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Geometric-average Asian option pricing model with monotonous transaction cost rate under fractional Brownian motion was
established. The method of partial differential equations was used to solve this model and the analytical expressions of the
Asian option value were obtained. The numerical experiments show that Hurst exponent of the fractional Brownian motion and
transaction cost rate have a significant impact on the option value.

1. Introduction

In 1989, Peters [1] firstly proposed that fractional Brownian
motion could be used to describe the changes of asset prices.
In 2000, the theory of stochastic integral about fractional
Brownian motion was studied by Duncan et al. [2], and
fractional Itô’s formula and Girsanov theorem under the
fractional Brownianmotion were derived.The fractional Itô’s
integral had been further developed by Biagini et al. [3] for
𝐻 ≥ 1/2. Equivalent definition of fractional Itô’s integral
was introduced by Alos et al. [4] and Bender [5]. Necula
[6] utilized the knowledge of fractal geometry and deduced
the Black-Scholes option pricing formula under fractional
Brownian motion, which was of great significance to the
development of option pricing with fractional Brownian
motion. The transaction cost is an important factor affecting
the option pricing. Many scholars had studied the pricing
problems of contingent claim with transaction costs. Leland
[7] groundbreakingly proposed that a modified volatility
should be applied to solving the problem of hedging error
brought by transaction costs in Black-Scholes model. Barles
and Soner [8] assumed that the investor’s preference satisfied
exponential utility function and provided a more complex
model. The Black-Scholes option pricing model with trans-
action costs was given by Amster et al. [9]. Liu and Chang
[10] andWang et al. [11] studied the European option pricing

with transaction costs under the fractional Brownianmotion.
The pricing studies for the Asian option mostly are based on
the standard Brownianmotion, but the time-varying of Asian
option pricing model under fractional Brownian motion had
not been studied systematically.

Based on the previous references, the geometric Asian
option pricing model with monotonous transaction rates
under the fractional Brownianmotionwas presented, and the
analytic expression of the Asian option value was derived.
The influence of Hurst exponent and transaction cost on
the Asian option value was discussed through the numerical
calculations.

This paper’s outline is as follows. In Section 2, we studied
the geometric-average Asian option pricing model under the
fractional Brownian motion. The closed-form solution of
the pricing model was presented in Section 3. In Section 4,
the numerical examples were given. Section 5 serves as the
conclusion of the whole paper.

2. Geometric-Average Asian Option Pricing
Model for a Fractional Brownian Motion
under Monotonous Transaction Cost Rate

Let (Ω, 𝐹, 𝑃) be a complete probability space carrying a frac-
tional Brownian motion {𝐵

𝐻
(𝑡), 𝑡 ≥ 0} with Hurst exponent
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𝐻 (0 < 𝐻 < 1), that is, a continuous, centered Gaus-
sian process with covariance function [12]

𝐶ov (𝐵
𝐻 (𝑡) , 𝐵𝐻 (𝑠))

=
1

2
(|𝑡|
2𝐻

+ |𝑠|
2𝐻

− |𝑡 − 𝑠|
2𝐻

) , 𝑠, 𝑡 ∈ 𝑅.

(1)

If 𝐻 = 1/2, then the corresponding fractional Brownian
motion is the usual standard Brownian motion.

In this paper we will drive a geometric-average Asian
option pricing model under the following assumptions.

(i) The price 𝑆
𝑡
of the underlying stock satisfies

𝑑𝑆
𝑡
= 𝑟
𝑡
𝑆
𝑡
𝑑𝑡 + 𝜎𝑆

𝑡
𝑑𝐵
𝐻 (𝑡) , (2)

where 𝑟
𝑡
is the expected yields, 𝜎 is the stock price

volatility, and𝐵
𝐻
(𝑡) is the fractional Brownianmotion

with Hurst exponent.
(ii) The risk-free interest rate 𝑟

𝑡
is a deterministic function

of time 𝑡.
(iii) Suppose V

𝑡
shares of the underlying stock are bought

(V
𝑡

> 0) or sold (V
𝑡

< 0) at the price 𝑆
𝑡
; then the

transaction cost is given by ℎ(V
𝑡
)|V
𝑡
|𝑆
𝑡
in either buying

or selling; here ℎ(V
𝑡
) = 𝑎−𝑏V

𝑡
(𝑎, 𝑏 > 0) is amonotone

transaction cost rate.
(iv) The expected return rate of the portfolio equals the

risk-free interest rate.
(v) The portfolio is revised every 𝛿𝑡, where 𝛿𝑡 is a finite

and fixed small time step.

Let 𝑉 = 𝑉(𝑡, 𝐽
𝑡
, 𝑆
𝑡
) be the value of the geometric-average

Asian call option on the time 𝑡, where 𝐽
𝑡
= 𝑒
(1/𝑡) ∫

𝑡

0
ln 𝑆
𝜏
𝑑𝜏 is the

geometric average of the underlying asset price in the time
period of [0, 𝑡].

Construct a portfolio Π
𝑡
: long position of a Geometric-

average Asian call option and short position of Δ
𝑡
shares of

underlying asset. Then the value of the portfolio at current
time 𝑡 is

Π
𝑡
= 𝑉
𝑡
− Δ
𝑡
𝑆
𝑡
. (3)

In the period [𝑡, 𝑡+𝛿𝑡], the change in the value of the portfolio
is

𝛿Π
𝑡
= 𝛿𝑉
𝑡
− Δ
𝑡
𝛿𝑆
𝑡
− [(𝑎 − 𝑏

󵄨󵄨󵄨󵄨]𝑡
󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨]𝑡
󵄨󵄨󵄨󵄨 𝑆𝑡]

= (
𝜕𝑉

𝜕𝑡
+ 𝐻𝜎
2
𝑆
2

𝑡
𝑡
2𝐻−1 𝜕

2
𝑉

𝜕𝑆
2

𝑡

)𝛿𝑡 + (
𝜕𝑉

𝜕𝑆
𝑡

− Δ
𝑡
)𝛿𝑆
𝑡

+
𝜕𝑉

𝜕𝐽
𝑡

𝛿𝐽
𝑡
− [(𝑎 − 𝑏

󵄨󵄨󵄨󵄨]𝑡
󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨]𝑡
󵄨󵄨󵄨󵄨 𝑆𝑡] ,

(4)

where

V
𝑡
=

𝜕𝑉

𝜕𝑆
𝑡+𝛿𝑡

−
𝜕𝑉

𝜕𝑆
𝑡

=
𝜕
2
𝑉

𝜕𝑆
2

𝑡

𝛿𝑆
𝑡
+

𝜕
2
𝑉

𝜕𝑆
𝑡
𝜕𝐽
𝑡

𝛿𝐽
𝑡

+ 𝑂 (𝛿𝑡) =
𝜕
2
𝑉

𝜕𝑆
2

𝑡

𝜎𝑆
𝑡
𝛿𝐵
𝐻 (𝑡) + 𝑂 (𝛿𝑡) .

(5)

Owing to

𝐸 (𝑎
󵄨󵄨󵄨󵄨]𝑡

󵄨󵄨󵄨󵄨 𝑆𝑡) = √
2

𝜋
𝑎𝜎𝑆
2

𝑡
(𝛿𝑡)
𝐻

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑉

𝜕𝑆
2

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑂 (𝛿𝑡) , (6)

we have

𝐸 [𝑏
󵄨󵄨󵄨󵄨]𝑡

󵄨󵄨󵄨󵄨

2
𝑆
𝑡
]

= 𝑏𝜎
2
𝑆
3

𝑡
(

𝜕
2
𝑉

𝜕𝑆
2

𝑡

)

2

{Var (𝛿𝐵
𝐻 (𝑡)) − [𝐸 (𝛿𝐵

𝐻 (𝑡))]
2
}

+ 𝑂 (𝛿𝑡
2
)

= 𝑏𝜎
2
𝑆
3

𝑡
(

𝜕
2
𝑉

𝜕𝑆
2

𝑡

)

2

(𝛿𝑡)
2𝐻

+ 𝑂 (𝛿𝑡
2
) ;

(7)

hence we have

𝐸 [(𝑎 − 𝑏
󵄨󵄨󵄨󵄨]𝑡

󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨]𝑡

󵄨󵄨󵄨󵄨 𝑆𝑡] = 𝐸 [𝑎
󵄨󵄨󵄨󵄨]𝑡

󵄨󵄨󵄨󵄨 𝑆𝑡] − 𝐸 [𝑏
󵄨󵄨󵄨󵄨]𝑡

󵄨󵄨󵄨󵄨

2
𝑆
𝑡
]

= √
2

𝜋
𝑎𝜎𝑆
2

𝑡
(𝛿𝑡)
𝐻

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑉

𝜕𝑆
2

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− 𝑏𝜎
2
𝑆
3

𝑡
(

𝜕
2
𝑉

𝜕𝑆
2

𝑡

)

2

(𝛿𝑡)
2𝐻

.

(8)

By the assumption (iv) we have

𝐸 (𝑑Π
𝑡
) = 𝑟Π

𝑡
𝑑𝑡. (9)

And then
𝑟 (𝑉 − Δ

𝑡
𝑆
𝑡
) 𝛿𝑡

= (
𝜕𝑉

𝜕𝑡
+ 𝐻𝜎
2
𝑆
2

𝑡
𝑡
2𝐻−1 𝜕

2
𝑉

𝜕𝑆
2

𝑡

)𝛿𝑡 +
𝜕𝑉

𝜕𝐽
𝑡

𝛿𝐽
𝑡

− √
2

𝜋
𝑎𝜎𝑆
2

𝑡
(𝛿𝑡)
𝐻

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑉

𝜕𝑆
2

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑏𝜎
2
𝑆
3

𝑡
(

𝜕
2
𝑉

𝜕𝑆
2

𝑡

)

2

(𝛿𝑡)
2𝐻

.

(10)

Owing to

𝐽
𝑡
= 𝑒
(1/𝑡) ∫

𝑡

0
ln 𝑆
𝜏
𝑑𝜏

, (11)

then

𝛿𝐽
𝑡

𝛿𝑡
=

𝐽
𝑡
ln (𝑆
𝑡
/𝐽
𝑡
)

𝑡
. (12)

Choosing Δ
𝑡

= 𝜕𝑉/𝜕𝑆
𝑡
and substituting it into (10), the

following formula can be obtained:

𝜕𝑉

𝜕𝑡
+ 𝐻𝜎
2
𝑆
2

𝑡
𝑡
2𝐻−1 𝜕

2
𝑉

𝜕𝑆
2

𝑡

+ 𝑟𝑆
𝑡

𝜕𝑉

𝜕𝑆
𝑡

− √
2

𝜋
𝑎𝜎𝑆
2

𝑡
(𝛿𝑡)
𝐻−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑉

𝜕𝑆
2

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑏𝜎
2
𝑆
3

𝑡
(

𝜕
2
𝑉

𝜕𝑆
2

𝑡

)

2

(𝛿𝑡)
2𝐻−1

+
𝜕𝑉

𝜕𝐽
𝑡

𝐽
𝑡
ln (𝑆
𝑡
/𝐽
𝑡
)

𝑡
− 𝑟𝑉 = 0.

(13)
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Let

Le (𝐻) = √
2

𝜋

𝑎

𝜎
(𝛿𝑡)
𝐻−1

,

𝜎̃
2
= 2𝜎
2
[𝐻𝑡
2𝐻−1

− Le (𝐻) sign (𝑉
𝑆𝑆
)

+ 𝑏𝑆
𝑡
𝑉
𝑆𝑆(𝛿𝑡)

2𝐻−1
] .

(14)

Substituting these into (13), we get the following conclusions.

Theorem 1. If the underlying asset price 𝑆
𝑡
satisfies fractional

Brownian motion (2), then the value of Geometric-average
Asian call option with monotonous transaction cost rate at the
time 𝑡 (0 ≤ 𝑡 ≤ 𝑇) satisfies the following mathematical model:

𝜕𝑉

𝜕𝑡
+

1

2
𝜎̃
2
𝑆
2

𝑡

𝜕
2
𝑉

𝜕𝑆
2

𝑡

+ 𝑟𝑆
𝑡

𝜕𝑉

𝜕𝑆
𝑡

+
𝜕𝑉

𝜕𝐽
𝑡

𝐽
𝑡
ln (𝑆
𝑡
/𝐽
𝑡
)

𝑡
− 𝑟𝑉 = 0,

𝑉 (𝑇, 𝐽
𝑇
, 𝑆
𝑇
) = (𝐽

𝑇
− 𝐾)
+
.

(15)

Remark 2. For a single European option with long position,
the yield at expiration date is (𝐽

𝑇
− 𝐾)
+ or (𝐾 − 𝐽

𝑇
)
+. Because

they are convex functions, 𝑉
𝐽𝐽

> 0. Due to 𝐽
𝑡
= 𝑒
(1/𝑡) ∫

𝑡

0
ln 𝑆
𝜏
𝑑𝜏,

thus 𝑉
𝑆𝑆

> 0. Then (14) can be represented as

𝜎̃
2
= 2𝜎
2
(𝐻𝑡
2𝐻−1

− √
2

𝜋

𝑎

𝜎
(𝛿𝑡)
𝐻−1

+ 𝑏𝑆
𝑡(𝛿𝑡)
2𝐻−1

) . (16)

3. Option Pricing Formulas

Theorem 3. Supposing the underlying asset prices 𝑆
𝑡
satisfy

(2), then at time 𝑡 the value 𝑉(𝑡, 𝐽
𝑡
, 𝑆
𝑡
) of Geometric-average

Asian call option with transaction costs with expiration date 𝑇

and exercise price 𝐾 is as follows:

𝑉 (𝑡, 𝐽
𝑡
, 𝑆
𝑡
) = (𝐽

𝑡

𝑡
𝑆
𝑇−𝑡

𝑡
)
(1/𝑇)

𝑒
𝑟
∗
(𝑇−𝑡)−∫

𝑇

𝑡
𝑟
𝜃
𝑑𝜃+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)

× 𝑁 (𝑑
1
) − 𝐾𝑒

−∫
𝑇

𝑡
𝑟
𝜃
𝑑𝜃

𝑁(𝑑
2
) ,

(17)

where

𝑑
1
=

ln [(𝐽
𝑡

𝑡
𝑆
𝑇−𝑡

𝑡
)
1/𝑇

/𝐾] + 𝑟
∗
(𝑇 − 𝑡) + 𝜎

∗2
(𝑇
2𝐻

− 𝑡
2𝐻

)

𝜎∗√𝑇2𝐻 − 𝑡2𝐻
,

𝑑
2
= 𝑑
1
− 𝜎
∗√𝑇2𝐻 − 𝑡2𝐻,

𝑟
∗

=

∫
𝑇

𝑡
𝑟
𝜃 ((𝑇 − 𝜃) /𝑇) 𝑑𝜃

𝑇 − 𝑡
−

𝜎
2
(𝑇
2𝐻

− 𝑡
2𝐻

)

2 (𝑇 − 𝑡)

+

𝐻𝜎
2
(𝑇
2𝐻+1

− 𝑡
2𝐻+1

)

𝑇 (2𝐻 + 1) (𝑇 − 𝑡)

+
1

2
Le (𝐻) 𝜎

2𝑇 − 𝑡

𝑇
−

1

2
𝜎
2
𝑏𝑆
𝑡(𝛿𝑡)
2𝐻−1𝑇 − 𝑡

𝑇
,

𝜎
∗

= 𝜎(1 −

4𝐻(𝑇
2𝐻+1

− 𝑡
2𝐻+1

)

𝑇 (2𝐻 + 1) (𝑇
2𝐻 − 𝑡2𝐻)

+

𝐻 (𝑇
2𝐻+2

− 𝑡
2𝐻+2

)

𝑇2 (𝐻 + 1) (𝑇
2𝐻 − 𝑡2𝐻)

− 2Le (𝐻)

×
(𝑇 − 𝑡)

3

3𝑇2 (𝑇2𝐻 − 𝑡2𝐻)
+

2𝑏𝑆
𝑡(𝛿𝑡)
2𝐻−1

(𝑇 − 𝑡)
3

3𝑇2 (𝑇2𝐻 − 𝑡2𝐻)
)

1/2

Le (𝐻) = √
2

𝜋

𝑎

𝜎
(𝛿𝑡)
𝐻−1

, 𝑁 (𝑥) = ∫

𝑥

−∞

1

√2𝜋

𝑒
−(𝑡
2
/2)

𝑑𝑡.

(18)

Proof. Let

𝜉
𝑡
=

1

𝑇
[𝑡 ln 𝐽
𝑡
+ (𝑇 − 𝑡) ln 𝑆

𝑡
] , 𝑉 (𝑡, 𝐽

𝑡
, 𝑆
𝑡
) = 𝑈 (𝑡, 𝜉

𝑡
) ;

(19)

then

𝜕𝑉

𝜕𝑡
=
ln (𝐽
𝑡
/𝑆
𝑡
)

𝑇

𝜕𝑈

𝜕𝜉
𝑡

+
𝜕𝑈

𝜕𝑡
,

𝜕𝑉

𝜕𝑆
𝑡

=
𝑇 − 𝑡

𝑇𝑆
𝑡

𝜕𝑈

𝜕𝜉
𝑡

,

𝜕
2
𝑉

𝜕𝑆
2

𝑡

= (
𝑇 − 𝑡

𝑇𝑆
𝑡

)

2
𝜕
2
𝑈

𝜕𝜉
2

𝑡

−
𝑇 − 𝑡

𝑇𝑆
2

𝑡

𝜕𝑈

𝜕𝜉
𝑡

,
𝜕𝑉

𝜕𝐽
𝑡

=
𝑡

𝑇𝐽
𝑡

𝜕𝑈

𝜕𝜉
𝑡

.

(20)

Hence model (15) can be transformed into

𝜕𝑈

𝜕𝑡
+ (𝑟
𝑡
−

𝜎̃
2

2
)

𝑇 − 𝑡

𝑇

𝜕𝑈

𝜕𝜉
𝑡

+
𝜎̃
2

2
(
𝑇 − 𝑡

𝑇
)

2
𝜕
2
𝑈

𝜕𝜉
2

𝑡

− 𝑟
𝑡
𝑈 = 0,

𝑈 (𝜉
𝑇
, 𝑇) = (𝑒

𝜉
𝑇 − 𝐾)

+

.

(21)

Let

𝜏 = 𝛾 (𝑡) , 𝜂
𝜏
= 𝜉
𝑡
+ 𝛼 (𝑡) ,

𝑊 (𝜏, 𝜂
𝜏
) = 𝑈 (𝑡, 𝜉

𝑡
) 𝑒
𝛽(𝑡)

,

(22)

which satisfies the conditions 𝛼(𝑇) = 𝛽(𝑇) = 𝛾(𝑇) = 0; then
we have

𝜕𝑈

𝜕𝑡
= 𝑒
−𝛽(𝑡)

(
𝜕𝑊

𝜕𝜏
𝛾
󸀠
(𝑡) − 𝛽

󸀠
(𝑡)𝑊 +

𝜕𝑊

𝜕𝜂
𝜏

𝛼
󸀠
(𝑡)) ,

𝜕𝑈

𝜕𝜉
𝑡

= 𝑒
−𝛽(𝑡) 𝜕𝑊

𝜕𝜂
𝜏

,
𝜕
2
𝑈

𝜕𝜉
2

𝑡

= 𝑒
−𝛽(𝑡) 𝜕

2
𝑊

𝜕𝜂2
𝜏

.

(23)

Substituting (23) into (21), we have

𝛾
󸀠
(𝑡)

𝜕𝑊

𝜕𝜏
+

𝜎̃
2

2
(
𝑇 − 𝑡

𝑇
)

2
𝜕
2
𝑊

𝜕𝜂2
𝜏

+ [(𝑟
𝑡
−

𝜎̃
2

2
)

𝑇 − 𝑡

𝑇
+ 𝛼
󸀠
(𝑡)]

×
𝜕𝑊

𝜕𝜂
𝜏

− (𝑟
𝑡
+ 𝛽
󸀠
(𝑡))𝑊 = 0.

(24)
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Let

(𝑟
𝑡
−

𝜎̃
2

2
)

𝑇 − 𝑡

𝑇
+ 𝛼
󸀠
(𝑡) = 0, 𝑟

𝑡
+ 𝛽
󸀠
(𝑡) = 0,

𝛾
󸀠
(𝑡) = −

𝜎̃
2

2
(
𝑇 − 𝑡

𝑇
)

2

,

(25)

and combined with terminal conditions 𝛼(𝑇) = 𝛽(𝑇) =

𝛾(𝑇) = 0, we can get

𝛼 (𝑡) = ∫

𝑇

𝑡

𝑟
𝜃
(
𝑇 − 𝜃

𝑇
)𝑑𝜃 − ∫

𝑇

𝑡

1

2
𝜎̃
2
(
𝑇 − 𝜃

𝑇
)𝑑𝜃

= ∫

𝑇

𝑡

𝑟
𝜃
(
𝑇 − 𝜃

𝑇
)𝑑𝜃 +

𝐻𝜎
2
(𝑇
2𝐻+1

− 𝑡
2𝐻+1

)

𝑇 (2𝐻 + 1)

−

𝜎
2
(𝑇
2𝐻

− 𝑡
2𝐻

)

2

+
1

2
Le (𝐻) 𝜎

2 (𝑇 − 𝑡)
2

𝑇
−

1

2
𝜎
2
𝑏𝑆
𝑡(𝛿𝑡)
2𝐻−1 (𝑇 − 𝑡)

2

𝑇

𝛾 (𝑡) = ∫

𝑇

𝑡

1

2
𝜎̃
2
(
𝑇 − 𝜃

𝑇
)

2

𝑑𝜃

=
𝐻

𝑇2
𝜎
2
(

𝑇
2𝐻

− 𝑡
2𝐻

2𝐻
𝑇
2
− 2𝑇

𝑇
2𝐻+1

− 𝑡
2𝐻+1

2𝐻 + 1

+
𝑇
2𝐻+2

− 𝑡
2𝐻+2

2𝐻 + 2
)

− Le (𝐻) 𝜎
2 (𝑇 − 𝑡)

3

3𝑇2
+ 𝑏𝑆
𝑡
𝜎
2
(𝛿𝑡)
2𝐻−1 (𝑇 − 𝑡)

3

3𝑇2

𝛽 (𝑡) = ∫

𝑇

𝑡

𝑟
𝜃
𝑑𝜃.

(26)

Thus (21) becomes

𝜕𝑊

𝜕𝜏
=

𝜕
2
𝑊

𝜕𝜂2
𝜏

,

𝑊 (𝜂
0
, 0) = (𝑒

𝜂
0 − 𝐾)

+
.

(27)

According to the theory of classical heat conduction equation
solution, we have

𝑊(𝜂
𝜏
, 𝜏) =

1

2√𝜋𝜏
∫

+∞

ln𝐾
(𝑒
𝑦
− 𝐾) 𝑒

−((𝑦−𝜂
𝜏
)
2
/4𝜏)

𝑑𝑦

= 𝑒
𝜂
𝜏
+𝜏

𝑁(
2𝜏 + 𝜂

𝜏
− ln𝐾

√2𝜏

) − 𝐾𝑁(
𝜂
𝜏
− ln𝐾

√2𝜏

) .

(28)

Let

𝑟
∗

=

∫
𝑇

𝑡
𝑟
𝜃 ((𝑇 − 𝜃) /𝑇) 𝑑𝜃

𝑇 − 𝑡
−

𝜎
2
(𝑇
2𝐻

− 𝑡
2𝐻

)

2 (𝑇 − 𝑡)

+

𝐻𝜎
2
(𝑇
2𝐻+1

− 𝑡
2𝐻+1

)

𝑇 (2𝐻 + 1) (𝑇 − 𝑡)

+
1

2
Le (𝐻) 𝜎

2𝑇 − 𝑡

𝑇
−

1

2
𝜎
2
𝑏𝑆
𝑡(𝛿𝑡)
2𝐻−1𝑇 − 𝑡

𝑇
,

𝜎
∗

= 𝜎(1 −

4𝐻(𝑇
2𝐻+1

− 𝑡
2𝐻+1

)

𝑇 (2𝐻 + 1) (𝑇
2𝐻 − 𝑡2𝐻)

+

𝐻 (𝑇
2𝐻+2

− 𝑡
2𝐻+2

)

𝑇2 (𝐻 + 1) (𝑇
2𝐻 − 𝑡2𝐻)

− 2Le (𝐻)
(𝑇 − 𝑡)

3

3𝑇2 (𝑇2𝐻 − 𝑡2𝐻)

+
2𝑏𝑆
𝑡(𝛿𝑡)
2𝐻−1

(𝑇 − 𝑡)
3

3𝑇2 (𝑇2𝐻 − 𝑡2𝐻)
)

1/2

;

(29)

then
2𝜏 + 𝜂

𝜏
− ln𝐾

√2𝜏

=

ln [(𝐽
𝑡

𝑡
𝑆
𝑇−𝑡

𝑡
)
1/𝑇

/𝐾] + 𝑟
∗
(𝑇 − 𝑡) + 𝜎

∗2
(𝑇
2𝐻

− 𝑡
2𝐻

)

𝜎∗√𝑇2𝐻 − 𝑡2𝐻

≜ 𝑑
1
,

𝜂
𝜏
− ln𝐾

√2𝜏

=

ln [(𝐽
𝑡

𝑡
𝑆
𝑇−𝑡

𝑡
)
1/𝑇

/𝐾] + 𝑟
∗
(𝑇 − 𝑡)

𝜎∗√𝑇2𝐻 − 𝑡2𝐻

= 𝑑
1
− 𝜎
∗√𝑇2𝐻 − 𝑡2𝐻 ≜ 𝑑

2
.

(30)

By variable restored, we obtain that

𝑊(𝜂
𝜏
, 𝜏)

= (𝐽
𝑡

𝑡
𝑆
𝑇−𝑡

𝑡
)
1/𝑇

𝑒
𝑟
∗
(𝑇−𝑡)+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)
𝑁(𝑑
1
) − 𝐾𝑁(𝑑

2
) .

(31)

So the value of geometric-average Asian call option on the
time 𝑡 is
𝑉 (𝑡, 𝐽

𝑡
, 𝑆
𝑡
) = 𝑈 (𝜉

𝑡
, 𝑡) = 𝑊𝑒

−𝛽(𝑡)

= (𝐽
𝑡

𝑡
𝑆
𝑇−𝑡

𝑡
)
1/𝑇

𝑒
𝑟
∗
(𝑇−𝑡)−∫

𝑇

𝑡
𝑟
𝜃
𝑑𝜃+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)
𝑁(𝑑
1
)

− 𝐾𝑒
−∫
𝑇

𝑡
𝑟
𝜃
𝑑𝜃

𝑁(𝑑
2
) .

(32)
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Figure 1: Asian call option pricing corresponding to the different𝐻.
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Figure 2: Asian put option pricing corresponding to the different
𝐻.

Corollary 4. If the riskless interest 𝑟 and the volatility 𝜎 are
constant, then the values 𝑉

𝐶
and 𝑉

𝑝
of Geometric-average

Asian call option and put option respectively with monotonous
transaction cost at time 𝑡 with expiration date 𝑇 and exercise
price 𝐾 are

𝑉
𝐶
(𝑡, 𝐽
𝑡
, 𝑆
𝑡
) = (𝐽

𝑡

𝑡
𝑆
𝑇−𝑡

𝑡
)
1/𝑇

𝑒
(𝑟
∗
−𝑟)(𝑇−𝑡)+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)
𝑁(𝑑
1
)

− 𝐾𝑒
−𝑟(𝑇−𝑡)

𝑁(𝑑
2
) ,

𝑉
𝑃
(𝑡, 𝐽
𝑡
, 𝑆
𝑡
)= − (𝐽

𝑡

𝑡
𝑆
𝑇−𝑡

𝑡
)
1/𝑇

𝑒
(𝑟
∗
−𝑟)(𝑇−𝑡)+(𝜎

∗2
/2)(𝑇
2𝐻
−𝑡
2𝐻
)
𝑁(−𝑑

1
)

+ 𝐾𝑒
−𝑟(𝑇−𝑡)

𝑁(−𝑑
2
) ,

(33)
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Figure 3: Asian put option pricing corresponding to the different 𝑎.

where

𝑟
∗

=
𝑟

2𝑇
(𝑇 − 𝑡) −

𝜎
2
(𝑇
2𝐻

− 𝑡
2𝐻

)

2 (𝑇 − 𝑡)
+

𝐻𝜎
2
(𝑇
2𝐻+1

− 𝑡
2𝐻+1

)

𝑇 (2𝐻 + 1) (𝑇 − 𝑡)

+
1

2
Le (𝐻) 𝜎

2𝑇 − 𝑡

𝑇
−

1

2
𝜎
2
𝑏𝑆
𝑡(𝛿𝑡)
2𝐻−1𝑇 − 𝑡

𝑇

(34)

and the remaining symbols accord with Theorem 3.

4. Numerical Experiments

In this section, the influence of monotone transaction rate
parameters and the Hurst exponent on Asian option value
will be discussed through applying MATLAB software. The
values of the parameters of geometric-average Asian options
are assumed as follows:

𝑆
𝑡
= 80, 𝑡 = 0, 𝑇 = 1, 𝑟 = 0.05,

𝜎 = 0.4, 𝐾 = 80, 𝐻 = 0.5, 𝑎 = 0.009,

𝑏 = 0.002, 𝛿𝑡 = 0.02.

(35)

With the option pricing formulas (33) presented, the value
of the option can be calculated. Figures 1 and 2 give the
relationships between the price of the underlying assets and
the value of Asian call option and put option with different
Hurst exponent. From the figures, Hurst exponent is inversely
proportional to the value of Asian option. Figures 3 and 4
demonstrate the changes of Asian call option with the stock
price under the different parameter 𝑎 and parameter 𝑏. We
can draw such a conclusion: the option value increases with
the parameter 𝑏 increasing and decreases with the parameter
𝑎 increasing. This is mainly because transaction cost rate is a
decreasing function of 𝑏 and an increasing function of 𝑎.
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Figure 4: Asian put option pricing corresponding to the different 𝑏.

5. Discussions and Conclusions

In this paper, the problem of Asian option pricing with
monotonous transaction cost rate under fractional Brownian
motion was studied by using the portfolio technology and no
arbitrage principle, and the pricing model was established.
This model was solved by the method of partial differential
equations, and the analytical expressions of the Asian option
value were obtained. The numerical experiments showed
that Hurst exponent of the fractional Brownian motion and
transaction cost rates have a significant impact on the option
value.
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