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Svozil developed a regularization method for quantum field theory on fractal spacetime (1987). Such a method can be applied
to the low-order perturbative renormalization of quantum electrodynamics but will depend on a conjectural integral formula on
non-integer-dimensional topological spaces.Themain purpose of this paper is to construct a fractal measure so as to guarantee the
validity of the conjectural integral formula.

1. Introduction

The quantum field theory is one of the oldest fundamental
and most widely used tools in physics. It is spectacularly suc-
cessful that the value of theoretical calculation is precisely in
agreement with experimental data, for example, the anoma-
lousmagnetmoment of electron. Nevertheless, such a precise
calculation is on the basis of some regularization methods,
for example, dimensional regularization [1].The dimensional
regularization requires that S matrix should be calculated in
a non-integer-dimensional spacetime. Following the spirit of
this heuristic calculation, Svozil [2] developed the quantum
field theory on fractal spacetime (QFTFS). This approach
not only can be applied to the low-order perturbative renor-
malization of quantum electrodynamics but also preserves
the gauge invariance and covariance of physical equations.
Svozil’s work implied that, for a 𝐷-dimensional spacetime,
there might be 𝐷 = 4 for macroscopic and 𝐷 < 4 for
microscopic events [2].

Interestingly, recently, the investigations for a consistent
theory of quantum gravity strongly indicate that a power-
counting renormalizable gravity model can be achieved in a
fractional dimensional spacetime, for example, the Horava-
Lifshitz (HL) gravity model [3, 4]. Unfortunately, HL gravity
model is not Lorentz invariant. To maintain the Lorentz
invariance, Calcagni [5, 6] extended the theoretical frame-
work of Svozil’s QFTFS so as to include the description for

gravity. Calcagni’s work showed that if the Hausdorff dimen-
sion of spacetime𝐷 ∼ 2, then the ultraviolet divergence could
be removed.

In fact, the notion that “the Universe is fractal” at quan-
tum scales has become popular [5–7].Thus, the demand for a
generalized calculus theory on the non-integer-dimensional
topological spaces is strongly increasing. Unfortunately, there
is still not a rigorous calculus theory for analytically describ-
ing fractal so that, as Svozil has mentioned [2], some of
the approaches of fractal calculus are essentially conjectural.
It is worth mentioning that Svozil’s QFTFS is just on the
basis of a conjectural integral formula on the non-integer-
dimensional topological spaces. Because of the importance
of Svozil’s approach in studying quantum gravity, we suggest
to construct a fractal measure so as to guarantee the validity
of Svozil’s conjectural integral formula.

2. Hausdorff Measure

The mathematical basis of QFTFS is the Hausdorff measure
[2]. The introduction for Hausdorff measure can be found in
Appendix A. If a𝐷-dimensional fractalΩ is embedded in𝑅

𝑛,
then it can be tessellated into (regular) polyhedra. In partic-
ular, it is always possible to divide 𝑅

𝑛 into parallelepipeds of
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the form [2]:

𝐸
𝑖
1
,...,𝑖
𝑛

= {(𝑥
1
, . . . , 𝑥

𝑛
) ∈ Ω : 𝑥

𝑗
= (𝑖
𝑗

− 1) Δ𝑥
𝑗

+ 𝛼
𝑗
,

0 ≤ 𝛼
𝑗

≤ Δ𝑥
𝑗
, 𝑗 = 1, . . . , 𝑛} .

(1)

Based on such a set of parallelepipeds, Svozil [2] conjec-
tured that the local Hausdorff measure 𝑑𝜇

𝐻
(Ω) of Ω should

yield the following form:

𝑑𝜇
𝐻

(Ω) = lim
𝑑(𝐸
𝑖1 ,...,𝑖𝑛
)→0

𝑛

∏

𝑗=1

(Δ𝑥
𝑗
)
𝐷/𝑛

=

𝑛

∏

𝑗=1

𝑑
𝐷/𝑛

𝑥
𝑗
, (2)

where𝑑(𝐸
𝑖
1
,...,𝑖
𝑛

)denotes the diameter of parallelepiped𝐸
𝑖
1
,...,𝑖
𝑛

and 𝑑
𝐷/𝑛 denotes the differential operator of order 𝐷/𝑛.

With these preparations above, Svozil [2] proved that if
formula (2) holds, then the integral of a spherically symmetric
function 𝑓(𝑟) on Ω can be written as

∫
Ω

𝑓 (𝑟) 𝑑𝜇
𝐻

=
2𝜋
𝐷/2

Γ (𝐷/2)
∫

𝑅

0

𝑓 (𝑟) 𝑟
𝐷−1

𝑑𝑟. (3)

The integral formula (3) is the starting point of QFTFS;
therefore, we must pay much attention to the validity of
formula (2). Nevertheless, formula (2) does not always hold
whenever 𝐷 ̸= 𝑛; for example, using the fractional derivative
[8], it is easy to check that 𝑑

𝐷/𝑛

𝑥
𝑗
/(𝑑𝑥
𝑗
)
𝐷/𝑛

̸= 1 if 𝐷 ̸= 𝑛. This
means that the integral formula (3) does not always hold in
the framework of Hausdorff measure.

In fact, Hausdorff measure is not an ideal mathematical
framework for describing fractal. Next, we will see that
Hausdorff measure indeed determines the dimension of a
fractal curve but does not describe its analytic properties, for
example, the self-similarity between local and global shapes
of a fractal curve. To realize this fact, we attempt to check the
case of the Cantor set; see Figure 1 [8, 9].

As shown by Figure 1, the Cantor set is a fractal. Using the
Hausdorff measure (A.8) (see Appendix A) we can compute
the dimension of the Cantor set as [9]

𝐷 =
ln 2

ln 3
= 0.6309 ⋅ ⋅ ⋅ . (4)

Nevertheless, for the Cantor set, we do not realize any
correlation between its local and global segments (i.e., self-
similarity) via the Hausdorff measure. For instance, the
Hausdorff distance between points 𝑥

(3)

2
and 𝑥

(3)

1
is denoted

by

𝐻
𝐷

(𝑥
(3)

2
, 𝑥
(3)

1
) =


𝑥
(3)

2
− 𝑥
(3)

1



𝐷

. (5)

Obviously, Hausdorff distance (5) is independent of the
values of points 𝑥

(3)

𝑖
, where 𝑖 runs from 3 to 8. Nevertheless,

because of the self-similarity between parts of the Cantor set,
any displacement of point 𝑥

(3)

𝑖
(𝑖 = 3, 4, . . . , 8) should influ-

ence the distance between 𝑥
(3)

2
and 𝑥

(3)

1
.This is undoubtedly a

nonlocal property. Unfortunately, Hausdorff distance (5) fails
to show this property. In the next section, we will construct a
new fractal measure so as to exhibit such a nonlocal property.
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Figure 1: The Cantor ternary set is defined by repeatedly removing
the middle thirds of line segments [8, 9]. (a) One starts by removing
the middle third from the interval [𝑥

(1)

2
, 𝑥
(1)

1
], leaving [𝑥

(2)

4
, 𝑥
(2)

3
] and

[𝑥
(2)

2
, 𝑥
(2)

1
]. (b) Next, the “middle third” of all remaining intervals

is removed. (c) This process is continued ad infinitum. Finally, the
Cantor ternary set consists of all points in the interval [𝑥(1)

2
, 𝑥
(1)

1
] that

are not removed at any step in this infinite process.

3. Fractal Measure

In Section 2, we have noted that the key point of guaranteeing
the validity of the integral formula (3) is that the Hausdorff
measure is compelled to equal some differences of fractional
order; that is, formula (2) holds. Such a fact reminds us
that the differences of fractional order itself may be a type
of measure. An interesting thought is that whether or not
the differences of fractional order can describe the nonlocal
property of a fractal curve. To this end, we attempt to check a
𝑚-dimensional volume:

𝑥 (𝑙) = 𝜔 (𝑚) 𝑙
𝑚

, (6)

where 𝜔(𝑚) is a constant factor that depends only on the
dimension 𝑚 and 𝑚 may be a fraction.

The fractional derivatives of order 𝑚 of 𝑥(𝑙) give [8]

𝑑
𝑚

𝑥 (𝑙) = Γ (𝑚 + 1) (𝑑𝑙)
𝑚

∼ (𝑑𝑙)
𝑚

. (7)

Obviously, (𝑑𝑙)
𝑚, as a 𝑚-dimensional volume, is a

𝑚-dimensional Hausdorff measure; therefore, formula (7)
implies that the differences of order 𝑚, 𝑑

𝑚

𝑥(𝑙), can be
also thought of as a measure for describing the length of
a 𝑚-dimensional fractal curve. In this case, the order of
differences 𝑑

𝑚

𝑥(𝑙) represents the Hausdorff dimension 𝑚.
Using the differences of order 𝑚, we define a new

distance—call it the “nonlocal distance”—in the form (see
(A.19) in Appendix A):

Δ𝑚 [𝑥 (𝑙) , 𝑥 (𝑙 − Δ𝑙)]


=



∞

∑

𝑗=0

𝑚 (𝑚 − 1) ⋅ ⋅ ⋅ (𝑚 − 𝑗 + 1) (−1)
𝑗

𝑗!
𝑥 (𝑙 − 𝑗Δ𝑙)



,

(8)

where |Δ
𝑚

[𝑥(𝑙), 𝑥(𝑙 − Δ𝑙)]| denotes the nonlocal distance
between points 𝑥(𝑙) and 𝑥(𝑙 − Δ𝑙).
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It is carefully noted that every 𝑥(𝑙−𝑗Δ𝑙) represents a point
on a 𝑚-dimensional fractal curve, where, 𝑗 = 0, 1, 2, . . . .

Clearly, according to (8), the distance between points 𝑥(𝑙)

and 𝑥(𝑙−Δ𝑙) would depend on all the points 𝑥(𝑙−𝑗Δ𝑙), where
𝑗 = 0, 1, 2, . . . .

Moreover, it’s easy to check that |Δ
𝑚=1

[𝑥(𝑙), 𝑥(𝑙 − Δ𝑙)]| =

|𝑥(𝑙) − 𝑥(𝑙 − Δ𝑙)|. This means that the Euclidean distance is a
special case of nonlocal distance whenever the dimension of
the fractal curve, 𝑚, equals 1.

If we use the nonlocal distance (8) tomeasure the distance
between points 𝑥

(3)

2
and 𝑥

(3)

1
(see Figure 1), then we will

surprisingly find that the nonlocal distance


Δ
𝑚=𝐷

[𝑥
(3)

2
, 𝑥
(3)

1
]


=



8

∑

𝑗=1

𝐷 (𝐷 − 1) ⋅ ⋅ ⋅ (𝐷 − 𝑗 + 1) (−1)
𝑗

𝑗!
𝑥
(3)

𝑗



,

(9)

which remarkably differs from the Hausdorff distance (5),
would depend on the values of points 𝑥

(3)

𝑖
(𝑖 = 3, 4, . . . , 8).

This means that any displacement of point 𝑥
(3)

𝑖
(𝑖 = 3, 4,

. . . , 8) would change the nonlocal distance between points
𝑥
(3)

2
and 𝑥

(3)

1
. Consequently, nonlocal distance (8) is indeed

an intrinsic way of describing self-similar fractal, since it
not only determines the dimension of a fractal curve (e.g.,
Cantor ternary set) but also reflects the correlation between
its parts. Interestingly, the nonlocal distance seems to have
some connection with quantum behavior; for details see
Appendix C.

Using the nonlocal distance we have given a definition for
fractal measure in Appendix A (see (A.23)).

To study the analytic properties of a fractal curve, we
define the fractal derivative (see (A.26) in Appendix A) in the
form:

𝑙
𝐷
𝜔
𝑓 (𝑥)

𝑙
𝐷
𝜔
𝑥

= lim
Δ𝑙→0

Δ
𝜔

[𝑓 (𝑙) , 𝑓 (𝑙 − Δ𝑙)]

Δ
𝜔

[𝑥 (𝑙) , 𝑥 (𝑙 − Δ𝑙)]
, (10)

where 𝑓(𝑙) = 𝑓[𝑥(𝑙)] is a differentiable function with respect
to coordinate 𝑙, 𝑙 is a parameter (e.g., the single parameter of
Peano’s curve [10]; for details see Appendix A) which com-
pletely determines the generation of a 𝜔-dimensional fractal
curve, and 𝑥(𝑙) denotes the length of the corresponding
fractal curve. (We introduce a simple way of understanding
the fractal derivative (10). For the case of the Newton-Leibniz
derivative of 𝑦 = 𝑓(𝑥), 𝑥 is a 1-dimensional coordinate axis
and hence can bemeasured by a Euclidean scale (ruler).Thus,
the differential element of 𝑥 is a 1-dimensional Euclidean
length 𝑑𝑥, which gives rise to the Newton-Leibniz derivative
𝑑𝑓(𝑥)/𝑑𝑥. Nevertheless, if 𝑥 is a 𝜔-dimensional fractal curve,
then it can not be measured by the Euclidean scale (ruler).
In this case, the differential element of 𝑥 should be a 𝜔-
dimensional volume

𝑙
𝐷
𝜔
𝑥, which gives rise to the fractal

derivative
𝑙
𝐷
𝜔
𝑓(𝑥)/

𝑙
𝐷
𝜔
𝑥. For details see Appendix A and

Figure 3.)
In particular, the fractal derivative (10) will return to the

well-known Newton-Leibniz derivative whenever 𝜔 = 1.

Using the formula of fractional derivative [8], the frac-
tal derivative can be rewritten as (see (A.27)–(A.29) in
Appendix A)

𝑙
𝐷
𝜔
𝑓 (𝑥)

𝑙
𝐷
𝜔
𝑥

=
𝑑
𝜔

𝑓 (𝑙) /𝑑𝑙
𝜔

𝑑𝜔𝑥 (𝑙) /𝑑𝑙𝜔
. (11)

By formula (11) we can easily compute the fractal deriva-
tive of any differentiable function using the fractional deriva-
tive; for concrete examples see Appendix B.

4. Fractal Integral

In Section 3, we have proposed a definition for fractal deriva-
tive. Correspondingly, we can now present a convenient
definition for fractal integral as follow.

Definition 1. If
𝑙
𝐷
𝑚

𝑓(𝑥)/
𝑙
𝐷
𝑚

𝑥 = 𝑔(𝑥) then the fractal
integral of 𝑔(𝑥) on a 𝑚-dimensional fractal curve 𝛽

𝑚
(𝑙) is

defined in the form:

∫
𝑙
𝐷
𝑚

𝑓 (𝑥) = ∫
𝛽
𝑚
(𝑙)

𝑔 (𝑥)
𝑙
𝐷
𝑚

𝑥

= ∫
𝑊

𝑔 (𝑥)
𝑑
𝑚

𝑥

𝑑𝑙𝑚
(𝑑𝑙)
𝑚

,

(12)

where𝑊denotes the definitional domain of the characteristic
parameter 𝑙; also, the parameter 𝑙 completely determines the
generation of the 𝑚-dimensional fractal curve 𝛽

𝑚
(𝑙).

Using such a definition of fractal integral we can prove the
following proposition.

Proposition 2. If 𝑥(𝑟) = 𝜔(𝑚)𝑟
𝑚 not only describes the

length of a 𝑚-dimensional fractal curve 𝛽
𝑚

(𝑟) but also denotes
the volume of a 𝑚-dimensional sphere (for example, the 𝑚-
dimensional fractal curve 𝛽

𝑚
(𝑟) fills up the entire sphere Ω) Ω

and if𝑓(𝑥) = 𝑓(𝑟) is a spherically symmetric function, then the
fractal integration of 𝑓(𝑥) on the 𝑚-dimensional fractal curve
𝛽
𝑚

(𝑟) equals

∫
𝛽
𝑚
(𝑟)

𝑓 (𝑥)
𝑟
𝐷
𝑚

𝑥 =
2𝜋
𝑚/2

Γ (𝑚/2)
∫

𝑅

0

𝑓 (𝑟) 𝑟
𝑚−1

𝑑𝑟, (13)

where 𝜔(𝑚) = 𝜋
𝑚/2

/Γ((𝑚/2) + 1).

Proof. The Riemann-Liouville fractional integrals of order 𝑚

of 𝑓(𝑙) are defined in the form [8]:

∫ 𝑓 (𝑙) (𝑑𝑙)
𝑚

=
1

Γ (𝑚)
∫

𝑅

𝑦

(𝑙 − 𝑦)
𝑚−1

𝑓 (𝑙) 𝑑𝑙. (14)

Using (A.29) and (B.3) we have

𝑟
𝐷
𝑚

𝑥 =
𝑑
𝑚

𝑥

𝑑𝑟𝑚
(𝑑𝑟)
𝑚

= 𝜔 (𝑚) Γ (1 + 𝑚) (𝑑𝑟)
𝑚

. (15)

Using (12) and (15) we arrive at

∫
𝛽
𝑚
(𝑟)

𝑓 (𝑥)
𝑟
𝐷
𝑚

𝑥 = ∫
Ω

𝑓 (𝑟) 𝜔 (𝑚) Γ (1 + 𝑚) (𝑑𝑟)
𝑚

. (16)
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Inserting (14) into (16) leads to

∫
𝛽
𝑚
(𝑟)

𝑓 (𝑥)
𝑟
𝐷
𝑚

𝑥 = 𝜔 (𝑚)
Γ (1 + 𝑚)

Γ (𝑚)

× ∫

𝑅

𝑦

(𝑟 − 𝑦)
𝑚−1

𝑓 (𝑟) 𝑑𝑟.

(17)

Using 𝜔(𝑚) = 𝜋
𝑚/2

/Γ((𝑚/2) + 1) and the formula (B.7),
(17) can be rewritten as

∫
𝛽
𝑚
(𝑟)

𝑓 (𝑥)
𝑟
𝐷
𝑚

𝑥 =
𝜋
𝑚/2

𝑚

Γ ((𝑚/2) + 1)
∫

𝑅

𝑦

(𝑟 − 𝑦)
𝑚−1

𝑓 (𝑟) 𝑑𝑟.

(18)

For 𝑦 = 0, (18) yields

∫
𝛽
𝑚
(𝑟)

𝑓 (𝑥)
𝑟
𝐷
𝑚

𝑥 =
𝜋
𝑚/2

𝑚

Γ ((𝑚/2) + 1)
∫

𝑅

0

𝑟
𝑚−1

𝑓 (𝑟) 𝑑𝑟. (19)

Using the formula (B.7) we have
𝑚

2
Γ (

𝑚

2
) = Γ (

𝑚

2
+ 1) . (20)

Substituting (20) into (19) leads to

∫
𝛽
𝑚
(𝑟)

𝑓 (𝑥)
𝑟
𝐷
𝑚

𝑥 =
2𝜋
𝑚/2

Γ (𝑚/2)
∫

𝑅

0

𝑓 (𝑟) 𝑟
𝑚−1

𝑑𝑟. (21)

The proof is complete.

Clearly, for 𝑓(𝑥) = 1, formula (13) gives the volume of a
𝑚-dimensional sphere, 𝜋

𝑚/2

/Γ((𝑚/2) + 1)𝑅
𝑚.

Before proceeding to arrive at the main result of this
paper, let us consider three measurable sets 𝑊

𝑖
with the

dimension 𝑚
𝑖
, where 𝑖 = 1, 2, 3. According to Fubini’s the-

orem, the Cartesian product of the sets 𝑊
𝑖
can produce a set

𝑊 with the dimension 𝑚 = 𝑚
1

+ 𝑚
2

+ 𝑚
3
, where 𝑊 =

𝑊
1

⊗ 𝑊
2

⊗ 𝑊
3
. The integration over a function 𝑓(𝑟

1
, 𝑟
2
, 𝑟
3
)

on 𝑊 can be written in the form:

∫
𝑊

𝑓 (𝑟
1
, 𝑟
2
, 𝑟
3
) 𝑑𝜇 (𝑊)

= ∫
𝑊
1

∫
𝑊
2

∫
𝑊
3

𝑓 (𝑟
1
, 𝑟
2
, 𝑟
3
) 𝑑𝜇 (𝑊

1
) ⋅ 𝑑𝜇 (𝑊

2
) ⋅ 𝑑𝜇 (𝑊

3
) .

(22)

Then we have the following lemma.

Lemma 3. If 𝑑𝜇(𝑊
𝑖
) is denoted by

𝑑𝜇 (𝑊
𝑖
) =

2𝜋
𝑚
𝑖
/2

Γ (𝑚
𝑖
/2)

𝑟
𝑚
𝑖
−1

𝑖
𝑑𝑟
𝑖

(𝑖 = 1, 2, 3) (23)

and if 𝑓(𝑟
1
, 𝑟
2
, 𝑟
3
) is specified by a spherically symmetric

function 𝑓(𝑟) with 𝑟
2

= 𝑟
2

1
+ 𝑟
2

2
+ 𝑟
2

3
, then we have

∫
𝑊
1

∫
𝑊
2

∫
𝑊
3

𝑓 (𝑟
1
, 𝑟
2
, 𝑟
3
) 𝑑𝜇 (𝑊

1
) ⋅ 𝑑𝜇 (𝑊

2
) ⋅ 𝑑𝜇 (𝑊

3
)

=
2𝜋
𝑚/2

Γ (𝑚/2)
∫

𝑅

0

𝑓 (𝑟) 𝑟
𝑚−1

𝑑𝑟.

(24)

The proof of Lemma 3 can be found in page 28 in the
literature [8].

With the preparations above, we can introduce the main
result of this paper as follow.

Proposition 4. If 𝑥
𝑖
(𝑟
𝑖
) = 𝜔(𝐷

𝑖
)𝑟
𝐷
𝑖

𝑖
(𝑖 = 1, 2, 3) not only

describes the length of a 𝐷
𝑖
-dimensional fractal curve 𝛽

𝐷
𝑖

(𝑟
𝑖
)

but also denotes the volume of a 𝐷
𝑖
-dimensional sphere Ω

𝑖
and

if 𝑓(𝑟) = 𝑓(𝑟
1
, 𝑟
2
, 𝑟
3
) is a spherically symmetric function, then

the fractal integration of 𝑓(𝑟) on the fractal graph 𝛽
𝐷
1

(𝑟
1
) ⊗

𝛽
𝐷
2

(𝑟
2
) ⊗ 𝛽
𝐷
3

(𝑟
3
) equals

∫
𝛽
𝐷1
(𝑟
1
)

∫
𝛽
𝐷2
(𝑟
2
)

∫
𝛽
𝐷3
(𝑟
3
)

𝑓 (𝑟
1
, 𝑟
2
, 𝑟
3
)

3

∏

𝑖=1

𝑟
𝑖
𝐷
𝐷
𝑖

𝑥
𝑖

=
2𝜋
𝐷/2

Γ (𝐷/2)
∫

𝑅

0

𝑓 (𝑟) 𝑟
𝐷−1

𝑑𝑟,

(25)

where 𝜔(𝐷
𝑖
) = 𝜋

𝐷
𝑖
/2

/Γ((𝐷
𝑖
/2) + 1), 𝑟

2

= 𝑟
2

1
+ 𝑟
2

2
+ 𝑟
2

3
, and

𝐷 = 𝐷
1

+ 𝐷
2

+ 𝐷
3
.

Proof. Using (13) and (24) we easily arrive at (25).
The proof is complete.

Proposition 4 shows that we have arrived at the con-
jectural integral formula (3) through the fractal measure
(A.23). In particular, if 𝑅 → ∞, then the integral for-
mula (25) will exhibit linearity, translational invariance, and
scaling property. These properties are natural and necessary
in applying dimensional regularization to quantum field
theory [2]. It is worth mentioning that Proposition 4 can
be generalized so that 𝑖 might take any positive integer, for
example, 𝑖 = 1, 2, . . . , ∞. If 𝑖 = 1, 2, 3, 4, then 𝛽

𝐷
𝑖

(𝑟
𝑖
) may

denote coordinate axiswith the dimension𝐷
𝑖
and so𝛽

𝐷
1

(𝑟
1
)⊗

𝛽
𝐷
2

(𝑟
2
) ⊗ 𝛽
𝐷
3

(𝑟
3
) ⊗ 𝛽
𝐷
4

(𝑟
4
) may denote spacetime.

5. Conclusion

Hausdorff measure is not an ideal mathematical framework
for describing fractal since it fails to describe the nonlocal
property of fractal (e.g., self-similarity). However, the fractal
measure constructed by this paper not only shows the dimen-
sion of a fractal but also describes its analytic properties (e.g.,
nonlocal property). Not only so, using this fractal measure
we can derive Svozil’s conjectural integral formula (3) which
is the starting point of quantum field theory on fractal
spacetime.Therefore, our fractal measure may be regarded as
a possible mathematical basis of establishing quantum field
theory on fractal spacetime.

Appendices

A. Mathematical Preparations

In Euclidean geometry, the dimension of a geometric graph
is determined by the number of independent variables (i.e.,
the number of degrees of freedom). For example, every
point on a plane can be represented by 2-tuples real number
(𝑥
1
, 𝑥
2
); then the dimension of the plane is denoted by
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2. Nevertheless, the existence of Peano’s curve powerfully
refutes this viewpoint. Peano’s curve, which is determined by
an independent characteristic parameter (i.e., fill parameter),
would fill up the entire plane [10].Therefore, mathematicians
have to reconsider the definition of dimension. The most
famous one of all definitions of dimension is the Hausdorff
dimension, which is defined through the Hausdorff measure
[8].

A.1. Hausdorff Measure and Hausdorff Dimension. In order
to bring the definition of Hausdorff dimension, we firstly
introduce the Hausdorff measure [8].

Let 𝑊 be a nonempty subset of 𝑛-dimensional Euclidean
space 𝑅

𝑛; the diameter of 𝑊 is defined as

diam (𝑊) = sup {𝑑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑊} , (A.1)

where 𝑑(𝑥, 𝑦), which is the distance between points 𝑥 and 𝑦,
is a real-valued function on 𝑊 ⊗ 𝑊, such that the following
four conditions are satisfied:

𝑑 (𝑥, 𝑦) ≥ 0 ∀𝑥, 𝑦 ∈ 𝑊; (A.2)

𝑑 (𝑥, 𝑦) = 0 iff 𝑥 = 𝑦; (A.3)

𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥) ∀𝑥, 𝑦 ∈ 𝑊; (A.4)

𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑊. (A.5)

For example, the distance of 𝑛-dimensional Euclidean
space 𝑅

𝑛 can be defined as

𝑑
𝐸

(𝑥, 𝑦) =
𝑥 − 𝑦

 = (

𝑛

∑

𝑖=1

𝑥𝑖 − 𝑦
𝑖



2

)

1/2

. (A.6)

Then, it is easy to check that (A.6) satisfies conditions
(A.2)–(A.5).

Now, let us consider a countable set {𝐸
𝑖
} of subsets of

diameter at most 𝜀 that covers 𝑊; that is,

𝑊 ⊂

∞

⋃

𝑖=1

𝐸
𝑖
, diam (𝐸

𝑖
) ≤ 𝜀 ∀𝑖. (A.7)

For a positive 𝐷 and each 𝜀 > 0, we consider covers of 𝑊

by countable families {𝐸
𝑖
} of (arbitrary) sets 𝐸

𝑖
with diameter

less than 𝜀 and take the infimum of the sum of [diam(𝐸
𝑖
)]
𝐷.

Then we have

𝐻
𝐷

𝜀
(𝑊)

= inf {

∞

∑

𝑖=1

[diam (𝐸
𝑖
)]
𝐷

: 𝑊 ⊂

∞

⋃

𝑖=1

𝐸
𝑖
, diam (𝐸

𝑖
) ≤ 𝜀} .

(A.8)

If the following limit exists

𝐻
𝐷

(𝑊) = lim
𝜀→0

𝐻
𝐷

𝜀
(𝑊) = finite, (A.9)

then the value𝐻
𝐷

(𝑊) is called the𝐷-dimensional Hausdorff
measure.

A.2. Shortcoming of Hausdorff Measure. In general, 𝐷 may
be a fraction. In 1967, Mandelbrot realized that [11] the length
of coastline can be measured using Hausdorff measure (A.8)
rather than Euclideanmeasure (A.6), and then the dimension
of coastline is a fraction. Mandelbrot called such geometric
graphs the “fractal”.

The fractal is self-similar between its local and global
shapes. Unfortunately, Hausdorff measure can determine the
dimension of fractal but not reflect the connection (e.g., self-
similarity) among the parts of the corresponding fractal. To
see this, we consider Koch’s curve in Figure 2.

Clearly, the congruent triangle Δ𝑥
1
𝑥
2
𝑥
3
is similar to

Δ𝑥
4
𝑥
5
𝑥
6
. If we use the Hausdorff measure (A.8) to measure

the local distance of Koch’s curve (e.g., the distance between
points 𝑥

1
and 𝑥

3
), then we have

𝐻
𝐷

(𝑥
1
, 𝑥
3
) =

𝑥1 − 𝑥
2



𝐷

+
𝑥2 − 𝑥

3



𝐷

, (A.10)

where 𝐷 is the dimension of theKoch curve.
Equation (A.10) shows that the Hausdorff distance

between points 𝑥
1
and 𝑥

3
depends only on the positions of

points 𝑥
𝑖

(𝑖 = 1, 2, 3) and is thereby independent of the
positions of points 𝑥

𝑗
(𝑗 = 4, 5, 6). Nevertheless, because

of the self-similarity of Koch’s curve, any displacements of
points 𝑥

𝑗
(𝑗 = 4, 5, 6) would influence the positions of 𝑥

𝑖
(𝑖 =

1, 2, 3) and hence change the distance between points 𝑥
1
and

𝑥
3
. That is to say, the local shape (e.g., Δ𝑥

1
𝑥
2
𝑥
3
) is closely

related to the global shape (e.g., Δ𝑥
4
𝑥
5
𝑥
6
). Unfortunately,

the Hausdorff distance (A.10) undoubtedly fails to reflect this
fact. Therefore, we need to find a new measure of describing
the analytic properties of fractal.

A.3. Definition of Fractal Measure. Hausdorff measure (A.8)
does not reflect the self-similarity of fractal, so we cannot
establish the calculus theory of fractal using the Hausdorff
measure. In general, people often use the fractional calculus
to approximately describe the analytic properties of fractal
[8, 12].

The fractional calculus is a theory of integrals and deriva-
tives of any arbitrary real order. For example, the fractional
derivatives of order 𝑚 of the function 𝑦(𝑙) = 𝑐𝑙

𝑛 equal [8]

𝑑
𝑚

𝑦 (𝑙)

𝑑𝑙𝑚
= 𝑐

Γ (𝑛 + 1)

Γ (𝑛 − 𝑚 + 1)
𝑙
𝑛−𝑚

, (A.11)

where Γ(𝑥) denotes the Gamma function and 𝑚 is an arbi-
trary real number.

Now, let us consider a 𝑚-dimensional volume

𝑥 (𝑙) = 𝜔 (𝑚) 𝑙
𝑚

, (A.12)

where 𝜔(𝑚) is a constant which depends only on the dimen-
sion 𝑚.

Using formula (A.11), the fractional derivatives of order𝑚

of (A.12) equal

𝑑
𝑚

𝑥 (𝑙)

𝑑𝑙𝑚
= Γ (𝑚 + 1) 𝜔 (𝑚) . (A.13)
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Figure 2: Koch’s curve, which is similar to the generation of Cantor
ternary set (see Figure 1), is defined by repeatedly adding themiddle
thirds of line segments [11].

Equation (A.13) can be written as

Δ
𝑚

𝑥 (𝑙) = Γ (𝑚 + 1) 𝜔 (𝑚) (Δ𝑙)
𝑚

+ 𝑜 [(Δ𝑙)
𝑚

] , (A.14)

whereΔ
𝑚

𝑥(𝑙) denotes the differences of order𝑚 and 𝑜[(Δ𝑙)
𝑚

]

denotes the infinitesimal terms of higher order compared to
(Δ𝑙)
𝑚.
Equation (A.14) implies that

Δ
𝑚

𝑥 (𝑙) ∼ (Δ𝑙)
𝑚

, (A.15)

and thereby

𝑁

∑

𝑖=1

Δ
𝑚

𝑥 (𝑙
𝑖
) ∼

𝑁

∑

𝑖=1

(Δ𝑙)
𝑚

. (A.16)

Obviously, (Δ𝑙)
𝑚 is a 𝑚-dimensional Hausdorff measure,

which can describe the length of a 𝑚-dimensional fractal
curve. Consequently, (A.15) and (A.16) together imply that
Δ
𝑚

𝑥(𝑙) can be also thought of as a 𝑚-dimensional measure.
In this case, the order of differences Δ

𝑚

𝑥(𝑙) represents the
Hausdorff dimension𝑚. Because of this fact, we next attempt
to use the differences of order 𝑚 to define a new measure.

Let us consider the left-shift operator with stepΔ𝑙 and the
identity operator as follows:

𝐿
Δ𝑙

𝑥 (𝑙) = 𝑥 (𝑙 − Δ𝑙) ,

𝐿
0
𝑥 (𝑙) = 𝑥 (𝑙) .

(A.17)

Using the left-shift operator 𝐿
Δ𝑙
and the identity operator

𝐿
0
, we can define the difference operator of order 𝑚 in the

form:

(𝐿
0

− 𝐿
Δ𝑙

)
𝑚

=

∞

∑

𝑗=0

𝑚 (𝑚 − 1) ⋅ ⋅ ⋅ (𝑚 − 𝑗 + 1) (−1)
𝑗

𝑗!
𝐿
𝑗Δ𝑙

.

(A.18)

Using (A.18), we define a new distance between points
𝑥(𝑙) and 𝑥(𝑙 − Δ𝑙) in the form:

Δ𝑚 [𝑥 (𝑙) , 𝑥 (𝑙 − Δ𝑙)]


=



∞

∑

𝑗=0

𝑚 (𝑚 − 1) ⋅ ⋅ ⋅ (𝑚 − 𝑗 + 1) (−1)
𝑗

𝑗!
𝑥 (𝑙 − 𝑗Δ𝑙)



.

(A.19)

We call (A.19) the “nonlocal distance,” which describes
the length of a 𝑚-dimensional fractal curve.

When 𝑚 = 1, the nonlocal distance (A.19) returns to the
Euclidean distance; that is,

Δ𝑚=1 [𝑥 (𝑙) , 𝑥 (𝑙 − Δ𝑙)]
 = |𝑥 (𝑙) − 𝑥 (𝑙 − Δ𝑙)| . (A.20)

In general, the nonlocal distance (A.19) does not satisfy
the general properties of distance, (A.4)-(A.5) but reflects the
connection between local and global segments of fractal. (For
example, the nonlocal distance between points 𝑥(𝑙) and 𝑥(𝑙 +

Δ𝑙), that is, |Δ
𝑚

[𝑥(𝑙), 𝑥(𝑙+Δ𝑙)]|, needs to be defined using the
right-shift operator𝑅

Δ𝑙
which leads to𝑅

Δ𝑙
𝑥(𝑙) = 𝑥(𝑙+Δ𝑙).The

corresponding difference operator reads (𝑅
Δ𝑙

− 𝑅
0
)
𝑚. Then,

the nonlocal distance would not satisfy condition (A.4).)
To understand the latter, we need to realize that the output
value of (A.19) would depend on the values of all points
𝑥(𝑙 − 𝑗Δ𝑙) (𝑗 = 0, 1, 2 . . .) rather than only on points 𝑥(𝑙) and
𝑥(𝑙 − Δ𝑙).

For instance, in Figure 2, the nonlocal distance |Δ
𝐷

[𝑥
5
,

𝑥
3
]| between points 𝑥

3
and 𝑥

5
would depend on the positions

of points 𝑥
𝑖

(𝑖 = 1, 2, 3, 4, 5) rather than only on points 𝑥
3

and 𝑥
5
. Therefore, the nonlocal distance (A.19) is indeed an

intrinsic way of describing fractal, since it not only shows the
dimension but also reflects the connection between local and
global segments of fractal.

Using the nonlocal distance (A.19), we can propose a
definition for fractal measure.

Let 𝑊 be a nonempty subset of 𝑛-dimensional Euclidean
space 𝑅

𝑛. We consider a countable set {𝐹
𝑖
} of subsets of

diameter at most 𝜀 that covers 𝑊; that is,

𝑊 ⊂

∞

⋃

𝑖=1

𝐹
𝑖
, diam𝐷 (𝐹

𝑖
) ≤ 𝜀 ∀𝑖, (A.21)

where diam𝐷(𝐹
𝑖
) defined by using the nonlocal distance

(A.19) denotes the diameter of 𝐹
𝑖
; that is,

diam𝐷 (𝐹
𝑖
) = sup {

Δ𝐷 [𝑥, 𝑦]
 , 𝑥, 𝑦 ∈ 𝐹

𝑖
} . (A.22)

Fractal Measure. For a positive 𝐷 and each 𝜀 > 0, we consider
covers of 𝑊 by countable families {𝐹

𝑖
} of (arbitrary) sets 𝐹

𝑖

with diameter less than 𝜀 and take the infimum of the sum of
diam𝐷(𝐹

𝑖
). Then we have

Π
𝐷

𝜀
(𝑊)

= inf {

∞

∑

𝑖=1

diam𝐷 (𝐹
𝑖
) : 𝑊 ⊂

∞

⋃

𝑖=1

𝐹
𝑖
, diam𝐷 (𝐹

𝑖
) ≤ 𝜀} .

(A.23)

If the following limit exists

Π
𝐷

(𝑊) = lim
𝜀→0

Π
𝐷

𝜀
(𝑊) = finite, (A.24)

then the value Π
𝐷

(𝑊) is called the 𝐷-dimensional fractal
measure; meanwhile, the dimension of 𝑊 equals 𝐷.
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A.4. Definition of Fractal Derivative. Obviously, to describe
the analytic properties of fractal, we need the corresponding
calculus theory.

Before proceeding to introduce the definition of fractal
derivative, let us consider a 𝜔-dimensional fractal curve
𝛽
𝜔
(𝑙) (see Figure 3), which is determined by an independent

characteristic parameter 𝑙 (e.g., the fill parameter of Peano’s
curve), filling up a 𝜔-dimensional region. Assume that the
length of the fractal curve is specified by a 𝜔-dimensional
volume 𝑥(𝑙), then the (nonlocal) length between points 𝑎 =

𝛽
𝜔
(𝑙
0
) and 𝑏 = 𝛽

𝜔
(𝑙
𝑛
) in Figure 3 should be denoted by

Π
𝐷

([𝑎, 𝑏]) = lim
Δ𝑙→0

inf {

𝑛

∑

𝑖=1

Δ𝜔 [𝑥 (𝑙
𝑖−1

) , 𝑥 (𝑙
𝑖
)]

} , (A.25)

where we have used the fractal measure (A.23).
It is carefully noted that the length between points 𝑎 =

𝛽
𝜔
(𝑙
0
) and 𝑏 = 𝛽

𝜔
(𝑙
𝑛
) can not bemeasured by Euclidean scale;

see Figure 3.
As such, we can present a definition for fractal derivative

as follows.
Fractal Derivative. For any differentiable function 𝑦 = 𝑓(𝑥),
if 𝑥 = 𝑥(𝑙) is not only a 𝜔-dimensional volume but also
describes the length of a 𝜔-dimensional fractal curve 𝛾

𝜔
(𝑙),

then the fractal derivative of 𝑦 = 𝑓(𝑥) with respect to the
fractal curve 𝛾

𝜔
(𝑙) is defined as

𝑙
𝐷
𝜔

𝑓 (𝑥)

𝑙
𝐷
𝜔

𝑥
= lim
Δ𝑙→0

Δ
𝜔

[𝑓 (𝑙) , 𝑓 (𝑙 − Δ𝑙)]

Δ
𝜔

[𝑥 (𝑙) , 𝑥 (𝑙 − Δ𝑙)]
, (A.26)

where 𝑓(𝑙) = 𝑓[𝑥(𝑙)].
Clearly, if𝜔 = 1, then the formula (A.26)will return to the

Newton-Leibniz derivative, andmeanwhile 𝛾
𝜔=1

(𝑙) is restored
to a 1-dimensional coordinate axis.

In general, the fractional derivative of order 𝜔 of any
differentiable function 𝑓(𝑙) is defined in the form [13]:

𝑑
𝜔

𝑓 (𝑙)

𝑑𝑙𝜔

= lim
Δ𝑙→0

(

∞

∑

𝑗=0

𝜔 (𝜔 − 1) ⋅ ⋅ ⋅ (𝜔 − 𝑗 + 1) (−1)
𝑗

𝑗!
𝑓 (𝑙 − 𝑗Δ𝑙)

× (Δ𝑙)
−𝜔

) .

(A.27)

Comparing (A.19) and (A.27), we have

𝑑
𝜔

𝑓 (𝑙)

𝑑𝑙𝜔
= lim
Δ𝑙→0

Δ
𝜔

[𝑓 (𝑙) , 𝑓 (𝑙 − Δ𝑙)]

(Δ𝑙)
𝜔

. (A.28)

Using formula (A.28), the formula (A.26) can be rewritten
as

𝑙
𝐷
𝜔

𝑓 (𝑥)

𝑙
𝐷
𝜔

𝑥
= lim
Δ𝑙→0

Δ
𝜔

[𝑓 (𝑙) , 𝑓 (𝑙 − Δ𝑙)]

Δ
𝜔

[𝑥 (𝑙) , 𝑥 (𝑙 − Δ𝑙)]
⋅ lim
Δ𝑙→0

1/(Δ𝑙)
𝜔

1/(Δ𝑙)
𝜔

=

lim
Δ𝑙→0

(Δ
𝜔

[𝑓 (𝑙) , 𝑓 (𝑙 − Δ𝑙)] /(Δ𝑙)
𝜔

)

lim
Δ𝑙→0

(Δ
𝜔

[𝑥 (𝑙) , 𝑥 (𝑙 − Δ𝑙)] /(Δ𝑙)
𝜔

)

=
𝑑
𝜔

𝑓 (𝑙) /𝑑𝑙
𝜔

𝑑𝜔𝑥 (𝑙) /𝑑𝑙𝜔
.

(A.29)

Formula (A.29) indicates that we can compute the fractal
derivative using the fractional derivative.

B. Computation Examples

In Appendix A, we have noted that the fractal derivative can
be computed using the formula (A.29). In this appendix, we
present two computing examples.

Example 1. If 𝑥(𝑙) = 𝜔(𝑚)𝑙
𝑚 describes the length of a 𝑚-

dimensional fractal curve, then the fractal derivative of the
constant function 𝑓(𝑥) = 𝐶 with respect to 𝑥 equals

𝑙
𝐷
𝑚

𝐶

𝑙
𝐷
𝑚

𝑥
=

𝐶

Γ (1 − 𝑚) Γ (1 + 𝑚)
⋅

1

𝑥
, (B.1)

where 𝜔(𝑚) is a constant that depends only on 𝑚.

Proof. The fractional derivatives of order 𝑚 of the constant 𝐶

and the power function 𝑦(𝑙) = 𝑎𝑙
𝑛, are respectively, as follows

[8]:

𝑑
𝑚

𝐶

𝑑𝑙𝑚
=

𝐶

Γ (1 − 𝑚)
𝑙
−𝑚

, (B.2)

𝑑
𝑚

𝑦 (𝑙)

𝑑𝑙𝑚
= 𝑎

Γ (𝑛 + 1)

Γ (𝑛 − 𝑚 + 1)
𝑙
𝑛−𝑚

. (B.3)

Using formulas (A.29), (B.2), and (B.3), the fractal deriva-
tive
𝑙
𝐷
𝑚

𝑓(𝑥)/
𝑙
𝐷
𝑚

𝑥 can be computed as follows:

𝑙
𝐷
𝑚

𝐶

𝑙
𝐷
𝑚

𝑥
=

𝑑
𝑚

𝐶/𝑑𝑙
𝑚

𝑑𝑚 [𝜔 (𝑚) 𝑙𝑚] /𝑑𝑙𝑚
=

(𝐶/Γ (1 − 𝑚)) 𝑙
−𝑚

𝜔 (𝑚) Γ (1 + 𝑚)

=
𝐶

Γ (1 − 𝑚) Γ (1 + 𝑚)
⋅

1

𝑥
.

(B.4)

The proof is complete.

Example 2. If 𝑥 is the characteristic parameter of a 𝑚-
dimensional fractal curve andmeanwhile it also describes the
length of this fractal curve, then the fractal derivative of the
constant function 𝑓(𝑥) = 𝐶 with respect to 𝑥 equals

𝑥
𝐷
𝑚

𝐶

𝑥
𝐷
𝑚

𝑥
= 𝐶 (1 − 𝑚) ⋅

1

𝑥
. (B.5)
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Fractal curve 

Nonlocal scale 

Euclidean scale 

𝛽𝜔(l1) 𝛽𝜔(l3)

𝛽𝜔(l2) 𝛽𝜔(l4)a = 𝛽𝜔(l0)
𝛽𝜔(li) 𝛽𝜔(li+2)

)

𝛽𝜔(li+1)

𝛽𝜔(ln−1)

b = 𝛽𝜔(ln

𝛽𝜔(l)

x(l0) = 0 x(l1) x(l2) x(l3) x(ln−3) x(ln−2) x(ln−1) x(ln)

x(l)

l0 = 0 l1 l2 l3

l

lmlm−3 lm−2
lm−1

· · ·

· · ·

· · ·

· · ·

· · ·· · ·

Figure 3: The fractal curve 𝛽
𝜔
(𝑙) consists of the union ⋃

𝑛

𝑖=1
[𝛽
𝜔
(𝑙
𝑖−1

), 𝛽
𝜔
(𝑙
𝑖
)], where 𝑛 = 𝑛(𝑚). The dimension of fractal curve 𝛽

𝜔
(𝑙) equals

𝜔 = lim
𝑚→∞

(ln 𝑛(𝑚)/ ln𝑚). Since 𝛽
𝜔
(𝑙) is a fractal curve, the distance between points 𝛽

𝜔
(𝑙
0
) and 𝛽

𝜔
(𝑙
𝑛
) cannot be measured using the

Euclidean scale (ruler) 𝑙; otherwise, we will have 𝑑[𝛽
𝜔
(𝑙
0
), 𝛽
𝜔
(𝑙
𝑛
)] = lim

𝑚→∞
𝑛(𝑚)((𝑙

𝑚
− 𝑙
0
)/𝑚) = ∞ or =0. However, the fractal curve 𝛽

𝜔
(𝑙)

can be measured using the nonlocal scale (ruler) 𝑥(𝑙); for the way of measure see the formula (A.25).

Proof. Using formulas (A.29), (B.2), and (B.3) we have

𝑥
𝐷
𝑚

𝑓 (𝑥)

𝑥
𝐷
𝑚

𝑥
=

𝑑
𝑚

𝐶/𝑑𝑥
𝑚

𝑑𝑚𝑥/𝑑𝑥𝑚
=

(𝐶/Γ (1 − 𝑚)) 𝑥
−𝑚

(Γ (2) /Γ (2 − 𝑚)) 𝑥1−𝑚

= 𝐶
Γ (2 − 𝑚)

Γ (1 − 𝑚)
⋅

1

𝑥
.

(B.6)

Considering the property of Gamma function

Γ (𝑥 + 1) = 𝑥Γ (𝑥) , (B.7)

we have

1 − 𝑚 =
Γ (2 − 𝑚)

Γ (1 − 𝑚)
. (B.8)

Substituting (B.8) into (B.6) we arrive at

𝑥
𝐷
𝑚

𝐶

𝑥
𝐷
𝑚

𝑥
= 𝐶 (1 − 𝑚) ⋅

1

𝑥
. (B.9)

The proof is complete.

C. Quantum Behavior and Nonlocal Distance

Now we investigate the connection between quantum behav-
iour and nonlocal distance. For simplicity, we still con-
sider the Cantor set in Figure 1, where the nonlocal dis-
tance between points 𝑥

(𝑛)

2
and 𝑥

(𝑛)

1
is equal to

Π (𝑥
(𝑛)

2
, 𝑥
(𝑛)

1
) =


Δ
𝑚=𝐷

[𝑥
(𝑛)

2
, 𝑥
(𝑛)

1
]


=



2
𝑛

∑

𝑗=1

𝐷 (𝐷 − 1) ⋅ ⋅ ⋅ (𝐷 − 𝑗 + 1) (−1)
𝑗

𝑗!
𝑥
(𝑛)

𝑗



.

(C.1)

Clearly, the output value of nonlocal distance (C.1)
depends on the value of each element in the set {𝑥

(𝑛)

𝑖
},

where 𝑖 runs from 1 to 2
𝑛. If 𝑛 → ∞, we will have

Π(𝑥
(𝑛)

2
, 𝑥
(𝑛)

1
) → 0; however, the number of elements in the

set {𝑥
(𝑛)

𝑖
} would tend to infinity, too. This means that if we

want to precisely measure the distance of smaller scale
(e.g., lim

𝑛≫1
Π(𝑥
(𝑛)

2
, 𝑥
(𝑛)

1
)), correspondingly we will need to

collect the points {𝑥
(𝑛)

𝑖
}. As a result, if we want to precisely

measure the nonlocal distance between points lim
𝑛→∞

𝑥
(𝑛)

2

and lim
𝑛→∞

𝑥
(𝑛)

1
, we will need to collect a set of infinite

points, that is, {𝑥(∞)
𝑖

}
∞

𝑖=1
. Unfortunately, we must fail to arrive
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at this purpose on an actual measurement. In other words, we
cannot precisely measure the distance of microscopic scale;
this fact is consistent with the “Heisenberg Uncertainty Prin-
ciple.” (In fact, the connection between quantum mechanics
and fractal has been noticed in some earlier papers [14–17].)

On the other hand, the nonlocal distance (C.1) between
points𝑥

(𝑛)

2
and𝑥
(𝑛)

1
depends clearly on the position of𝑥(𝑛)

𝑖
(𝑖 =

1, 2, . . . , 2
𝑛

); for example, any displacement of point 𝑥
(𝑛)

2
𝑛

would influence the output value of nonlocal distance (C.1). It
is a clearly nonlocal correlation (correlations span arbitrarily
distances) and similar to quantum entanglement.

The above two facts imply that the nonlocal description
may be an intrinsic way of describing quantum behavior. (In
references [18, 19], we have shown that the local description
is not a way of completely describing physical reality.)
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