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Proper orthogonal decomposition is a popular approach for determining the principal spatial structures from the measured data.
Generally, model reduction using empirical eigenfunctions (EEFs) can generate a relatively low-dimensional model among all
linear expansions. However, the neglectful modes representing only a tiny amount of energy will be crucial in the modeling for
certain type of nonlinear partial differential equations (PDEs). In this paper, an optimal combination of EEFs is proposed for
model reduction of nonlinear partial differential equations (PDEs), obtained by the basis function transformation from the initial
EEFs. The transformation matrix is derived from straightforward optimization techniques. The present new EEFs can keep the
dynamical information of neglectful modes and generate a lower-dimensional and more precise dynamical system for the PDEs.
The numerical example shows its effectiveness and feasibility for model reduction of the nonlinear PDEs.

1. Introduction

Many problems in science and engineering are reduced to
a set of nonlinear partial differential equations (PDEs) [1]
through a process of mathematical modeling. In this paper,
we focus on the modeling of the dynamics for the following
kind of nonlinear PDEs:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝑄𝑢 (𝑥, 𝑡) + 𝐹(𝑢 (𝑥, 𝑡) ,

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
, . . . , 𝑥, 𝑡) .

(1)

Equation (1) will satisfy many types of the boundary
conditions. It can use the following description to denote
boundary conditions containing the Dirichlet boundary con-
dition and Neumann boundary condition of the nonlinear
PDEs (1):

𝐵
1
𝑢 (𝛼, 𝑡) + 𝐶

1

𝜕𝑢 (𝛼, 𝑡)

𝜕𝑥
= 𝐷
1
,

𝐵
2
𝑢 (𝛽, 𝑡) + 𝐶

2

𝜕𝑢 (𝛽, 𝑡)

𝜕𝑥
= 𝐷
2
.

(2)

The initial conditions are also given:

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , (3)

where 𝑢(𝑥, 𝑡) denotes the spatiotemporal state variable,
𝑥 ∈ Ω = [𝛼, 𝛽] ⊂ 𝑅 is the spatial coordinate, and
𝑡 ∈ [0,∞) is the time variable. 𝑄 is a linear operator
involving linear spatial derivatives on the state variable.
𝐹(𝑢(𝑥, 𝑡), 𝜕𝑢(𝑥, 𝑡)/𝜕𝑥, . . . , 𝑥, 𝑡) is a nonlinear function which
contains spatial derivatives of the state variable. 𝐵

1
, 𝐶
1
, 𝐷
1
,

𝐵
2
, 𝐶
2
, and𝐷

2
are constants and 𝑢

0
(𝑥) is a function of 𝑥.

Generally, two kinds of methods are mainly used to
model the dynamics of nonlinear PDEs: conventional dis-
cretization approaches and advanced methods based on spa-
tial basis function expansions [2–4]. However, conventional
discretization approaches such as finite difference method
(FDM) [5] and finite element method (FEM) [6] often lead
to high-order dynamical models of nonlinear PDEs. The
advancedmethods based on spatial basis function expansions
such as spectral methods [2, 3] can derive a low-order ODE
system to model the dynamics of nonlinear PDEs.
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Empirical eigenfunctions (EEFs) [7, 8] which are iden-
tified by proper orthogonal decomposition are one of the
spatial basis functions used for the time/space separation.

With the help of the traditional identification technique
[9], EEFs are widely used for PDE model identification. It is
well known that the amount of energy of a system represented
by the EEFs is often taken as an indication of the quality
of a reduced model using those first several EEFs. However,
the linear approximation for the nonlinear system cannot
guarantee the assumption that minor components do not
contain important information [10].Modes representing only
a tiny amount of energy can also be crucial in the generation
of certain types of dynamics. For instance, the EEF-based
models can have difficulties in reproducing behavior dom-
inated by irregular transitions between different dynamical
states, which have been pointed out in the past studies [11–
13]. For the more precise approximation of the PDEs, it
is necessary to keep the influence of the neglectful modes
representing only a tiny amount of energy on retained
dominated modes. Adding the dynamical information by the
combination of the initial EEFs will give both qualitatively
and quantitatively better results than the common EEFs-
based models [8].

In this paper, an optimal combination of EEFs is pro-
posed for model reduction of nonlinear partial differential
equations (PDEs), which is obtained by the basis function
transformation from the initial EEFs. High-order EEFs are
initially obtained by the proper orthogonal decomposition
of the measured data. Thus, a new set of basis functions
is constructed by the basis function transformation of the
initial EEFs. The transformation matrix is derived from
straightforward optimization techniques. The present new
EEFs can keep the dynamical information of neglectful
modes and generate a lower dimensional and more precise
dynamical system for the PDEs. The numerical example
shows its effectiveness and feasibility for model reduction of
the nonlinear PDEs.

2. EEFs for Model Reduction

The proper orthogonal decomposition (POD) [14], also
known as the Karhunen-Loeve (K-L) decomposition, prin-
cipal component analysis (PCA), and empirical orthogonal
function analysis (EOF) can facilitate the modal projections
of partial differential equations into reduced-order models,
via a Galerkin projection [15]. The POD is a mean of
extracting spatial structure from a set of time series available
on a domain. The most attracting property of the POD is
that it can minimize the average squared distance between
the original measured signal and its reduced representation.
POD allows the identification of a useful set of empirical
eigenfunctions and the dimension of the subspace necessary
to achieve a satisfactory approximation of nonlinear PDEs.

For simplicity, assume the measured spatial-temporal
variable {𝑢(𝑥

𝑖
, 𝑡
𝑗
)}
𝑛,𝐾

𝑖=1,𝑡=1
(called snapshots) is uniformly

sampled in the space and time coordinates. Define
the inner product, norm, and ensemble average as
(𝑓(𝑥), 𝑔(𝑥)) = ∫

Ω
𝑓(𝑥)𝑔(𝑥)𝑑𝑥, ‖𝑓(𝑥)‖ = (𝑓(𝑥), 𝑓(𝑥))1/2, and

⟨𝑓(𝑥, 𝑡)⟩ = 1/𝐾∑
𝐾

𝑡=1
𝑓(𝑥, 𝑡). Motivated by the Fourier series,

the spatiotemporal variable 𝑢(𝑥, 𝑡) can be expanded onto an
infinite number of orthonormal spatial basis functions 𝜙

𝑖
(𝑥)

with temporal coefficients 𝑢
𝑖
(𝑡):

𝑢 (𝑥, 𝑡) =

∞

∑

𝑖=1

𝑢
𝑖
(𝑡) 𝜙
𝑖
(𝑥) . (4)

The spatial basis functions are orthonormal; the following are
derived:

(𝜙
𝑖
(𝑥) , 𝜙

𝑗
(𝑥)) = ∫

Ω

𝜙
𝑖
(𝑥) 𝜙
𝑗
(𝑥) 𝑑𝑥 = {

0, 𝑖 ̸= 𝑗,

1, 𝑖 = 𝑗.
(5)

The temporal coefficients can be calculated from

𝑢
𝑖
(𝑡) = (𝜙

𝑖
(𝑥) , 𝑢 (𝑥, 𝑡)) , 𝑖 = 1, . . . ,∞. (6)

If a large enough𝑀 is given (i.e.,𝑀 → ∞), 𝑢(𝑥, 𝑡) can
be approximated by the following 𝑀-order approximation,
which is truncated to be a finite dimension:

𝑢 (𝑥, 𝑡) ≈ 𝑢
𝑀
(𝑥, 𝑡) =

𝑀

∑

𝑖=1

𝑢
𝑖
(𝑡) 𝜙
𝑖
(𝑥) , (7)

where 𝑢
𝑀
(𝑥, 𝑡) denotes the𝑀-order approximation.

The main problem of using proper orthogonal decompo-
sition for time/space separation is to obtain the most char-
acteristic spatial structure {𝜙

𝑖
(𝑥)}
𝑁

𝑖=1
from the spatiotemporal

snapshots {𝑢(𝑥
𝑖
, 𝑡
𝑗
)}
𝑛,𝐾

𝑖=1,𝑡=1
. Finding the typical {𝜙

𝑖
(𝑥)}
𝑁

𝑖=1
can

be performed by using the following eigenvalue problems:

∫
Ω

𝑅 (𝑥, 𝜇) 𝜙
𝑖
(𝜇) 𝑑𝜇 = 𝜆

𝑖
𝜙
𝑖
(𝑥) , (𝜙

𝑖
, 𝜙
𝑖
) = 1, (8)

where𝑅(𝑥, 𝜇) = ⟨𝑢(𝑥, 𝑡)𝑢(𝜇, 𝑡)⟩ denotes the spatial two-point
correlation function.

Since the data are always discrete in space, one must
solve numerically the integral equation (8). Discretizing the
integral equation gives an 𝑛 × 𝑛 matrix eigenvalue problem.
Thus, at most eigenfunctions at 𝑛 sampled spatial locations
can be obtained.Then one can interpolate the eigenfunctions
to locations where the data are not available.

Assume that the maximum number of nonzero eigenval-
ues is𝑀 ≤ 𝑛. Let 𝜆

1
> 𝜆
2
> ⋅ ⋅ ⋅ > 𝜆

𝑀
be the eigenvalues with

the corresponding eigenfunctions {𝜙
1
(𝑥), 𝜙
2
(𝑥), . . . , 𝜙

𝑀
(𝑥)}.

The eigenfunction that corresponds to the first eigenvalue
is considered to be the most “energetic.” The total “energy”
is defined as being the sum of the eigenvalues. To each
eigenfunction, assign an “energy” percentage based on the
associated eigenvalue:

𝐸
𝑖
=

𝜆
𝑖

∑
𝑀

𝑗=1
𝜆
𝑗

. (9)

Usually, the sufficient number of eigenfunctions that
capture 99% of the system “energy” is used to determine the
value of 𝑁. Experiences show that only the first few basis
functions can represent the dominant dynamics ofmany PDE
systems.
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As to themodel reduction for PDE (1), the spatiotemporal
variables 𝑢(𝑥, 𝑡) can be approximated by expanding onto the
first𝑁 spatial-dependent EEFs {𝜙

1
(𝑥), 𝜙
2
(𝑥), . . . , 𝜙

𝑁
(𝑥)}with

the corresponding temporal coefficients 𝑢
𝑖
(𝑡):

𝑢 (𝑥, 𝑡) ≈ 𝑢
𝑁
(𝑥, 𝑡) =

𝑁

∑

𝑖=1

𝑢
𝑖
(𝑡) 𝜙
𝑖
(𝑥) . (10)

For PDE (1), the following can be derived:
𝑁

∑

𝑖=1

�̇�
𝑖
(𝑡) 𝜙
𝑖
(𝑥)

= 𝑄(

𝑁

∑

𝑖=1

𝑢
𝑖
(𝑡) 𝜙
𝑖
(𝑥))

+ 𝐹(

𝑁

∑

𝑖=1

𝑢
𝑖
(𝑡) 𝜙
𝑖
(𝑥) ,

𝑁

∑

𝑖=1

𝑢
𝑖
(𝑡)
𝜕𝜙
𝑖
(𝑥)

𝜕𝑥
, . . . , 𝑥, 𝑡) .

(11)

Via a Galerkin projection, the following 𝑁-order dynamical
systems are then obtained:

�̇�
𝑖
(𝑡) = 𝜆

𝑖
𝑢
𝑖
(𝑡) + 𝑓

𝑖
(𝑢 (𝑡) , 𝑡) , (12)

where 𝜆
𝑖
, 𝑖 = 1, 2 . . . , 𝑁 denote the eigenvalues, 𝑓

𝑖
(𝑢(𝑡),

𝑡) denote the nonlinear terms, and 𝑢(𝑡) = [𝑢
1
(𝑡) 𝑢
2
(𝑡),

. . . , 𝑢
𝑁
(𝑡)]
𝑇.The series of dynamical systems can be rewritten

in a general form as follows:

�̇� (𝑡) = 𝐿𝑢 (𝑡) + 𝑓 (𝑢 (𝑡) , 𝑡) , (13)

where 𝐿 = diag(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑁
); 𝑓(𝑢(𝑡), 𝑡) = [𝑓

1
(𝑢(𝑡), 𝑡),

𝑓
2
(𝑢(𝑡), 𝑡), . . . , 𝑓

𝑁
(𝑢(𝑡), 𝑡)]

𝑇 and 𝑓
𝑖
(𝑢(𝑡), 𝑡) = (𝜙

𝑖
(𝑥), 𝐹(∑

𝑁

𝑖=1

𝑢
𝑖
(𝑡)𝜙
𝑖
(𝑥), ∑

𝑁

𝑖=1
𝑢
𝑖
(𝑡)(𝜕𝜙

𝑖
(𝑥)/𝜕𝑥), . . . , 𝑥, 𝑡)).

3. Line Combination of EEFs

Considering the influence of neglectful EEFs with the tiny
amount energy, a new kind of EEFs can be derived by line
combinations of the initial EEFs. As to obtain the lower-order
dynamical systems of nonlinear PDEs, a smaller set of new
basis functions can be derived. Each new basis function is the
line combination of the𝑀 EEFs from POD:
𝜑
𝑗
(𝑥) = 𝑎

1𝑗
𝜙
1
(𝑥) + 𝑎

2𝑗
𝜙
2
(𝑥) + ⋅ ⋅ ⋅ + 𝑎

𝑀𝑗
𝜙
𝑀
(𝑥) ,

𝑗 = 1, 2, . . . , 𝑁,

(14)

where𝑁 < 𝑀. Equation (14) can also be rewritten as follows:

[𝜑
1
(𝑥) , 𝜑

2
(𝑥) , . . . , 𝜑

𝑁
(𝑥)] = [𝜙

1
(𝑥) , 𝜙

2
(𝑥) , . . . , 𝜙

𝑀
(𝑥)] 𝐴,

(15)

where the transformation matrix 𝐴 = [

[

𝑎
11
𝑎
12
⋅⋅⋅ 𝑎
1𝑁

𝑎
21
𝑎
22
⋅⋅⋅ 𝑎
2𝑁

...
... d

...
𝑎
𝑀1
𝑎
𝑀2
⋅⋅⋅ 𝑎
𝑀𝑁

]

]

.

Using spatial basis functions expansion based on the set
of new basis functions (14), the approximation of spatiotem-
poral variables 𝑢(𝑥, 𝑡) can be expanded as follows:

𝑢 (𝑥, 𝑡) ≈

𝑁

∑

𝑖=1

𝑢
𝑖
(𝑡) 𝜑
𝑖
(𝑥) . (16)

Combining (7), (15), and (16), the time coefficients have

𝑢 (𝑡) = 𝐴
+
𝑢 (𝑡) , (17)

where 𝑢(𝑡) = [𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑀
(𝑡)]
𝑇; 𝑢(𝑡) = [𝑢

1
(𝑡), 𝑢
2
(𝑡),

. . . , 𝑢
𝑁
(𝑡)]
𝑇, where 𝐴+ denotes the generalized inverse of

transformation matrix 𝐴.
For PDE (1), the following is derived:
𝑁

∑

𝑖=1

�̇�
𝑖
(𝑡) 𝜑
𝑖
(𝑥)

= 𝑄(

𝑁

∑

𝑖=1

𝑢
𝑖
(𝑡) 𝜑
𝑖
(𝑥))

+ 𝐹(

𝑁

∑

𝑖=1

𝑢
𝑖
(𝑡) 𝜑
𝑖
(𝑥) ,

𝑁

∑

𝑖=1

𝑢
𝑖
(𝑡)
𝜕𝜑
𝑖
(𝑥)

𝜕𝑥
, . . . , 𝑥, 𝑡) .

(18)

Using the Galerkinmethod, a lower-dimensional dynam-
ical system of nonlinear PDE (1) in a general form can be
derived as follows:

�̇� (𝑡) = 𝐿𝑢 (𝑡) + 𝑓 (𝑢 (𝑡) , 𝑡) , (19)

where 𝑢(𝑡) = [𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑁
(𝑡)]
𝑇;

𝐿 = {𝐿
𝑖𝑗
} , 𝑖, 𝑗 = 1, 2, . . . , 𝑁; 𝐿

𝑖𝑗
= (𝜑
𝑖
, 𝐿 (𝜑
𝑗
)) ;

𝑓 (𝑢 (𝑡) , 𝑡) = [𝑓
1
(𝑢 (𝑡) , 𝑡) , 𝑓

2
(𝑢 (𝑡) , 𝑡) , . . . , 𝑓

𝑁
(𝑢 (𝑡) , 𝑡)]

𝑇

;

𝑓
𝑖
(𝑢 (𝑡) , 𝑡) = (𝜑

𝑖
(𝑥) , 𝐹(

𝑁

∑

𝑖=1

𝑢
𝑖
(𝑡) 𝜑
𝑖
(𝑥) ,

𝑁

∑

𝑖=1

𝑢
𝑖
(𝑡)
𝜕𝜑
𝑖
(𝑥)

𝜕𝑥
, . . . , 𝑥, 𝑡)) .

(20)

4. Optimization for the Transformation Matrix

An error function that measures energy error between the
ODE system (13) and the lower-dimensional dynamical
system (19) is introduced by

Error = ∫
∞

0

(

𝑀

∑

𝑖=1

(𝑢
𝑖
(𝑡))
2

−

𝑁

∑

𝑖=1

(𝑢
𝑖
(𝑡))
2

)

2

𝑑𝑡. (21)

Combining the vector expressions of 𝑢(𝑡), 𝑢(𝑡) with (17), the
error (21) can be strictly derived as follows:

Error = ∫
∞

0

(

𝑀

∑

𝑖=1

(𝑢
𝑖
(𝑡))
2

−

𝑁

∑

𝑖=1

(𝑢
𝑖
(𝑡))
2

)

2

𝑑𝑡

= ∫

∞

0

(𝑢(𝑡)
𝑇
𝑢 (𝑡) − 𝑢(𝑡)

𝑇
𝑢 (𝑡))
2

𝑑𝑡

= ∫

∞

0

(𝑢(𝑡)
𝑇
𝑢 (𝑡) − 𝑢(𝑡)

𝑇
((𝐴
+
)
𝑇

𝐴
+
) 𝑢 (𝑡))

2

𝑑𝑡

= ∫

∞

0

(𝑢(𝑡)
𝑇
(𝐼 − (𝐴

+
)
𝑇

𝐴
+
) 𝑢 (𝑡))

2

𝑑𝑡.

(22)
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The combination matrix 𝐴 is determined by minimizing
the error function (22). To evaluate the error function,
a temporal interval [0, 𝑇max] is considered for (22) and
approximated by a finite sum, where the max integral time
𝑇max is selected as free parameter. The temporal integral
interval [0, 𝑇max] generally contains the processes from initial
state to steady state of the nonlinear PDEs. The restricted
condition for the minimizing problem (22) is that the combi-
nation matrix should be column orthogonal. Thus, the error
functions for combination matrix can be approximated as
follows.

Since

Error (𝐴) ≈ ∫
𝑇max

0

(𝑢(𝑡)
𝑇
(𝐼 − (𝐴

+
)
𝑇

𝐴
+
) 𝑢 (𝑡))

2

𝑑𝑡

≈ (∑

𝑖

(𝑡
𝑖
− 𝑡
𝑖−1
) (𝑢(𝑡

𝑖
)
𝑇

(𝐼 − (𝐴
+
)
𝑇

𝐴
+
) 𝑢 (𝑡
𝑖
)))

2

,

(23)

we consider approximate error

𝐸 (𝐴)

= (∑

𝑖

(𝑡
𝑖
− 𝑡
𝑖−1
) (𝑢(𝑡

𝑖
)
𝑇

(𝐼 − (𝐴
+
)
𝑇

𝐴
+
) 𝑢 (𝑡
𝑖
)))

2

,

subject to 𝐴(:, 𝑖)𝑇𝐴 (:, 𝑗) = 𝑘
𝑖
𝛿
𝑖𝑗
.

(24)

The optimization of 𝐸(𝐴) (24) mainly contains several
steps. Firstly, the fourth-order Runge-Kutta method is used
to calculate the ODE system (13); thus 𝑡

𝑖
, 𝑢(𝑡
𝑖
) of Error (24)

are known.
Secondly, the particle swarm optimization (PSO) algo-

rithm [16] is used to optimize the restricted error functions
(24). PSO is an efficient, robust, and simple optimization
algorithm for solvingmany optimization problems. In nature,
PSO is a stochastic optimization approach which maintains
a swarm of candidate solutions, referred to as particles. The
method is inspired by the movement of particles and their
interactions with their neighbors in the group. The principle
and details of PSO algorithm are given in [17].

For the optimization of (24) by PSO directly, the obtained
combination matrix 𝐴 is not orthogonal. To keep the mini-
mization of the error function (24), a satisfied combination
matrix 𝐴 can be derived by singular value decomposition for
𝐴. Let the singular value decomposition of 𝐴 be 𝐴 = 𝑈𝑆𝑉𝑇,
where 𝑈, 𝑆 are orthogonal and diagonal matrices, respec-
tively. Thus combination matrix 𝐴 = 𝑈𝑆 is orthogonal and
it can be derived that (𝐴+)𝑇𝐴+ = 𝑈𝑆(𝑆𝑇𝑆)−1(𝑆𝑇𝑆)−1𝑆𝑇𝑈𝑇 =
(𝐴
+
)
𝑇

𝐴
+, which means that the minimum of the error

function (24) is retained.

5. Numerical Example

In this section, the optimal combination of EEFs is applied
for model reduction of a simple PDE model. Note that this

0 10 20 30 40 50 60

0

1

2

3

4

Sampling locations

−1

−2

−3

−4

Figure 1: The first 3 initial EEFs.

example serves as an illustration of the proposed methodol-
ogy rather than a demonstration of the reduction of a very
large and complex system.

In order to evaluate the performance of optimal combi-
nation of EEFs for model reduction of nonlinear PDEs, the
Burgers equation [18, 19] is studied. The Burgers equation
is a one-dimensional spatial model of a variety of three-
dimensional physical phenomena, greatly simplifying the
problemswhile retainingmany of the complex behavior char-
acteristics. This equation contains nonlinear convection and
diffusion terms and retainsmany of the interesting features of
the Navier-Stokes equation. The governing equation may be
written as follows:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
+ 𝑢
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
= 𝜀
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
, (25)

where the viscosity 𝜀 is 0.2 and (25) subjects to the following
boundary conditions:

𝑢 (0, 𝑡) = 𝑢 (2𝜋, 𝑡) = 0, (26)

and an initial condition:

𝑢 (𝑥, 0) = sin (𝑥) + sin (2𝑥) + sin (3𝑥) . (27)

Thirty-two sensors uniformly distributed in the space are
used for measurement. A noise-free dataset of 300 data is
collected from (25).The sampling interval Δ𝑡 is 0.01 s and the
simulation time is 3 s.

5.1. Comparisons with the EEFs. The EEFs are obtained from
the singular value decomposition for the sampling data. The
energy values of the dynamical systems based on the EEFs are
shown in Table 1.

Using spatial basis functions expansion based on the new
basis functions and the Galerkin methods, low-dimensional
dynamical systems can be derived. Meanwhile, the energy
functions of the obtained dynamical systems are calculated.
The results in Table 2 show that the low-dimensional dynam-
ical system based on the first several optimal combinations
of EEFs can capture the dynamics of the nonlinear PDE (25)
perfectly.



Journal of Applied Mathematics 5

Table 1: Energy value of the dynamical systems based on EEFs.

EEFs 1 order 2 order 3 order 4 order 5 order 6 order 7 order 8 order
Energy value 0.0026 0.0074 0.0220 0.0340 0.1176 0.1245 0.1279 0.1281

Table 2: Energy value of the dynamical systems based on new basis
functions.

New basis functions 1 order 2 order 3 order
Energy value 0.1277 0.1280 0.1281
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Figure 2: The first 3 optimal combined EEFs.

5.2. Low-Dimensional Approximation Based on 3 Optimal
Combined EEFs. Using the line combinations of the EEFs
and optimization for the energy error functions of the line
combination coefficients, the optimal combination of EEFs
formodel reduction of nonlinear PDEs is obtained, where the
first 3 initial EEFs and 3 optimal combined EEFs are shown
in Figures 1 and 2.

A new set of data is collected for testing to demonstrate
the spatial-temporal performance of the two kinds of EEFs.
For practical industrial control, the low-dimensional model
based on optimal combined EEFs is very useful because it
cannot only capture the dominant dynamics of the non-
linear PDEs but simplify the control design as well. The
spatiotemporal errors of the predicted output of two models
combined with two kinds of EEFs are shown in Figures 3
and 4, respectively. As given in Figures 3 and 4, the predicted
distributed error of the approximate model based on the
optimal combination of EEFs is shown to be significantly
smaller than that of the same order approximate model based
on initial EEFs.

6. Conclusions

In this note, an optimal combination of EEFs is proposed for
model reduction of nonlinear partial differential equations
(PDEs), which is obtained by the basis function transforma-
tion from the initial EEFs.The transformationmatrix is deter-
mined by the optimization for the energy error functions of
the dynamical systems; the present new EEFs can keep the
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Figure 3: Predicted error based on 3 initial EEFs.
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Figure 4: Predicted error based on 3 optimal combined EEFs.

dynamical information of neglectful modes and generate a
lower-dimensional and more precise dynamical system for
the PDEs.The numerical example shows its effectiveness and
feasibility for model reduction of the nonlinear PDEs.
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Birkhäuser, 2001.

[2] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover
Publications, 2001.

[3] C. Canuto, Spectral Methods in Fluid Dynamics, Springer, New
York, NY, USA, 1988.

[4] M. Jiang and H. Deng, “Optimal combination of spatial basis
functions for the model reduction of nonlinear distributed



6 Journal of Applied Mathematics

parameter systems,” Communications in Nonlinear Science and
Numerical Simulation, vol. 17, no. 12, pp. 5240–5248, 2012.

[5] A. R. Mitchell and D. F. Griffiths, The Finite Difference Method
in Partial Differential Equations, JohnWiley & Sons, Chichester,
UK, 1980.

[6] S. C. Brenner and L. R. Scott,TheMathematicalTheory of Finite
Element Methods, Springer, New York, NY, USA, 1994.

[7] L. G. Bleris and M. V. Kothare, “Low-order empirical modeling
of distributed parameter systems using temporal and spatial
eigenfunctions,” Computers and Chemical Engineering, vol. 29,
no. 4, pp. 817–827, 2005.

[8] M. Jiang and H. Deng, “Improved empirical eigenfunctions
based model reduction for nonlinear distributed parameter
systems,” Industrial & Engineering Chemistry Research, vol. 52,
no. 2, pp. 934–940, 2013.

[9] E. Aggelogiannaki and H. Sarimveis, “Nonlinear model predic-
tive control for distributed parameter systems using data driven
artificial neural network models,” Computers and Chemical
Engineering, vol. 32, no. 6, pp. 1225–1237, 2008.

[10] D. J. H. Wilson, G. W. Irwin, and G. Lightbody, “RBF principal
manifolds for processmonitoring,” IEEETransactions onNeural
Networks, vol. 10, no. 6, pp. 1424–1434, 1999.

[11] N. Aubry, W. Y. Lian, and E. S. Titi, “Preserving symmetries
in the proper orthogonal decomposition,” SIAM Journal on
Scientific Computing, vol. 14, no. 2, pp. 483–505, 1993.

[12] D. Armbruster, R. Heiland, E. J. Kostelich, and B. Nicolaenko,
“Phase-space analysis of bursting behavior inKolmogorov flow,”
Physica D, vol. 58, no. 1–4, pp. 392–401, 1992.

[13] C. Qi and H.-X. Li, “Nonlinear dimension reduction based
neural modeling for distributed parameter processes,”Chemical
Engineering Science, vol. 64, no. 19, pp. 4164–4170, 2009.

[14] J. Baker and P. D. Christofides, “Finite-dimensional approx-
imation and control of non-linear parabolic PDE systems,”
International Journal of Control, vol. 73, no. 5, pp. 439–456,
2000.

[15] V. Lenaerts, G. Kerschen, and J.-C. Golinval, “Identification of
a continuous structure with a geometrical non-linearity. Part
II: proper orthogonal decomposition,” Journal of Sound and
Vibration, vol. 262, no. 4, pp. 907–919, 2003.

[16] N. Yusup, A. M. Zain, and S. Z. M. Hashim, “Overview of
PSO for optimizing process parameters of machining,” Procedia
Engineering, vol. 29, pp. 914–923, 2012.

[17] G. Cui, L. Qin, S. Liu, Y.Wang, X. Zhang, and X. Cao, “Modified
PSO algorithm for solving planar graph coloring problem,”
Progress in Natural Science, vol. 18, no. 3, pp. 353–357, 2008.

[18] N. Smaoui, “Boundary and distributed control of the viscous
Burgers equation,” Journal of Computational and Applied Math-
ematics, vol. 182, no. 1, pp. 91–104, 2005.

[19] J. Baker, A. Armaou, and P. D. Christofides, “Nonlinear control
of incompressible fluid flow: application to Burgers’ equation
and 2D channel flow,” Journal of Mathematical Analysis and
Applications, vol. 252, no. 1, pp. 230–255, 2000.


