𝐷 satisfy

𝑥 = ℎ𝑆/𝑆
𝐴
and 𝑥 = ℎ𝑆/𝑆

𝑖
, respectively, and both pass through

the point (0, 0), then it is clear that there are two cases of the
point 𝐷, that is, (𝐾

𝑑
+ 𝐷)𝐾

𝑠
/(𝜇 − (𝐾

𝑑
+ 𝐷)) = 𝑆

∗
≤ 𝑆
𝐷
and

𝑆
𝐷
< 𝑆
∗
= (𝐾
𝑑
+ 𝐷)𝐾

𝑠
/(𝜇 − (𝐾

𝑑
+ 𝐷)).

Theorem 13. Suppose that 𝑅 > 1, ℎ < 𝑥∗, 𝑥(0) ≤ ℎ, then
system (2) has an order-1 periodic solution; furthermore, this
order-1 periodic solution is unique.

Proof. Suppose that 𝑆
𝐷
≥ 𝑆
∗
= (𝐾
𝑑
+ 𝐷)𝐾

𝑠
/(𝜇 − (𝐾

𝑑
+ 𝐷)),

then the trajectories of (2) starting from the region {𝑥(0) ≤ ℎ}
must interact with the segment 𝐴𝐵. Next, we construct the
closed region Ω

1
. Let 𝐺 be the intersection point of the line

𝑆 = 𝑆
∗, and the trajectories of (2) starting from the point

𝐶, let 𝐺
1
be the intersection point of the line 𝑥 = 𝑥

𝐺
, and

𝑆 = 𝑆
𝑖
, let 𝐸 be the intersection point of the line 𝑆 = 𝑆∗

and the segment 𝐶𝐷. From the qualitative characteristic of
(1), it is easily obtained that (𝑑𝑆/𝑑𝑡)|

𝐵𝐺1
< 0, (𝑑𝑥/𝑑𝑡)|

𝐺𝐺1
> 0,

(𝑑𝑥/𝑑𝑡)|
𝐶𝐸
< 0, (𝑑𝑆/𝑑𝑡)|

𝐴𝐸
> 0; thus, the closed region Ω

1

consists of 𝐴𝐸, 𝐸𝐶,
⌣

𝐶𝐺, 𝐺𝐺
1
, 𝐺
1
𝐵 and 𝐵𝐴 (see Figure 2),

where the arc
⌣

𝐶𝐺 is the part of trajectory passing through 𝐶
and𝐺. In addition, there is no singularity in the regionΩ

1
and

all the trajectories satisfying the conditions of the theorem
enter the closed region Ω

1
and retain there; therefore, from

Theorem 6, we know that system (2) has an order-1 periodic
solution.

Suppose that 𝑆
𝐷
< 𝑆
∗
= (𝐾
𝑑
+𝐷)𝐾

𝑠
/(𝜇−(𝐾

𝑑
+𝐷)). Similar

to the discussions of the case 𝑆
𝐷
≥ 𝑆
∗
= (𝐾
𝑑
+𝐷)𝐾

𝑠
/(𝜇−(𝐾

𝑑
+

𝐷)), let 𝐴
1
be the intersection point of the line 𝑥 = ℎ and the

trajectories of (2) starting from the point 𝐷; we can take the
arc
⌣

𝐷𝐴
1
as a part of the boundaries of the closed region Ω

2
.

Then, we obtain the closed region Ω
2
which consists of 𝐷𝐶,

⌣

𝐶𝐺, 𝐺𝐺
1
, 𝐺
1
𝐵, 𝐵𝐴

1
, and

⌣

𝐴
1
𝐷 (see Figure 3); therefore, from

Theorem 6, we know that system (2) has an order-1 periodic
solution. To sum up, the system (2) has an order-1 periodic
solution under the condition of Theorem 13. This completes
the proof.

Remark 14. If system (2) has an order-1 periodic solution,
then the order-1 periodic solution is unique.

We can prove the uniqueness of order-1 periodic solution
in system (2) by using the method of successor functions
which was introduced in [23], here omitted.

4.2. Stability of Order-1 Periodic Solution. In the following, we
will analyze the stability of order-1 periodic solution in system
(2). Firstly, we give one lemma to discuss the stability of this
periodic solution of system (2).
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Lemma 15. The 𝑇-periodic solution 𝑆 = 𝜉(𝑡), 𝑥 = 𝜂(𝑡) of the
following system

𝑑𝑆

𝑑𝑡
= 𝑃 (𝑆, 𝑥) ,

𝑑𝑥

𝑑𝑡
= 𝑄 (𝑆, 𝑥) ,

𝑖𝑓 𝜙 (𝑆, 𝑥) ̸= 0,

Δ𝑆 = 𝛼 (𝑆, 𝑥) ,

Δ𝑥 = 𝛽 (𝑆, 𝑥)
𝑖𝑓 𝜙 (𝑆, 𝑥) = 0,

(19)

is orbitally asymptotically stable if the Floquet multiplier 𝜇
2

satisfies the condition |𝜇
2
| < 1, where

𝜇
2
= Π
𝑞

𝑘=1
Δ
𝑘
exp [∫

𝑇

0

(
𝜕𝑃

𝜕𝑆
(𝜉 (𝑡) , 𝜂 (𝑡))

+
𝜕𝑄

𝜕𝑥
(𝜉 (𝑡) , 𝜂 (𝑡))) 𝑑𝑡] ,

(20)

with

Δ
𝑘
= (𝑃
+
(
𝜕𝛽

𝜕𝑥

𝜕𝜙

𝜕𝑆
−
𝜕𝛽

𝜕𝑆

𝜕𝜙

𝜕𝑥
+
𝜕𝜙

𝜕𝑆
)

+ 𝑄
+
(
𝜕𝛼

𝜕𝑆

𝜕𝜙

𝜕𝑥
−
𝜕𝛼

𝜕𝑥

𝜕𝜙

𝜕𝑆
+
𝜕𝜙

𝜕𝑥
))

× (𝑃
𝜕𝜙

𝜕𝑆
+ 𝑄
𝜕𝜙

𝜕𝑥
)

−1

,

(21)

and 𝑃, 𝑄, 𝜕𝛼/𝜕𝑆, 𝜕𝛼/𝜕𝑥, 𝜕𝛽/𝜕𝑆, 𝜕𝛽/𝜕𝑥, 𝜕𝜙/𝜕𝑆 and 𝜕𝜙/𝜕𝑥 are
calculated at the point (𝜉(𝜏

𝑘
), 𝜂(𝜏
𝑘
)), 𝑃
+
= 𝑃(𝜉(𝜏

+

𝑘
), 𝜂(𝜏
+

𝑘
)),

𝑄
+
= 𝑄(𝜉(𝜏

+

𝑘
), 𝜂(𝜏
+

𝑘
)). 𝜙(𝑆, 𝑥) is a sufficiently smooth function

with grad𝜙(𝑆, 𝑥) ̸= 0, and 𝜏
𝑘
(𝑘 ∈ 𝑁) is the time of the 𝑘th jump.

The proof of this lemma referres to Simeonov and Bainov
[20].

In the following, we suppose that this periodic solution of
system (2) with period 𝑇 passes through the points 𝐷+

1
((1 −

𝑏)𝜁
0
, (1 − 𝑏)ℎ) ∈ 𝐶𝐷 and 𝐷

1
(𝜁
0
, ℎ) ∈ 𝐴𝐵 (see Figures 2

and 3). As the expression and the period of this solution are
unknown, we discuss the stability of this periodic solution by
Lemma 15. In our case,

𝑃 (𝑆, 𝑥) = −
𝜇𝑆𝑥

𝛿
1
(𝐾
𝑠
+ 𝑆)

− 𝑚𝑥 + 𝐷 (𝑆
𝑖
− 𝑆) ,

𝑄 (𝑆, 𝑥) =
𝜇𝑆

𝐾
𝑠
+ 𝑆
𝑥 − (𝐾

𝑑
+ 𝐷) 𝑥,

𝛼 (𝑆, 𝑥) = −𝑏𝑆, 𝛽 (𝑆, 𝑥) = −𝑏𝑥,

𝜙 (𝑆, 𝑥) = 𝑥 − ℎ,

(𝜉 (𝑇) , 𝜂 (𝑇)) = (𝜁
0
, ℎ) ,

(𝜉 (𝑇
+
) , 𝜂 (𝑇

+
)) = ((1 − 𝑏) 𝜁

0
, (1 − 𝑏) ℎ) .

(22)

Then,
𝜕𝑃

𝜕𝑆
= −

𝜇𝐾
𝑠
𝑥

𝛿
1
(𝐾
𝑠
+ 𝑆)
2
− 𝐷,

𝜕𝑄

𝜕𝑥
=

𝜇𝑆

𝐾
𝑠
+ 𝑆
− (𝐾
𝑑
+ 𝐷) ,

𝜕𝛼

𝜕𝑆
= −𝑏,

𝜕𝛼

𝜕𝑥
= 0,

𝜕𝛽

𝜕𝑆
= 0,

𝜕𝛽

𝜕𝑥
= −𝑏,

𝜕𝜙

𝜕𝑆
= 0,

𝜕𝜙

𝜕𝑥
= 1,

Δ
𝑘
= (𝑃
+
(
𝜕𝛽

𝜕𝑥

𝜕𝜙

𝜕𝑆
−
𝜕𝛽

𝜕𝑆

𝜕𝜙

𝜕𝑥
+
𝜕𝜙

𝜕𝑆
)

+ 𝑄
+
(
𝜕𝛼

𝜕𝑆

𝜕𝜙

𝜕𝑥
−
𝜕𝛼

𝜕𝑥

𝜕𝜙

𝜕𝑆
+
𝜕𝜙

𝜕𝑥
))

× (𝑃
𝜕𝜙

𝜕𝑆
+ 𝑄
𝜕𝜙

𝜕𝑥
)

−1

=
𝑄
+
(𝜉 (𝑇
+
) , 𝜂 (𝑇

+
)) (1 − 𝑏)

𝑄 (𝜉 (𝑇) , 𝜂 (𝑇))

= (1 − 𝑏)
2
[
𝜇 (1 − 𝑏) 𝜁

0

𝐾
𝑠
+ (1 − 𝑏) 𝜁

0

− (𝐾
𝑑
+ 𝐷)]

× [
𝜇𝜁
0

𝐾
𝑠
+ 𝜁
0

− (𝐾
𝑑
+ 𝐷)]

−1

.

(23)

Set𝑁(𝑡) = (𝜕𝑃/𝜕𝑆)(𝜉(𝑡), 𝜂(𝑡)) + (𝜕𝑄/𝜕𝑥)(𝜉(𝑡), 𝜂(𝑡)); then;

𝜇
2
= Δ
1
exp [∫

𝑇

0

(
𝜕𝑃

𝜕𝑆
(𝜉 (𝑡) , 𝜂 (𝑡)) +

𝜕𝑄

𝜕𝑥
(𝜉 (𝑡) , 𝜂 (𝑡))) 𝑑𝑡]

= ((1 − 𝑏)
2
[
𝜇 (1 − 𝑏) 𝜁

0

𝐾
𝑠
+ (1 − 𝑏) 𝜁

0

− (𝐾
𝑑
+ 𝐷)]

× [
𝜇𝜁
0

𝐾
𝑠
+ 𝜁
0

− (𝐾
𝑑
+ 𝐷)]

−1

) exp [∫
𝑇

0

𝑁(𝑡) 𝑑𝑡] .

(24)

Because (𝑆(𝑡), 𝑥(𝑡)) is a periodic solution of system (2),
we know that ∫𝑇

0
𝑁(𝑡)𝑑𝑡 < 0, by the proof of Lemma 11, that

is, exp[∫𝑇
0
𝑁(𝑡)𝑑𝑡] < 1. Obviously, |𝜇

2
| < 1 if |(1 − 𝑏)2[(𝜇(1 −

𝑏)𝜁
0
/(𝐾
𝑠
+(1−𝑏)𝜁

0
))−(𝐾

𝑑
+𝐷)]/[(𝜇𝜁

0
/(𝐾
𝑠
+𝜁
0
))−(𝐾

𝑑
+𝐷)]| <

1. Therefore, we have the following theorem.

Theorem 16. If 𝑅 > 1, ℎ < 𝑥∗, 𝑥(0) ≤ ℎ and |(1 − 𝑏)2[(𝜇(1 −
𝑏)𝜁
0
/(𝐾
𝑠
+(1−𝑏)𝜁

0
))−(𝐾

𝑑
+𝐷)]/[(𝜇𝜁

0
/(𝐾
𝑠
+𝜁
0
))−(𝐾

𝑑
+𝐷)]| <

1, then the order-1 periodic solution of system (2) is orbitally
asymptotically stable.

4.3. Order-2 Periodic Solution. From Theorem 13, we know
that system (2) has an order-1 periodic solution. In this
subsection, we will discuss the existence of order-2 periodic
solution.

Suppose that (𝑆, 𝑥) is a periodic solution of system (2),
then (𝑆

0
, (1 − 𝑏)ℎ) ∈ 𝑁 ⊆ 𝐶𝐷 and (𝑆

1
, ℎ) ∈ 𝑀 ⊆ 𝐴𝐵. It is



Journal of Applied Mathematics 7

S

1.4

1.2

1

0.8

0.6

0 5 10 15 20
t

(a)

0 5 10 15 20
t

0.7

0.6

0.5

0.4

0.3

x

(b)

S

0.7

0.6

0.5

0.4

0.3

x

0.6 0.8 1 1.2 1.4

(c)

Figure 4: Time series and phase portrait of system (2) with 𝛿
1
= 0.6,𝐾

𝑠
= 2, 𝑆

𝑖
= 4.7,𝐷 = 0.4, 𝜇 = 3.8,𝐾

𝑑
= 0.7, 𝑏 = 0.8, 𝑆

0
= 0.5, 𝑥

0
= 0.25,

and ℎ = 0.78 > 𝑆∗.

easy to obtain that 𝑆
0
< 𝑆
1
for 𝑆+ = (1 − 𝑏)𝑆 by the third

equation of system (2). Let (𝑆, 𝑥) be the arbitrary solution of
system (2) starting from the point (𝑆+

0
, (1 − 𝑏)ℎ), and let the

first interaction point of trajectory and the set𝑀(𝑥 = ℎ) be
(𝑆
1
, ℎ) and let the corresponding interaction points of every

impulse be (𝑆
2
, ℎ), (𝑆

3
, ℎ), . . ., respectively. Therefore, under

the effect of impulsive function 𝐼, the corresponding points
after impulse are (𝑆+

1
, (1 − 𝑏)ℎ), (𝑆

+

2
, (1 − 𝑏)ℎ), . . ., respectively.

By the qualitative analysis of system (2), if there exists the
𝑖th impulse effect such that 𝑆+

𝑗
≥ 𝑆
∗ for all 𝑗 > 𝑖 ≥ 1, then

the sequence 𝑆+
𝑗
will be monotone, that is, 𝑆+

𝑗
≥ 𝑆
+

𝑗+1
≥ 𝑆
+

𝑗+2
≥

⋅ ⋅ ⋅ ≥ 𝑆
∗ or 𝑆∗ ≤ 𝑆+

𝑗
≤ 𝑆
+

𝑗+1
≤ 𝑆
+

𝑗+2
≤ ⋅ ⋅ ⋅ . In this case, system

(2) has no order 𝑘 (𝑘 ≥ 2) periodic solution. Therefore, if
system (2) has order 𝑘 (𝑘 ≥ 2) periodic solution, there must
exist a 𝑆+

𝑗
such that 𝑆+

𝑗
< 𝑆
∗. Besides, when 𝑏 > 1−(𝑆∗/𝑆

𝑖
), we

can know that 𝑆+
𝑗
< 𝑆
∗ for 𝑗 = 1, 2, . . .. So, in the following,

we mainly discuss the existence of order-2 periodic solution
for 𝑏 > 1 − (𝑆∗/𝑆

𝑖
).

If 𝑆+
0
= 𝑆
+

1
, then system (2) has an order-1 periodic

solution.
If 𝑆+
0
̸= 𝑆
+

1
, then 𝑆+

0
< 𝑆
+

1
or 𝑆+
0
> 𝑆
+

1
. Suppose that 𝑆+

0
< 𝑆
+

1
,

for 𝑏 > 1 − (𝑆∗/𝑆
𝑖
) and the qualitative properties of system

(2), we know that 𝑆+
2
< 𝑆
+

1
and 𝑆+
2
≤ 𝑆
+

0
< 𝑆
+

1
or 𝑆+
0
≤ 𝑆
+

2
< 𝑆
+

1
.

Therefore, there exists an order-2 periodic solution if 𝑆+
2
= 𝑆
+

0

holds.
If 𝑆+
2
< 𝑆
+

0
< 𝑆
+

1
holds, we can obtain

(i) (1 − 𝑏)𝑆∗ < ⋅ ⋅ ⋅ < 𝑆+
2𝑘
< ⋅ ⋅ ⋅ < 𝑆

+

4
< 𝑆
+

2
< 𝑆
+

0
< 𝑆
+

1
<

𝑆
+

3
< 𝑆
+

5
< ⋅ ⋅ ⋅ < 𝑆

+

2𝑘+1
< ⋅ ⋅ ⋅ < 𝑆

∗.

While if 𝑆+
0
< 𝑆
+

2
< 𝑆
+

1
holds, we have

(ii) (1 − 𝑏)𝑆∗ ≤ 𝑆+
0
< 𝑆
+

2
< 𝑆
+

4
< ⋅ ⋅ ⋅ < 𝑆

+

2𝑘
< ⋅ ⋅ ⋅ < 𝑆

+

2𝑘+1
<

⋅ ⋅ ⋅ < 𝑆
+

5
< 𝑆
+

3
< 𝑆
+

1
< 𝑆
∗.

The same discussion for the case 𝑆+
0
> 𝑆
+

1
, that is, we

have 𝑆+
1
< 𝑆
+

2
< 𝑆
+

0
or 𝑆+
1
< 𝑆
+

0
< 𝑆
+

2
.

If 𝑆+
1
< 𝑆
+

0
< 𝑆
+

2
holds, we have
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Figure 5: Time series and phase portrait of system (2) with 𝛿
1
= 0.6,𝐾

𝑠
= 2, 𝑆

𝑖
= 4.7,𝐷 = 0.4, 𝜇 = 3.8,𝐾

𝑑
= 0.7, 𝑏 = 0.34, 𝑆

0
= 2.8, 𝑥

0
= 0.05,

ℎ = 0.25 < 𝑆
∗.

(iii) (1 − 𝑏)𝑆∗ < ⋅ ⋅ ⋅ < 𝑆+
2𝑘+1

< ⋅ ⋅ ⋅ < 𝑆
+

5
< 𝑆
+

3
< 𝑆
+

1
< 𝑆
+

0
<

𝑆
+

2
< 𝑆
+

4
< ⋅ ⋅ ⋅ < 𝑆

+

2𝑘
< ⋅ ⋅ ⋅ < 𝑆

∗.
While if 𝑆+

1
< 𝑆
+

2
< 𝑆
+

0
holds, we have

(iv) (1 − 𝑏)𝑆∗ ≤ 𝑆+
1
< 𝑆
+

3
< 𝑆
+

5
< ⋅ ⋅ ⋅ < 𝑆

+

2𝑘+1
< ⋅ ⋅ ⋅ < 𝑆

+

2𝑘
<

⋅ ⋅ ⋅ < 𝑆
+

4
< 𝑆
+

2
< 𝑆
+

0
< 𝑆
∗.

If the case of (ii) and (iv) holds, system (2) has an
order-1 periodic solution. It follows from (i) (or (iii)) that
lim
𝑘→∞

𝑆
+

2𝑘
= 𝑆
+∗

0
, lim
𝑘→∞

𝑆
+

2𝑘+1
= 𝑆
+∗

1
, which implies that

system (2) exists with an order-2 periodic solution. Similar to
the previous discussion and the proof of Proposition 3.2 in
[24], we can obtain that there is no order 𝑘 (𝑘 ≥ 3) periodic
solution in system (2) for 𝑏 > 1 − (𝑆∗/𝑆

𝑖
) .

Remark 17. Since the exact expression of the solution to
system (2) is unknown, it is difficult to give the sufficient
conditions to guarantee that the system (2) has an order-2
periodic solution or not.

5. Numerical Analysis and Discussion

In this paper, a mathematical model of cheese whey fermen-
tation for single-cell protein production with impulsive state

feedback control is proposed. We investigated the qualitative
characteristic of the systemwithout impulsive effect and show
that the system is globally asymptotical stability. It is shown
that the system with impulsive state feedback control has
an order-1 periodic solution, and sufficient conditions for
existence and stability of order-1 periodic solution are also
obtained. The case, in which it is possible that there is an
order-2 periodic solution, is also observed; furthermore, it
is also pointed out that the system has no order 𝑘 (𝑘 ≥ 3)
periodic solution for 𝑏 > 1 − (𝑆∗/𝑆

𝑖
) . These results show that

the cheese whey fermentation system for single-cell protein
productionwith impulsive state feedback control either tends
to a stable state or has a periodic solution.

To verify the theoretical results obtained in this paper, we
give the numerical simulations of system (2). Let 𝛿

1
= 0.6,

𝐾
𝑠
= 2, 𝑆
𝑖
= 4.7,𝐷 = 0.4, 𝜇 = 3.8 and𝐾

𝑑
= 0.7; then, we have

𝑆
∗
= 0.8148, 𝑥∗ = 0.6135. If 𝑏 = 0.8, ℎ = 0.78 > 𝑆∗, 𝑆

0
= 0.5,

and 𝑥
0
= 0.25, then the system (2) tends to the positive

equilibrium point, which can be seen in Figure 4. Figure 4
shows that no impulse occurs when ℎ > 𝑆∗. Figure 5 gives the
time series and phase portrait when 𝑏 = 0.34, ℎ = 0.25 < 𝑆∗,
𝑆
0
= 2.8, and 𝑥

0
= 0.05 and show the trajectory tends to be
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Figure 6: Time series and phase portrait of system (2) with 𝛿
1
= 0.6,𝐾

𝑠
= 2, 𝑆

𝑖
= 4.7,𝐷 = 0.4, 𝜇 = 3.8,𝐾

𝑑
= 0.7, 𝑏 = 0.8, 𝑆

0
= 0.15, 𝑥

0
= 0.08,

ℎ = 0.25 < 𝑆
∗.

periodic. Figure 6 is the time series and phase portrait when
𝑏 = 0.8, ℎ = 0.25 < 𝑆∗, 𝑆

0
= 0.15, and 𝑥

0
= 0.08. Figures

5 and 6 show different positions of the periodic solution
under different parameter value 𝑏 and different initial values.
Furthermore, the phase portrait of Figure 5 indicates that
the microorganism concentration always keeps increasing,
but Figure 6 indicates that the microorganism concentration
firstly decreases and then begins to increase. Therefore, a
different control parameter 𝑏 can result in different biopro-
cesses and different efficiencies of microorganism culture.
Which will give a conclusion theoretically to the researchers
in the field of single-cell protein production. Researchers
should give suitable control parameter 𝑏 and appropriate
initial concentration in order to obtain a steady and optimal
production.

In conclusion, we give a mathematical conclusion to the
researchers in the field as follows: researchers of cheese whey
fermentation for single-cell protein production should give
suitable feedback state (the value of ℎ), control parameters
(𝑏), and appropriate initial concentration of microorganism
and substrate in order to obtain a steady and optimal
production.
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