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We study the boundary value problems of second-order singular differential equations. At first, we reduce the BVPs to initial value
problems of first-order singular integrodifferential equations and then we employ the quasilinearization method in studying the
IVPs and obtain twomonotone iterative sequences, which converge uniformly and quadratically to the unique solution of the IVPs.
Finally, we get the similar result for the given BVPs.

1. Introduction

It is well known that quasilinearization method is a powerful
tool for proving the existence of approximate solutions of
nonlinear systems and the converge quadratically to the
unique solution of the given problems (see [1]). Recently,
Abd-Ellateef Kamar et al. investigated the first-order singular
systems of differential equations with initial value problem
[2]. In [3], Wang and Liu developed monotone iterative
technique combined with the method of upper and lower
solutions for studying the second-order singular systemswith
boundary value problems (BVPs).

In this paper, we extend quasilinearization method to
study the second-order singular systems with the boundary
conditions:

𝐴𝑋̈ = 𝑓 (𝑡, 𝑋, 𝑋̇) , 𝑋̇ (0) = 𝑋
0
, 𝑋 (𝑏) = 𝑋

1
, (1)

where 𝐴 ∈ 𝑅𝑛×𝑛 is a singular matrix, 𝑓 ∈ 𝐶[𝐼 × 𝑅𝑛 × 𝑅𝑛, 𝑅𝑛],
𝐼 = [0, 𝑏], and 𝑋

0
and 𝑋

1
are two constant vectors. By using

the existence result [4] for linear singular systems and the
comparison result [5],we investigate two monotone iterative

sequences which converge uniformly and quadratically to the
solution of the problem.

2. Preliminaries

Consider the following initial value problem:

−𝐴𝑈̇ = 𝑓 (𝑡, 𝑆𝑈, −𝑈) , 𝑈 (0) = −𝑋
0
, (2)

where 𝐴 is a singular 𝑛 × 𝑛 matrix, 𝑓 ∈ 𝐶[𝐼 × 𝑅𝑛 × 𝑅𝑛, 𝑅𝑛],
𝐼 = [0, 𝑏], 𝑆𝑈 = 𝑋

1
+∫
𝑏

𝑡
𝑈(𝑡)𝑑𝑠 is an increasing operator, and

𝑋
0
is a constant vector.
In order to obtain twomonotone sequences, we introduce

an existence result for the corresponding linear singular
systems and a comparison result.

The existence of the solution of the linear initial value
problem of the form

−𝐴𝑈̇ +𝑀(𝑡)𝑈 = 𝑔 (𝑡) , 𝑈 (0) = −𝑋0 (3)

is well known and is given by the following lemma.
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Lemma 1 (see [4]). Assume that the nonhomogeneous linear
system (3) exists and if

(i) there exists a 𝜆 ∈ 𝑅 such that (−𝜆𝐴 +𝑀(𝑡))−1 exists,

(ii) 𝑋
0
is the solution of (𝐼−𝐴𝐴𝐷)(−𝑋

0
−𝑊̂(0)) = 0, where

𝐴 = (−𝐴 +𝑀(𝑡))
−1
(−𝐴) ,

𝑀̂ = (−𝐴 +𝑀(𝑡))
−1
𝑀(𝑡) ,

𝑔 (𝑡) = (−𝐴 +𝑀(𝑡))
−1
𝑔 (𝑡) ,

𝑊̂ (𝑡) = (𝐼 − 𝐴
𝐷
𝐴) 𝑀̂

𝐷
𝑔 (𝑡) ,

(4)

and 𝐴𝐷, 𝑀̂𝐷 are the Drazin inverses of 𝐴, 𝑀̂(𝑡), respectively,
then the solution is given by

𝑈 (𝑡) = 𝑒
−𝐴
𝐷
𝑀̂𝑡
𝐴
𝐷
𝐴 (−𝑋

0
) + 𝑒
−𝐴
𝐷
𝑀̂𝑡
∫

𝑡

0

𝑒
𝐴
𝐷
𝑀̂𝑠
𝐴
𝐷
𝑔 (𝑠) 𝑑𝑠

+ (𝐼 − 𝐴
𝐷
𝐴) 𝑀̂

𝐷
𝑔 (𝑡) . (5)

Now one gives the following assumptions for convenience.

(𝐻
2.1
) Let 𝐴 and𝑀(𝑡) be matrices such that (−𝜆𝐴 +𝑀(𝑡))−1
exists and is nonnegative for some 𝜆 ∈ 𝑅1. Suppose
further that 𝑇, 𝑇−1 exist and are nonnegative, such that

𝑇
−1
𝐴𝑇 = (

𝐶 0

0 0
) , 𝑇

−1
𝑀̂𝑇 = (

𝐼
1
− 𝜆𝐶 0

0 𝐼
2

) , (6)

where 𝐴 = (−𝜆𝐴 + 𝑀(𝑡))
−1
𝐴, 𝑀̂ = (−𝜆𝐴 +

𝑀(𝑡))
−1
𝑀(𝑡), and 𝐶 is a diagonal square matrix with

𝐶
−1
> 0 and 𝐶−1(𝐼

1
− 𝜆𝐶) > 0.

(𝐻
2.2
)There exist 𝛼

0
(𝑡), 𝛽
0
(𝑡) ∈ 𝐶

1
[𝐼, 𝑅
𝑛
] with 𝛼

0
(𝑡) ≤ 𝛽

0
(𝑡)

on 𝐼, such that

−𝐴𝛼̇
0
≤ 𝑓 (𝑡, 𝑆𝛼

0
, −𝛼
0
) , 𝛼

0
(0) ≤ −𝑋

0
,

−𝐴 ̇𝛽
0
≥ 𝑓 (𝑡, 𝑆𝛽

0
, −𝛽
0
) , 𝛽

0 (0) ≥ −𝑋0.

(7)

(𝐻
2.3
) All second-order derivatives of 𝑓(𝑡, 𝑋, 𝑈) exist and are
bounded, 𝑓(𝑡, 𝑋,𝑈) is convex in 𝑋 for each (𝑡, 𝑈),
𝑓(𝑡, 𝑋, 𝑈) is convex in 𝑈 for each (𝑡, 𝑋), 𝑓

𝑥
(𝑡, 𝑋, 𝑈) is

nonincreasing in 𝑈 for each (𝑡, 𝑋), and 𝑓
𝑦
(𝑡, 𝑋, 𝑈) is

nonincreasing in𝑋 for each (𝑡, 𝑈).

(𝐻
2.4
) Moreover𝑀(𝑡) = −[𝑓

𝑥
(𝑡, 𝑆𝜂, −𝜂)𝑏 − 𝑓

𝑦
(𝑡, 𝑆𝜂, −𝜂)].

To obtain the results, one needs the following comparison
theorem.

Lemma 2. Let −𝐴𝑃̇+𝑀(𝑡)𝑃 ≤ 0 such that𝐴 and𝑀(𝑡) satisfy
assumptions (𝐻

2.1
) and (𝐻

2.4
). Then 𝑃(0) ≤ 0 implies 𝑃(𝑡) ≤ 0

on 𝐼.
The proof is similar to [5] and one omits it.

3. Main Results

Firstly, we develop the following result which is important for
the final result.

Theorem3. Suppose that assumptions (𝐻
2.1
)–(𝐻
2.4
) hold and,

for𝑋
0
∈ 𝑅
𝑛,

(i) (𝐼 − 𝐴𝐴𝐷)(−𝑋
0
− 𝑊̂(0)) = 0, where 𝑊̂(𝑡) = (𝐼 −

𝐴
𝐷
𝐴)𝑀̂
𝐷
𝑔(𝑡).

Then there exist two monotone sequences {𝛼
𝑛
} and {𝛽

𝑛
}, which

converge uniformly on 𝐼 to the unique solution of problem (2)
and the convergence rate is quadratic.

Proof. From (𝐻
2.3
) we find that 𝑓

𝑥𝑥
(𝑡, 𝑋, 𝑈) ≥ 0, and

𝑓 (𝑡, 𝑋
1
, 𝑈) ≥ 𝑓 (𝑡, 𝑋

2
, 𝑈) + 𝑓

𝑥
(𝑡, 𝑋
2
, 𝑈) (𝑋

1
− 𝑋
2
) , (8)

for all 𝑋
1
, 𝑋
2
, 𝑈 ∈ 𝑅

𝑛 and 𝑡 ∈ 𝐼. The convexity of 𝑓(𝑡, 𝑋, 𝑈)
in 𝑈 implies that

𝑓 (𝑡, 𝑋,𝑈
1
) ≥ 𝑓 (𝑡, 𝑋, 𝑈

2
) + 𝑓
𝑦
(𝑡, 𝑋, 𝑈

2
) (𝑈
1
− 𝑈
2
) , (9)

for 𝑈
1
, 𝑈
2
∈ 𝑅
𝑛, 𝑡 ∈ 𝐼, and𝑋 ∈ 𝑅𝑛.

Now consider the following linear problems. For 𝑘 =
0, 1, 2, 3 . . .,

−𝐴𝛼̇
𝑘+1
= 𝑓 (𝑡, 𝑆𝛼

𝑘
, −𝛼
𝑘
) + 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (𝑆𝛼
𝑘+1
− 𝑆𝛼
𝑘
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (−𝛼
𝑘+1
+ 𝛼
𝑘
) , 𝛼

𝑘+1
(0) = −𝑋

0
,

(10)

−𝐴 ̇𝛽
𝑘+1
= 𝑓 (𝑡, 𝑆𝛽

𝑘
, −𝛽
𝑘
) + 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (𝑆𝛽
𝑘+1
− 𝑆𝛽
𝑘
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (−𝛽
𝑘+1
+ 𝛽
𝑘
) , 𝛽

𝑘+1
(0) = −𝑋

0
.

(11)

For (10), set

𝑔 (𝑡, 𝑆𝑥, −𝑥) ≡ 𝑓 (𝑡, 𝑆𝛼0, −𝛼0) + 𝑓𝑥 (𝑡, 𝑆𝛼0, −𝛼0) (𝑆𝑥 − 𝑆𝛼0)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (−𝑥 + 𝛼

0
) .

(12)

Then, we obtain that −𝐴𝛼̇
0
≤ 𝑓(𝑡, 𝑆𝛼

0
, −𝛼
0
) = 𝑔(𝑡, 𝑆𝛼

0
, −𝛼
0
).

Furthermore, we can get

−𝐴 ̇𝛽
0
≥ 𝑓 (𝑡, 𝑆𝛽

0
, −𝛽
0
)

≥ 𝑓 (𝑡, 𝑆𝛼
0
, −𝛼
0
) + 𝑓
𝑥
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (𝑆𝛽
0
− 𝑆𝛼
0
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (−𝛽
0
+ 𝛼
0
)

= 𝑔 (𝑡, 𝑆𝛽
0
, −𝛽
0
) .

(13)

Hence 𝛼
0
and 𝛽

0
are lower and upper solutions of (12),

respectively. Thus (12) has a solution 𝛼
1
on 𝐼, and we have

𝛼
0
≤ 𝛼
1
≤ 𝛽
0
. Similarly, set

𝑔
∗
(𝑡, 𝑆𝑥, −𝑥) ≡ 𝑓 (𝑡, 𝑆𝛽0, −𝛽0) + 𝑓𝑥 (𝑡, 𝑆𝛼0, −𝛼0) (𝑆𝑥 − 𝑆𝛽0)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (−𝑥 + 𝛽

0
) .

(14)
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Then we obtain that (14) has a solution 𝛽
1
on 𝐼, and we have

𝛼
0
≤ 𝛽
1
≤ 𝛽
0
.

Now we claim that

𝛼
0
≤ 𝛼
1
≤ 𝛽
1
≤ 𝛽
0

on 𝐼. (15)

Let 𝑝 = 𝛼
1
− 𝛽
1
. We get that

−𝐴𝑝̇ = − 𝐴𝛼̇
1
− (−𝐴 ̇𝛽

1
)

= 𝑓 (𝑡, 𝑆𝛼
0
, −𝛼
0
) + 𝑓
𝑥
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (𝑆𝛼
1
− 𝑆𝛼
0
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (−𝛼
1
+ 𝛼
0
)

− 𝑓 (𝑡, 𝑆𝛽
0
, −𝛽
0
) − 𝑓
𝑥
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (𝑆𝛽
1
− 𝑆𝛽
0
)

− 𝑓
𝑦
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (−𝛽
1
+ 𝛽
0
)

= 𝑓 (𝑡, 𝑆𝛼
0
, −𝛼
0
) − 𝑓 (𝑡, 𝑆𝛽

0
, −𝛼
0
)

+ 𝑓 (𝑡, 𝑆𝛽
0
, −𝛼
0
) − 𝑓 (𝑡, 𝑆𝛽

0
, −𝛽
0
)

+ 𝑓
𝑥
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (𝑆𝛼
1
− 𝑆𝛼
0
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (−𝛼
1
+ 𝛼
0
)

− 𝑓
𝑥
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (𝑆𝛽
1
− 𝑆𝛽
0
)

− 𝑓
𝑦
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (−𝛽
1
+ 𝛽
0
)

≤ 𝑓
𝑥
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (𝑆𝛼
0
− 𝑆𝛽
0
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (−𝛼
0
+ 𝛽
0
)

+ 𝑓
𝑥
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (𝑆𝛼
1
− 𝑆𝛼
0
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (−𝛼
1
+ 𝛼
0
)

− 𝑓
𝑥
(𝑡, 𝑆𝛽
0
, −𝛽
0
) (𝑆𝛽
1
− 𝑆𝛽
0
)

− 𝑓
𝑦
(𝑡, 𝑆𝛽
0
, −𝛽
0
) (−𝛽
1
+ 𝛽
0
)

≤ 𝑓
𝑥
(𝑡, 𝑆𝛼
0
, −𝛼
0
)

× (𝑆𝛼
0
− 𝑆𝛽
0
+ 𝑆𝛼
1
− 𝑆𝛼
0
− 𝑆𝛽
1
+ 𝑆𝛽
0
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
0
, −𝛼
0
)

× (−𝛼
0
+ 𝛽
0
− 𝛼
1
+ 𝛼
0
+ 𝛽
1
− 𝛽
0
)

= 𝑓
𝑥
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (𝑆𝛼
1
− 𝑆𝛽
1
)

− 𝑓
𝑦
(𝑡, 𝑆𝛼
0
, −𝛼
0
) (𝛼
1
− 𝛽
1
) ≤ −𝑀 (𝑡) (𝛼

1
− 𝛽
1
) .

(16)

Noticing that 𝑝(0) = 𝛼
1
(0) − 𝛽

1
(0) ≤ 0, we get 𝛼

1
(𝑡) ≤ 𝛽

1
(𝑡),

on 𝐼.
Now, assume that, for 𝑛 = 0, 1, 2, . . . , 𝑘, (10) and (11) admit

solutions 𝛼
𝑛
and 𝛽

𝑛
, respectively, such that

𝛼
0
≤ 𝛼
1
≤ ⋅ ⋅ ⋅ ≤ 𝛼

𝑘
≤ 𝛽
𝑘
≤ ⋅ ⋅ ⋅ ≤ 𝛽

1
≤ 𝛽
0
, on 𝐼. (17)

Then setting 𝑛 = 𝑘 in (10) and (11), we observe that the
assumptions in Theorem 3 are satisfied. Thus, there exist

solutions 𝛼
𝑘+1
(𝑡) and 𝛽

𝑘+1
(𝑡) for (10) and (11), respectively,

and we now will show that the following relation

𝛼
𝑘
(𝑡) ≤ 𝛼

𝑘+1
(𝑡) ≤ 𝛽

𝑘+1
(𝑡) ≤ 𝛽

𝑘
(𝑡) , 𝑡 ∈ 𝐼, (18)

holds. Firstly, we can easily know that 𝛼
𝑘
(𝑡) ≤ 𝛼

𝑘+1
(𝑡) ≤ 𝛽

𝑘
(𝑡)

and 𝛼
𝑘
(𝑡) ≤ 𝛽

𝑘+1
(𝑡) ≤ 𝛽

𝑘
(𝑡).

To prove that 𝛼
𝑘+1
≤ 𝛽
𝑘+1

, consider 𝑝 = 𝛼
𝑘+1
−𝛽
𝑘+1

. Then

−𝐴𝑝̇ = − 𝐴𝛼̇
𝑘+1
− (−𝐴 ̇𝛽

𝑘+1
)

= 𝑓 (𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) + 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (𝑆𝛼
𝑘+1
− 𝑆𝛼
𝑘
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (−𝛼
𝑘+1
+ 𝛼
𝑘
)

− 𝑓 (𝑡, 𝑆𝛽
𝑘
, −𝛽
𝑘
) − 𝑓
𝑥
(𝑡, 𝑆𝛽
𝑘
, −𝛽
𝑘
) (𝑆𝛽
𝑘+1
− 𝑆𝛽
𝑘
)

− 𝑓
𝑦
(𝑡, 𝑆𝛽
𝑘
, −𝛽
𝑘
) (−𝛽
𝑘+1
+ 𝛽
𝑘
)

= 𝑓 (𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) − 𝑓 (𝑡, 𝑆𝛽

𝑘
, −𝛼
𝑘
)

+ 𝑓 (𝑡, 𝑆𝛽
𝑘
, −𝛼
𝑘
) − 𝑓 (𝑡, 𝑆𝛽

𝑘
, −𝛽
𝑘
)

+ 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (𝑆𝛼
𝑘+1
− 𝑆𝛼
𝑘
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (−𝛼
𝑘+1
+ 𝛼
𝑘
)

− 𝑓
𝑥
(𝑡, 𝑆𝛽
𝑘
, −𝛽
𝑘
) (𝑆𝛽
𝑘+1
− 𝑆𝛽
𝑘
)

− 𝑓
𝑦
(𝑡, 𝑆𝛽
𝑘
, −𝛽
𝑘
) (−𝛽
𝑘+1
+ 𝛽
𝑘
)

≤ 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (𝑆𝛼
𝑘
− 𝑆𝛽
𝑘
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛽
𝑘
, −𝛼
𝑘
) (−𝛼
𝑘
+ 𝛽
𝑘
)

+ 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (𝑆𝛼
𝑘+1
− 𝑆𝛼
𝑘
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (−𝛼
𝑘+1
+ 𝛼
𝑘
)

− 𝑓
𝑥
(𝑡, 𝑆𝛽
𝑘
, −𝛽
𝑘
) (𝑆𝛽
𝑘+1
− 𝑆𝛽
𝑘
)

− 𝑓
𝑦
(𝑡, 𝑆𝛽
𝑘
, −𝛽
𝑘
) (−𝛽
𝑘+1
+ 𝛽
𝑘
)

≤ 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
)

× (𝑆𝛼
𝑘
− 𝑆𝛽
𝑘
+ 𝑆𝛼
𝑘+1
− 𝑆𝛼
𝑘
− 𝑆𝛽
𝑘+1
+ 𝑆𝛽
𝑘
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
)

× (−𝛼
𝑘
+ 𝛽
𝑘
− 𝛼
𝑘+1
+ 𝛼
𝑘
− 𝛽
𝑘+1
+ 𝛽
𝑘
)

= 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (𝑆𝛼
𝑘+1
− 𝑆𝛽
𝑘+1
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑘
, −𝛼
𝑘
) (−𝛼
𝑘+1
+ 𝛽
𝑘+1
) = −𝑀 (𝑡) 𝑝.

(19)

We know that 𝑝(0) = 𝛼
𝑘+1
(0) − 𝛽

𝑘+1
(0) ≤ 0. Hence, from

Lemma 2, we deduce that 𝛼
𝑘+1
(𝑡) ≤ 𝛽

𝑘+1
(𝑡), on 𝐼. Thus, we

have monotone sequences {𝛼
𝑛
}, {𝛽
𝑛
} such that

𝛼
0
≤ 𝛼
1
≤ ⋅ ⋅ ⋅ ≤ 𝛼

𝑛
≤ 𝛽
𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝛽

1
≤ 𝛽
0
, on 𝐼. (20)

Now, employing Ascoli-Arzela’s theorem we conclude that
the sequences converge uniformly and monotonically to the
unique solution 𝑈(𝑡) of (2) on 𝐼.
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To show that the convergence rate is quadratic, we begin
with 𝑝

𝑛+1
= 𝑥 − 𝛼

𝑛+1
. Then

−𝐴𝑝̇
𝑛+1
= − 𝐴𝑥̇ − (−𝐴𝛼̇

𝑛+1
)

= 𝑓 (𝑡, 𝑆𝑥, −𝑥) − 𝑓 (𝑡, 𝑆𝛼𝑛, −𝛼𝑛)

− 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (𝑆𝛼
𝑛+1
− 𝑆𝛼
𝑛
)

− 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (−𝛼
𝑛+1
+ 𝛼
𝑛
)

= 𝑓 (𝑡, 𝑆𝑥, −𝑥) − 𝑓 (𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)

− 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (𝑆𝛼
𝑛+1
− 𝑆𝑥 + 𝑆𝑥 − 𝑆𝛼

𝑛
)

− 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (−𝛼
𝑛+1
+ 𝑥 − 𝑥 + 𝛼

𝑛
)

= 𝑓 (𝑡, 𝑆𝑥, −𝑥) − 𝑓 (𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)

+ 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑆𝑝
𝑛+1
− 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑆𝑝
𝑛

− 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑝
𝑛+1
+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑝
𝑛

= 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑆𝑝
𝑛+1
− 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑝
𝑛+1

+ 𝑓 (𝑡, 𝑆𝑥, −𝑥) − 𝑓 (𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)

− 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑆𝑝
𝑛
+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑝
𝑛

≤ −𝑀(𝑡) 𝑝 + 𝑓 (𝑡, 𝑆𝑥, −𝑥)

− 𝑓 (𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) − 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑆𝑝
𝑛

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑝
𝑛

= −𝑀(𝑡) 𝑝 + 𝑓 (𝑡, 𝑆𝑥, −𝑥) − 𝑓 (𝑡, 𝑆𝛼
𝑛
, −𝑥)

+ 𝑓 (𝑡, 𝑆𝛼
𝑛
, −𝑥) − 𝑓 (𝑡, 𝑆𝛼

𝑛
, −𝛼
𝑛
)

− 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑆𝑝
𝑛
+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑝
𝑛

= −𝑀(𝑡) 𝑝

+ ∫

1

0

𝑓
𝑥
(𝑡, 𝜎𝑆𝑥 + (1 − 𝜎) 𝑆𝛼

𝑛
, −𝑥) (𝑆𝑥 − 𝑆𝛼

𝑛
) 𝑑𝜎

+ ∫

1

0

𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜎 (−𝑥) + (1 − 𝜎) (−𝛼

𝑛
))

× (−𝑥 + 𝛼
𝑛
) 𝑑𝜎

− 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑆𝑝
𝑛
+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) 𝑝
𝑛

= −𝑀(𝑡) 𝑝 + ∫

1

0

[𝑓
𝑥
(𝑡, 𝜎𝑆𝑥 + (1 − 𝜎) 𝑆𝛼

𝑛
, −𝑥)

−𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑆𝑝
𝑛
𝑑𝜎

− ∫

1

0

[𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜎 (−𝑥) + (1 − 𝜎) (−𝛼

𝑛
))

−𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑝
𝑛
𝑑𝜎

= −𝑀(𝑡) 𝑝 + 𝐴
1
+ 𝐵
1
,

(21)

where

𝐴
1
= ∫

1

0

[𝑓
𝑥
(𝑡, 𝜎𝑆𝑥 + (1 − 𝜎) 𝑆𝛼𝑛, −𝑥)

−𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑆𝑝
𝑛
𝑑𝜎,

𝐵
1
= − ∫

1

0

[𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜎 (−𝑥) + (1 − 𝜎) (−𝛼

𝑛
))

−𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑝
𝑛
𝑑𝜎.

(22)

Set 𝜉
1
= 𝜎𝑆𝑥 + (1 − 𝜎)𝑆𝛼

𝑛
. Then

𝐴
1
= ∫

1

0

[𝑓
𝑥
(𝑡, 𝜉
1
, −𝑥) − 𝑓

𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑆𝑝
𝑛
𝑑𝜎

= ∫

1

0

[𝑓
𝑥
(𝑡, 𝜉
1
, −𝑥) − 𝑓

𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝑥) + 𝑓

𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝑥)

−𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑆𝑝
𝑛
𝑑𝜎

= ∬

1

0

[𝑓
𝑥𝑥
(𝑡, 𝜏𝜉
1
+ (1 − 𝜏) 𝑆𝛼𝑛, −𝑥) (𝜉1 − 𝑆𝛼𝑛)

+ 𝑓
𝑥𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜏 (−𝑥) + (1 − 𝜏) (−𝛼𝑛))

× (−𝑥 + 𝛼
𝑛
)] 𝑆𝑝
𝑛
𝑑𝜏 𝑑𝜎

= ∬

1

0

[𝑓
𝑥𝑥
(𝑡, 𝜉
2
, −𝑥) 𝜎 (𝑆𝑥 − 𝑆𝛼

𝑛
)

−𝑓
𝑥𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜉
3
) (𝑥 − 𝛼

𝑛
)] 𝑆𝑝
𝑛
𝑑𝜏 𝑑𝜎

=
1

2
𝑁
1
𝑆𝑝
2

𝑛
+ 𝑁
2
𝑝
𝑛
𝑆𝑝
𝑛
≤ (
1

2
𝑁
1
𝑏
2
+ 𝑁
2
𝑏) 𝑝
2

𝑛
,

(23)

where 𝜉
2
= 𝜏𝜉
1
+ (1 − 𝜏)𝑆𝛼

𝑛
, 𝜉
3
= 𝜏(−𝑥) + (1 − 𝜏)(−𝛼

𝑛
),

𝑓
𝑥𝑥
(𝑡, 𝑈,𝑋) ≤ 𝑁

1
, and −𝑓

𝑥𝑦
(𝑡, 𝑈,𝑋) ≤ 𝑁

2
.

Next, set 𝜂
1
= 𝜎(−𝑥) + (1 − 𝜎)(−𝛼

𝑛
). Then

𝐵
1
= − ∫

1

0

[𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜂
1
) − 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑝
𝑛
𝑑𝜎

= −∬

1

0

[𝑓
𝑦𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜏𝜂
1
+ (1 − 𝜏) (−𝛼

𝑛
))

× (𝜂
1
+ 𝛼
𝑛
) ] 𝑝
𝑛
𝑑𝜎 𝑑𝜏

= ∬

1

0

𝑓
𝑦𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜂
2
) 𝜎𝑝
2

𝑛
𝑑𝜎𝑑𝜏 ≤

1

2
𝑁
3
𝑝
2

𝑛
,

(24)

where 𝑓
𝑦𝑦
(𝑡, 𝑈,𝑋) ≤ 𝑁

3
and 𝜂
2
= 𝜏𝜂
1
+ (1 − 𝜏)(−𝛼

𝑛
).

Furthermore, we have that

−𝐴𝑝̇
𝑛+1
≤ −𝑀(𝑡) 𝑝

𝑛+1
+ 𝑁
4
𝑝
2

𝑛
, (25)

where𝑁
4
= (1/2)𝑁

1
𝑏
2
+ 𝑁
2
𝑏 + (1/2)𝑁

3
.

Using Lemma 2, we show that 𝑝
𝑛+1
(𝑡) ≤ 𝑈(𝑡) on 𝐼, where

𝑈(𝑡) is the solution of

−𝐴𝑈̇ +𝑀 (𝑡)𝑈 = 𝑁
4
𝑝
2

𝑛
, 𝑈 (0) = 0. (26)
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Thus, using Lemma 1, the solution of the previously men-
tioned equation is given as

𝑈 (𝑡) = 𝑒
−𝐴
𝐷
𝑀̂𝑡
∫

𝑡

0

𝑒
𝐴
𝐷
𝑀̂𝑠
𝐴
𝐷
(−𝜆𝐴 +𝑀(𝑠))

−1
𝑁
4
𝑝
2

𝑛
(𝑠) 𝑑𝑠

+ (𝐼 − 𝐴
𝐷
𝐴) 𝑀̂

𝐷
(−𝜆𝐴 +𝑀(𝑡))

−1
𝑁
4
𝑝
2

𝑛
(𝑡) .

(27)

After taking suitable estimates, we obtain

𝑝
𝑛+1
≤ 𝐾
1
𝑝
2

𝑛
, (28)

where 𝐾
1
= 𝑒
−𝐴
𝐷
𝑀̂𝑡
∫
𝑡

0
𝑒
𝐴
𝐷
𝑀̂𝑠
𝐴
𝐷
(−𝜆𝐴 + 𝑀(𝑠))

−1
𝑁
4
𝑑𝑠 + (𝐼 −

𝐴
𝐷
𝐴)𝑀̂
𝐷
(−𝜆𝐴 +𝑀(𝑡))

−1
𝑁
4
.

Set 𝑞
𝑛+1
= 𝛽
𝑛+1
− 𝑥. Then we can get

−𝐴 ̇𝑞
𝑛+1
= − 𝐴 ̇𝛽

𝑛+1
− (−𝐴𝑥̇)

= 𝑓 (𝑡, 𝑆𝛽
𝑛
, −𝛽
𝑛
) + 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (𝑆𝛽
𝑛+1
− 𝑆𝛽
𝑛
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (−𝛽
𝑛+1
+ 𝛽
𝑛
) − 𝑓 (𝑡, 𝑆𝑥, −𝑥)

= 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (𝑆𝛽
𝑛+1
− 𝑆𝑥 + 𝑆𝑥 − 𝑆𝛽

𝑛
)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (−𝛽
𝑛+1
+ 𝑥 − 𝑥 + 𝛽

𝑛
)

+ 𝑓 (𝑡, 𝑆𝛽
𝑛
, −𝛽
𝑛
) − 𝑓 (𝑡, 𝑆𝑥, −𝑥)

= 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (𝑆𝛽
𝑛+1
− 𝑆𝑥)

− 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (𝛽
𝑛+1
− 𝑥) + 𝑓 (𝑡, 𝑆𝛽

𝑛
, −𝛽
𝑛
)

− 𝑓 (𝑡, 𝑆𝑥, −𝑥) − 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (𝑆𝛽
𝑛
− 𝑆𝑥)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (𝛽
𝑛
− 𝑥)

≤ −𝑀(𝑡) 𝑞
𝑛+1
+ 𝑓 (𝑡, 𝑆𝛽

𝑛
, −𝛽
𝑛
) − 𝑓 (𝑡, 𝑆𝑥, −𝛽

𝑛
)

+ 𝑓 (𝑡, 𝑆𝑥, −𝛽
𝑛
) − 𝑓 (𝑡, 𝑆𝑥, −𝑥)

− 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (𝑆𝛽
𝑛
− 𝑆𝑥)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (𝛽
𝑛
− 𝑥)

= −𝑀(𝑡) 𝑞𝑛+1

+ ∫

1

0

𝑓
𝑥
(𝑡, 𝜎𝑆𝛽

𝑛
+ (1 − 𝜎) 𝑆𝑥, −𝛽

𝑛
) (𝑆𝛽
𝑛
− 𝑆𝑥) 𝑑𝜎

+ ∫

1

0

𝑓
𝑦
(𝑡, 𝑆𝑥, 𝜎 (−𝛽

𝑛
) + (1 − 𝜎) (−𝑥))

× (−𝛽
𝑛
+ 𝑥) 𝑑𝜎

− 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (𝑆𝛽
𝑛
− 𝑆𝑥)

+ 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
) (𝛽
𝑛
− 𝑥)

= −𝑀(𝑡) 𝑞
𝑛+1
+ ∫

1

0

[𝑓
𝑥
(𝑡, 𝜎𝑆𝛽

𝑛
+ (1 − 𝜎) 𝑆𝑥, −𝛽

𝑛
)

−𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑆𝑞
𝑛
𝑑𝜎

− ∫

1

0

[𝑓
𝑦
(𝑡, 𝑆𝑥, 𝜎 (−𝛽

𝑛
) + (1 − 𝜎) (−𝑥))

−𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑞
𝑛
𝑑𝜎

= −𝑀(𝑡) 𝑞
𝑛+1
+ 𝐴
2
+ 𝐵
2
,

(29)

in which

𝐴
2
= ∫

1

0

[𝑓
𝑥
(𝑡, 𝜎𝑆𝛽

𝑛
+ (1 − 𝜎) 𝑆𝑥, −𝛽

𝑛
)

−𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑆𝑞
𝑛
𝑑𝜎,

𝐵
2
= − ∫

1

0

[𝑓
𝑦
(𝑡, 𝑆𝑥, 𝜎 (−𝛽

𝑛
) + (1 − 𝜎) (−𝑥))

−𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑞
𝑛
𝑑𝜎.

(30)

Set 𝜃
1
= 𝜎𝑆𝛽

𝑛
+ (1 − 𝜎)𝑆𝑥. Then we get that

𝐴
2
= ∫

1

0

[𝑓
𝑥
(𝑡, 𝜃
1
, −𝛽
𝑛
) − 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑆𝑞
𝑛
𝑑𝜎

= ∫

1

0

[𝑓
𝑥
(𝑡, 𝜃
1
, −𝛽
𝑛
) − 𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛽
𝑛
)

+𝑓
𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛽) − 𝑓

𝑥
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑆𝑞
𝑛
𝑑𝜎

= ∬

1

0

[𝑓
𝑥𝑥
(𝑡, 𝜏𝜃
1
+ (1 − 𝜏) 𝑆𝛼

𝑛
, −𝛽
𝑛
) (𝜃
1
− 𝑆𝛼
𝑛
)

+ 𝑓
𝑥𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜏 (−𝛽

𝑛
) + (1 − 𝜏) (−𝛼

𝑛
))

× (−𝛽
𝑛
+ 𝛼
𝑛
)] 𝑆𝑞
𝑛
𝑑𝜎𝑑𝜏

= ∬

1

0

[𝑓
𝑥𝑥
(𝑡, 𝜃
2
, −𝛽
𝑛
) (𝜎𝑞
𝑛
+ 𝑝
𝑛
)

−𝑓
𝑥𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜃
3
) (𝑞
𝑛
+ 𝑝
𝑛
)] 𝑆𝑞
𝑛
𝑑𝜎 𝑑𝜏

≤ 𝑁
1
𝜎𝑞
𝑛
𝑆𝑞
𝑛
+ 𝑁
1
𝑝
𝑛
𝑆𝑞
𝑛
+ 𝑁
2
𝑞
𝑛
𝑆𝑞
𝑛
+ 𝑁
2
𝑝
𝑛
𝑆𝑞
𝑛

≤
1

2
𝑁
1
𝑞
2

𝑛
𝑏 + 𝑏𝑁

1

1

2
(𝑝
2

𝑛
+ 𝑞
2

𝑛
) + 𝑁

2
𝑏𝑞
2

𝑛
+ 𝑁
2
𝑏
1

2
(𝑝
2

𝑛
+ 𝑞
2

𝑛
)

= (𝑁
1
+
3

2
𝑁
2
) 𝑏𝑞
2

𝑛
+
1

2
𝑏 (𝑁
1
+ 𝑁
2
) 𝑝
2

𝑛
,

(31)

where 𝜃
2
= 𝜏𝜃
1
+ (1 − 𝜏)𝑆𝛼

𝑛
and 𝜃
3
= 𝜏(−𝛽

𝑛
) + (1 − 𝜏)(−𝛼

𝑛
).
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Similarly, set 𝜗
1
= 𝜎(−𝛽

𝑛
) + (1 − 𝜎)(−𝑥). Then

𝐵
2
= − ∫

1

0

[𝑓
𝑦
(𝑡, 𝑆𝑥, 𝜗

1
) − 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑞
𝑛
𝑑𝜎

= − ∫

1

0

[𝑓
𝑦
(𝑡, 𝑆𝑥, 𝜗

1
) − 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜗
1
)

+𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜗
1
) − 𝑓
𝑦
(𝑡, 𝑆𝛼
𝑛
, −𝛼
𝑛
)] 𝑞
𝑛
𝑑𝜎

= −∬

1

0

[𝑓
𝑦𝑥
(𝑡, 𝜏𝑆𝑥 + (1 − 𝜏) 𝑆𝛼

𝑛
, 𝜗
1
) (𝑆𝑥 − 𝑆𝛼

𝑛
)

+ 𝑓
𝑦𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜏𝜗
1
+ (1 − 𝜏) (−𝛼

𝑛
))

× (𝜗
1
+ 𝛼
𝑛
) ] 𝑞
𝑛
𝑑𝜎𝑑𝜏

= −∬

1

0

[𝑓
𝑦𝑥
(𝑡, 𝜗
2
, 𝜗
1
) 𝑆𝑝
𝑛
+ 𝑓
𝑦𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜗
3
)

× (𝜎 (−𝛽
𝑛
+ 𝑥) − (𝑥 − 𝛼

𝑛
)) ] 𝑞
𝑛
𝑑𝜎𝑑𝜏

= ∬

1

0

[−𝑓
𝑦𝑥
(𝑡, 𝜗
2
, 𝜗
1
) 𝑆𝑝
𝑛

+𝑓
𝑦𝑦
(𝑡, 𝑆𝛼
𝑛
, 𝜗
3
) (𝜎𝑞
𝑛
+ 𝑝
𝑛
) ] 𝑞
𝑛
𝑑𝜎 𝑑𝜏

≤ 𝑁
5
𝑏𝑞
𝑛
𝑝
𝑛
+
1

2
𝑁
3
𝑞
2

𝑛
+ 𝑁
3
𝑝
𝑛
𝑞
𝑛

≤ (
1

2
𝑏𝑁
5
+ 𝑁
3
) 𝑞
2

𝑛
+
1

2
(𝑏𝑁
5
+ 𝑁
3
) 𝑝
2

𝑛
,

(32)

where 𝜗
2
= 𝜏𝑆𝑥 + (1 − 𝜏)𝑆𝛼

𝑛
, 𝜗
3
= 𝜏𝜗
1
+ (1 − 𝜏)(−𝛼

𝑛
), and

−𝑓
𝑦𝑥
(𝑡, 𝑋, 𝑈) ≤ 𝑁

5
.

Then we get that

−𝐴 ̇𝑞
𝑛+1
≤ −𝑀(𝑡) 𝑞

𝑛+1
+ 𝑁
6
𝑞
2

𝑛
+ 𝑁
7
𝑝
2

𝑛
, (33)

where 𝑁
6
= (𝑁
1
+ (3/2)𝑁

2
)𝑏 + ((1/2)𝑏𝑁

5
+ 𝑁
3
) and 𝑁

7
=

(1/2)𝑏(𝑁
1
+ 𝑁
2
) + (1/2)(𝑏𝑁

5
+ 𝑁
3
). Thus we have that

𝑞
𝑛+1
(𝑡)

≤ 𝑈 (𝑡) = 𝑒
−𝐴
𝐷
𝑀̂𝑡
∫

𝑡

0

𝑒
𝐴
𝐷
𝑀̂𝑠
𝐴
𝐷
(−𝜆𝐴 +𝑀(𝑠))

−1

× (𝑁
6
𝑞
𝑛
(𝑠)
2
+ 𝑁
7
𝑝
𝑛
(𝑠)
2
) 𝑑𝑠

+ (𝐼 − 𝐴
𝐷
𝐴) 𝑀̂

𝐷
(−𝜆𝐴 +𝑀(𝑡))

−1
𝑁
6
𝑞
𝑛
(𝑡)
2

+ 𝑁
7
𝑝
𝑛
(𝑡)
2
.

(34)

Furthermore, we obtain after taking suitable estimates

𝑝
𝑛+1
≤ 𝐾
2
𝑞
2

𝑛
+ 𝐾
3
𝑝
2

𝑛
, (35)

where 𝐾
2
= 𝑒
−𝐴
𝐷
𝑀̂𝑡
∫
𝑡

0
𝑒
𝐴
𝐷
𝑀̂𝑠
𝐴
𝐷
(−𝜆𝐴 + 𝑀(𝑠))

−1
𝑁
6
𝑑𝑠 +

(𝐼 − 𝐴
𝐷
𝐴)𝑀̂
𝐷
(−𝜆𝐴 + 𝑀(𝑡))

−1
𝑁
6
and 𝐾

3
= 𝑒
−𝐴
𝐷
𝑀̂𝑡

∫
𝑡

0
𝑒
𝐴
𝐷
𝑀̂𝑠
𝐴
𝐷
(−𝜆𝐴 + 𝑀(𝑠))

−1
𝑁
7
𝑑𝑠 + (𝐼 − 𝐴

𝐷
𝐴)𝑀̂
𝐷
(−𝜆𝐴 +

𝑀(𝑡))
−1
𝑁
7
.

Hence we proved that the convergence rate is quadratic.

Next, we consider singular differential systems BVPs and
prove the following main result.

Theorem 4. Let assumptions (𝐻
2.1
)–(𝐻
2.4
) hold. Suppose

further the following.

(𝐻
3.1
)There exist𝑉

0
(𝑡),𝑊

0
(𝑡) ∈ 𝐶

2
[𝐼, 𝑅
𝑛
]with𝑉

0
(𝑡) ≤ 𝑊

0
(𝑡)

and 𝑉̇
0
(𝑡) ≥ 𝑊̇

0
(𝑡) on 𝐼 and

𝐴𝑉̈
0
≤ 𝑓 (𝑡, 𝑉

0
, 𝑉̇
0
) , 𝑉̇

0
(0) ≥ 𝑋

0
, 𝑉
0
(𝑏) ≤ 𝑋

1
,

𝐴𝑊̈
0
≥ 𝑓 (𝑡,𝑊

0
, 𝑊̇
0
) , 𝑊̇

0
(0) ≤ 𝑋

0
, 𝑊
0
(𝑏) ≥ 𝑋

1
.

(36)

(𝐻
3.2
) For 𝑋

0
∈ 𝑅
𝑛, (𝐼 − 𝐴𝐴𝐷)(−𝑋

0
− 𝑊̂(0)) = 0, where

𝑊̂(𝑡) = (𝐼 − 𝐴
𝐷
𝐴)𝑀̂
𝐷
𝑔(𝑡).

Then there exist monotone sequences {𝑉
𝑛
} and {𝑊

𝑛
} which

converge uniformly on 𝐼 to the unique solution of (1) and the
convergence rate is quadratic.

Proof. Using the transformation 𝑈 = −𝑋̇, we have that

𝑆𝑈 (𝑡) = 𝑋 (𝑡) = 𝑋1 + ∫

𝑏

𝑡

𝑈 (𝑠) 𝑑𝑠, 𝑡 ∈ 𝐼. (37)

BVPs (1) can be transformed into IVPs of singular system:

−𝐴𝑈̇ = 𝑓 (𝑡, 𝑆𝑈, −𝑈) , 𝑈 (0) = −𝑋0. (38)

Let 𝛼
0
(0) = −𝑉̇

0
(0) and𝛽

0
(0) = −𝑊̇

0
(0). By using assumption

(𝐻
3.1
), we get that

𝛼
0
(𝑡) ≤ −𝑉̇

0
(𝑡) ≤ −𝑊̇

0
(𝑡) = 𝛽

0
(𝑡) (39)

and 𝛼
0
(0) = −𝑉̇

0
(0) ≤ −𝑋

0
≤ −𝑊̇

0
(0) = 𝛽

0
(0).

Noticing that 𝛼
0
(0) = −𝑉̇

0
(0), we have that

𝑉
0
(𝑡) = 𝑉

0
(𝑏) + ∫

𝑏

𝑡

𝛼
0
(𝑠) 𝑑𝑠, 𝑡 ∈ 𝐼,

[𝑆𝛼
0
] (𝑡) = 𝑋

1
+ ∫

𝑏

𝑡

𝛼
0
(𝑠) 𝑑𝑠, 𝑡 ∈ 𝐼.

(40)

Then 𝑉
0
(𝑡) ≤ [𝑆𝛼

0
](𝑡) from 𝑉

0
(𝑏) ≤ 𝑋

1
, and

−𝐴𝛼̇
0
= 𝐴𝑉̈
0
≤ 𝑓 (𝑡, 𝑉

0
, 𝑉̇
0
) ≤ 𝑓 (𝑡, 𝑆𝛼

0
, 𝑉̇
0
)

= 𝑓 (𝑡, 𝑆𝛼
0
, −𝛼
0
) .

(41)

A similar argument shows that

−𝐴 ̇𝛽
0
= 𝐴𝑊̈

0
≥ 𝑓 (𝑡,𝑊

0
, 𝑊̇
0
) ≥ 𝑓 (𝑡, 𝑆𝛽

0
, 𝑊̇
0
)

= 𝑓 (𝑡, 𝑆𝛽
0
, −𝛽
0
) .

(42)

ByTheorem 3, there exist monotone sequences {𝛼
𝑛
}, {𝛽
𝑛
}

such that

𝛼
𝑛
󳨀→ 𝑈 ←󳨀 𝛽

𝑛 (43)
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and the convergence rate is quadratic. Again set𝑉
𝑛
= 𝑆𝛼
𝑛
and

𝑊
𝑛
= 𝑆𝛽
𝑛
. Then

𝑉
0
≤ 𝑉
1
≤ 𝑉
2
≤ ⋅ ⋅ ⋅ ≤ 𝑉

𝑛
≤ 𝑊
𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝑊

2
≤ 𝑊
1
≤ 𝑊
0
,

𝑉
𝑛
󳨀→ 𝑈 ←󳨀 𝑊

𝑛
,

(44)

and also the convergence rate is quadratic. Noticing that

𝑥 (𝑡) − 𝑉
𝑛+1
(𝑡) = 𝑋

1
+ ∫

𝑏

𝑡

𝑈 (𝑠) 𝑑𝑠 − (𝑋
1
+ ∫

𝑏

0

𝛼
𝑛+1
(𝑠) 𝑑𝑠)

= ∫

𝑏

0

(𝑈 (𝑠) − 𝛼𝑛+1 (𝑠)) 𝑑𝑠

≤ ∫

𝑏

0

[𝐾
1
(𝑈 (𝑠) − 𝛼𝑛 (𝑠))

2
] 𝑑𝑠

= 𝐾
1
(𝑥 (𝑡) − 𝑉𝑛 (𝑡))

2
,

(45)

we can obtain the similar result that𝑊
𝑛
converges quadrati-

cally to the solution of (1). The proof is complete.
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