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In the present paper, a discontinuous boundary-value problem with retarded argument at the two points of discontinuities is
investigated. We obtained asymptotic formulas for the eigenvalues and eigenfunctions. This is the first work containing two
discontinuities points in the theory of differential equations with retarded argument. In that special case the transmission
coefficients 𝛿 = 𝛾 = 1 and retarded argument Δ ≡ 0 in the results obtained in this work coincide with corresponding results in the
classical Sturm-Liouville operator.

1. Introduction

Delay differential equations arise in many areas of mathe-
matical modelling, for example, population dynamics (tak-
ing into account the gestation times), infectious diseases
(accounting for the incubation periods), physiological and
pharmaceutical kinetics (modelling, for example, the body’s
reaction to CO

2
, and so forth, in circulating blood) and

chemical kinetics (such asmixing reactants), the navigational
control of ships and aircraft, and more general control prob-
lems. Also, differential equations and nonlinear differential
equations have been studied by many mathematicians in
several ways for a long time cf. [1–20].

Boundary value problems for differential equations of the
second order with retarded argument were studied in [5–
10, 13–16], and various physical applications of such problems
can be found in [6].

In the papers [13–16], the asymptotic formulas for the
eigenvalues and eigenfunctions of a discontinuous bound-
ary value problem with retarded argument and a spectral
parameter in the boundary conditions were derived. In spite
of their being already a long years, these subjects are still today

enveloped in an aura of mystery within scientific community
although they have penetrated numerous mathematical field.

The asymptotic formulas for the eigenvalues and eigen-
functions of the Sturm-Liouville problem with the spectral
parameter in the boundary condition were obtained in [17–
20].

In this paper we study the eigenvalues and eigenfunctions
of a discontinuous boundary value problem with retarded
argument. Namely, we consider the boundary value problem
for the differential equation

𝑦
󸀠󸀠
(𝑥) + 𝑞 (𝑥) 𝑦 (𝑥 − Δ (𝑥)) + 𝜆𝑦 (𝑥) = 0, (1)

on [0, ℎ
1
) ∪ (ℎ
1
, ℎ
2
) ∪ (ℎ
2
, 𝜋], with boundary conditions

𝑦 (0) cos𝛼 + 𝑦󸀠 (0) sin𝛼 = 0, (2)

𝑦 (𝜋) cos𝛽 + 𝑦󸀠 (𝜋) sin𝛽 = 0, (3)
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and transmission conditions

𝑦 (ℎ
1
− 0) − 𝛿𝑦 (ℎ

1
+ 0) = 0, (4)

𝑦
󸀠
(ℎ
1
− 0) − 𝛿𝑦

󸀠
(ℎ
1
+ 0) = 0, (5)

𝑦 (ℎ
2
− 0) − 𝛾𝑦 (ℎ

2
+ 0) = 0, (6)

𝑦
󸀠
(ℎ
2
− 0) − 𝛾𝑦

󸀠
(ℎ
2
+ 0) = 0, (7)

where the real-valued function 𝑞(𝑥) is continuous in [0, ℎ
1
) ∪

(ℎ
1
, ℎ
2
) ∪ (ℎ
2
, 𝜋] and has finite limits

𝑞 (ℎ
1
± 0) = lim

𝑥→ℎ
1
±0

𝑞 (𝑥) , 𝑞 (ℎ
2
± 0) = lim

𝑥→ℎ
2
±0

𝑞 (𝑥) ,

(8)

the real-valued function Δ(𝑥) ≥ 0 continuous in [0, ℎ
1
) ∪

(ℎ
1
, ℎ
2
) ∪ (ℎ
2
, 𝜋] and has finite limits

Δ (ℎ
1
± 0) = lim

𝑥→ℎ
1
±0

Δ (𝑥) , Δ (ℎ
2
± 0) = lim

𝑥→ℎ
2
±0

Δ (𝑥) ;

(9)

if 𝑥 ∈ [0, ℎ
1
) then 𝑥 − Δ(𝑥) ≥ 0; if 𝑥 ∈ (ℎ

1
, ℎ
2
) then

𝑥 − Δ(𝑥) ≥ ℎ
1
; if 𝑥 ∈ (ℎ

2
, 𝜋) then 𝑥 − Δ(𝑥) ≥ ℎ

2
; 𝜆 is a

real spectral parameter; ℎ
1
, ℎ
2
, 𝛼, 𝛽, 𝛿, 𝛾 ̸= 0 are arbitrary real

numbers such that 0 < ℎ
1
< ℎ
2
< 𝜋 and sin𝛼 sin𝛽 ̸= 0.

It must be noted that some problems with transmission
conditions which arise in mechanics (thermal condition
problem for a thin laminated plate) were studied in [20].

Let 𝑤
1
(𝑥, 𝜆) be a solution of (1) on [0, ℎ

1
], satisfying the

initial conditions

𝑤
1
(0, 𝜆) = sin𝛼, 𝑤

󸀠

1
(0, 𝜆) = − cos𝛼. (10)

The conditions (10) define a unique solution of (1) on [0, ℎ
1
]

([5], page 12).
After defining the above solution, then we will define the

solution 𝑤
2
(𝑥, 𝜆) of (1) on [ℎ

1
, ℎ
2
] by means of the solution

𝑤
1
(𝑥, 𝜆) using the initial conditions

𝑤
2
(ℎ
1
, 𝜆) = 𝛿

−1
𝑤
1
(ℎ
1
, 𝜆) , 𝑤

󸀠

2
(ℎ
1
, 𝜆) = 𝛿

−1
𝑤
󸀠

1
(ℎ
1
, 𝜆) .

(11)

The conditions (11) define a unique solution of (1) on [ℎ
1
, ℎ
2
].

After describing the above solution, then we will give the
solution 𝑤

3
(𝑥, 𝜆) of (1) on [ℎ

2
, 𝜋] by means of the solution

𝑤
2
(𝑥, 𝜆) using the initial conditions

𝑤
3
(ℎ
2
, 𝜆) = 𝛾

−1
𝑤
2
(ℎ
2
, 𝜆) , 𝑤

󸀠

3
(ℎ
2
, 𝜆) = 𝛾

−1
𝑤
󸀠

2
(ℎ
2
, 𝜆) .

(12)

The conditions (12) define a unique solution of (1) on [ℎ
2
, 𝜋].

Consequently, the function𝑤(𝑥, 𝜆) is defined on [0, ℎ
1
) ∪

(ℎ
1
, ℎ
2
) ∪ (ℎ
2
, 𝜋] by the equality

𝑤 (𝑥, 𝜆) =

{{

{{

{

𝑤
1
(𝑥, 𝜆) , 𝑥 ∈ [0, ℎ

1
) ,

𝑤
2
(𝑥, 𝜆) , 𝑥 ∈ (ℎ

1
, ℎ
2
) ,

𝑤
3
(𝑥, 𝜆) , 𝑥 ∈ (ℎ

2
, 𝜋] ,

(13)

is a solution of (1) on [0, ℎ
1
) ∪ (ℎ

1
, ℎ
2
) ∪ (ℎ

2
, 𝜋], which sat-

isfies one of the boundary conditions and four transmission
conditions.

Lemma 1. Let𝑤(𝑥, 𝜆) be a solution of (1) and 𝜆 > 0. Then the
following integral equations hold:

𝑤
1
(𝑥, 𝜆) = sin𝛼 cos 𝑠𝑥 − cos𝛼

𝑠
sin 𝑠𝑥

−
1

𝑠
∫

𝑥

0

𝑞 (𝜏) sin 𝑠 (𝑥 − 𝜏)𝑤
1
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏

(𝑠 = √𝜆, 𝜆 > 0) ,

(14)

𝑤
2
(𝑥, 𝜆) =

1

𝛿
𝑤
1
(ℎ
1
, 𝜆) cos 𝑠 (𝑥 − ℎ

1
)

+
𝑤
󸀠

1
(ℎ
1
, 𝜆)

𝑠𝛿
sin 𝑠 (𝑥 − ℎ

1
)

−
1

𝑠
∫

𝑥

ℎ
1

𝑞 (𝜏) sin 𝑠 (𝑥 − 𝜏)𝑤
2
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏

(𝑠 = √𝜆, 𝜆 > 0) ,

(15)

𝑤
3
(𝑥, 𝜆) =

1

𝛾
𝑤
2
(ℎ
2
, 𝜆) cos 𝑠 (𝑥 − ℎ

2
)

+
𝑤
󸀠

2
(ℎ
2
, 𝜆)

𝑠𝛾
sin 𝑠 (𝑥 − ℎ

2
)

−
1

𝑠
∫

𝑥

ℎ
2

𝑞 (𝜏) sin 𝑠 (𝑥 − 𝜏)𝑤
3
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏

(𝑠 = √𝜆, 𝜆 > 0) .

(16)

Proof. To prove this lemma, it is enough to substitute −𝑠2𝑤
1

(𝜏, 𝜆) − 𝑤
󸀠󸀠

1
(𝜏, 𝜆), −𝑠2𝑤

2
(𝜏, 𝜆) − 𝑤

󸀠󸀠

2
(𝜏, 𝜆), and −𝑠2𝑤

3
(𝜏, 𝜆) −

𝑤
󸀠󸀠

3
(𝜏, 𝜆) instead of −𝑞(𝜏)𝑤

1
(𝜏−Δ(𝜏), 𝜆),−𝑞(𝜏)𝑤

2
(𝜏−Δ(𝜏), 𝜆),

and−𝑞(𝜏)𝑤
3
(𝜏−Δ(𝜏), 𝜆) in the integrals in (14), (15), and (16),

respectively, and integrate by parts twice.

Theorem 2. The problem (1)–(7) can have only simple eigen-
values.

Proof. Let 𝜆̃ be an eigenvalue of the problem (1)–(7) and

𝑦 (𝑥, 𝜆̃) =

{{

{{

{

𝑦
1
(𝑥, 𝜆̃) , 𝑥 ∈ [0, ℎ

1
) ,

𝑦
2
(𝑥, 𝜆̃) , 𝑥 ∈ (ℎ

1
, ℎ
2
) ,

𝑦
3
(𝑥, 𝜆̃) , 𝑥 ∈ (ℎ

2
, 𝜋] ,

(17)

be a corresponding eigenfunction.Then, from (2) and (10), it
follows that the determinant

𝑊[𝑦
1
(0, 𝜆̃) , 𝑤

1
(0, 𝜆̃)] =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦
1
(0, 𝜆̃) sin𝛼

𝑦
󸀠

1
(0, 𝜆̃) − cos𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0, (18)

and, by Theorem 2.2.2, in [5] the functions 𝑦
1
(𝑥, 𝜆̃) and 𝑤

1

(𝑥, 𝜆̃) are linearly dependent on [0, ℎ
1
].We can also prove that

the functions 𝑦
2
(𝑥, 𝜆̃) and𝑤

2
(𝑥, 𝜆̃) are linearly dependent on
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[ℎ
1
, ℎ
2
] and 𝑦

3
(𝑥, 𝜆̃) and 𝑤

3
(𝑥, 𝜆̃) are linearly dependent on

[ℎ
2
, 𝜋]. Hence

𝑦
𝑖
(𝑥, 𝜆̃) = 𝐾

𝑖
𝑤
𝑖
(𝑥, 𝜆̃) (𝑖 = 1, 2, 3) , (19)

for some𝐾
1
̸= 0, 𝐾
2
̸= 0, and𝐾

3
̸= 0. We must show that𝐾

1
=

𝐾
2
and 𝐾

2
= 𝐾
3
. Suppose that 𝐾

2
̸= 𝐾
3
. From the equalities

(6) and (19), we have

𝑦 (ℎ
2
− 0, 𝜆̃) − 𝛾𝑦 (ℎ

2
+ 0, 𝜆̃)

= 𝑦
2
(ℎ
2
, 𝜆̃) − 𝛾𝑦

3
(ℎ
2
, 𝜆̃)

= 𝐾
2
𝑤
2
(ℎ
2
, 𝜆̃) − 𝛾𝐾

3
𝑤
3
(ℎ
2
, 𝜆̃)

= 𝐾
2
𝛾𝑤
3
(ℎ
2
, 𝜆̃) − 𝐾

3
𝛾𝑤
3
(ℎ
2
, 𝜆̃)

= 𝛾 (𝐾
2
− 𝐾
3
) 𝑤
3
(ℎ
2
, 𝜆̃) = 0.

(20)

Since 𝛾(𝐾
2
− 𝐾
3
) ̸= 0 it follows that

𝑤
3
(ℎ
2
, 𝜆̃) = 0. (21)

By the same procedure from equality (7) we can derive that

𝑤
󸀠

3
(ℎ
2
, 𝜆̃) = 0. (22)

From the fact that 𝑤
3
(𝑥, 𝜆̃) is a solution of the differential (1)

on [ℎ
2
, 𝜋] and satisfies the initial conditions (21) and (22), it

follows that 𝑤
3
(𝑥, 𝜆̃) = 0 identically on [ℎ

2
, 𝜋].

By using this method, we may also find

𝑤
2
(ℎ
2
, 𝜆̃) = 𝑤

󸀠

2
(ℎ
2
, 𝜆̃) = 0,

𝑤
1
(ℎ
1
, 𝜆̃) = 𝑤

󸀠

1
(ℎ
1
, 𝜆̃) = 0.

(23)

From the latter discussions of 𝑤
3
(𝑥, 𝜆̃), it follows that 𝑤

2

(𝑥, 𝜆̃) = 0 and 𝑤
1
(𝑥, 𝜆̃) = 0 identically on (ℎ

1
, ℎ
2
) and [0, ℎ

1
),

but this contradicts (10), thus completing the proof.

2. An Existence Theorem

The function 𝑤(𝑥, 𝜆) defined in Section 1 is a nontrivial
solution of (1) satisfying conditions (2) and (4)–(7). Putting
𝑤(𝑥, 𝜆) into (3), we get the characteristic equation

𝐹 (𝜆) ≡ 𝑤 (𝜋, 𝜆) cos𝛽 + 𝑤󸀠 (𝜋, 𝜆) sin𝛽 = 0. (24)

By Theorem 2 the set of eigenvalues of boundary-value
problem (1)–(7) coincides with the set of real roots of (24).
Let

𝑞
1
= ∫

ℎ
1

0

󵄨󵄨󵄨󵄨𝑞 (𝜏)
󵄨󵄨󵄨󵄨 𝑑𝜏, 𝑞

2
= ∫

ℎ
2

ℎ
1

󵄨󵄨󵄨󵄨𝑞 (𝜏)
󵄨󵄨󵄨󵄨 𝑑𝜏,

𝑞
3
= ∫

𝜋

ℎ
2

󵄨󵄨󵄨󵄨𝑞 (𝜏)
󵄨󵄨󵄨󵄨 𝑑𝜏.

(25)

Lemma 3. (1) Let 𝜆 ≥ 4𝑞2
1
. Then for the solution 𝑤

1
(𝑥, 𝜆) of

(14), the following inequality holds:

󵄨󵄨󵄨󵄨w1 (𝑥, 𝜆)
󵄨󵄨󵄨󵄨 ≤

1

𝑞
1

√4𝑞2
1
sin2𝛼 + cos2𝛼, 𝑥 ∈ [0, ℎ

1
] . (26)

(2) Let 𝜆 ≥ max{4𝑞2
1
, 4𝑞
2

2
}. Then for the solution 𝑤

2
(𝑥, 𝜆)

of (15), the following inequality holds:

󵄨󵄨󵄨󵄨𝑤2 (𝑥, 𝜆)
󵄨󵄨󵄨󵄨 ≤

4

𝑞
1 |𝛿|

√4𝑞2
1
sin2𝛼 + cos2𝛼, 𝑥 ∈ [ℎ

1
, ℎ
2
] .

(27)

(3) Let 𝜆 ≥ max{4𝑞2
1
, 4𝑞
2

2
, 4𝑞
2

3
}. Then for the solution

𝑤
3
(𝑥, 𝜆) of (16), the following inequality holds:

󵄨󵄨󵄨󵄨𝑤3 (𝑥, 𝜆)
󵄨󵄨󵄨󵄨 ≤

16

𝑞
1

󵄨󵄨󵄨󵄨𝛿𝛾
󵄨󵄨󵄨󵄨

√4𝑞2
1
sin2𝛼 + cos2𝛼, 𝑥 ∈ [ℎ

2
, 𝜋] .

(28)

Proof. Let𝐵
1𝜆
= max

[0,ℎ
1
]
|𝑤
1
(𝑥, 𝜆)|.Then from (14), it follows

that, for every 𝜆 > 0, the following inequality holds:

𝐵
1𝜆
≤ √sin2𝛼 + cos2𝛼

𝑠2
+
1

𝑠
𝐵
1𝜆
𝑞
1
. (29)

If 𝑠 ≥ 2𝑞
1
we get (26). Differentiating (14) with respect to 𝑥,

we have

𝑤
󸀠

1
(𝑥, 𝜆) = − 𝑠 sin𝛼 sin 𝑠𝑥 − cos𝛼 cos 𝑠𝑥

− ∫

𝑥

0

𝑞 (𝜏) cos 𝑠 (𝑥 − 𝜏)𝑤
1
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏.

(30)

From expressions of (30) and (26), it follows that, for 𝑠 ≥ 2𝑞
1
,

the following inequality holds:
󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

1
(𝑥, 𝜆)

󵄨󵄨󵄨󵄨󵄨

𝑠
≤
1

𝑞
1

√4𝑞2
1
sin2𝛼 + cos2𝛼. (31)

Let 𝐵
2𝜆
= max

[ℎ
1
,ℎ
2
]
|𝑤
2
(𝑥, 𝜆)|.Then from (11), (26), and (31) it

follows that, for 𝑠 ≥ 2𝑞
1
and 𝑠 ≥ 2𝑞

2
, the following inequality

holds:

𝐵
2𝜆
≤

2

𝑞
1 |𝛿|

√4𝑞2
1
sin2𝛼 + cos2𝛼 + 1

2𝑞
2

𝐵
2𝜆
𝑞
2
. (32)

Hence, if𝜆 ≥ max{4𝑞2
1
, 4𝑞
2

2
}, it reduces to (27). Differentiating

(15) with respect to, we get

𝑤
󸀠

2
(𝑥, 𝜆) = −

𝑠

𝛿
𝑤
1
(ℎ
1
, 𝜆) sin 𝑠 (𝑥 − ℎ

1
)

+
𝑤
󸀠

1
(ℎ
1
, 𝜆)

𝛿
cos 𝑠 (𝑥 − ℎ

1
)

− ∫

𝑥

ℎ
1

𝑞 (𝜏) cos 𝑠 (𝑥 − 𝜏)𝑤
2
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏.

(𝑠 = √𝜆, 𝜆 > 0) .

(33)
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From (26) and (33), it follows that, for 𝑠 ≥ 2𝑞
1
and 𝑠 ≥ 2𝑞

2
,

the following inequality holds:

󵄨󵄨󵄨󵄨󵄨
𝑤
󸀠

2
(𝑥, 𝜆)

󵄨󵄨󵄨󵄨󵄨

𝑠
≤

4

|𝛿| 𝑞1

√4𝑞2
1
sin2𝛼 + cos2𝛼. (34)

Let 𝐵
3𝜆
= max

[ℎ
2
,𝜋]
|𝑤
3
(𝑥, 𝜆)|. Then from (16), (27), and (34)

it follows that, for 𝑠 ≥ 2𝑞
1
, 𝑠 ≥ 2𝑞

2
and 𝑠 ≥ 2𝑞

3
, the following

inequality holds:

𝐵
3𝜆
≤

8

𝑞
1

󵄨󵄨󵄨󵄨𝛿𝛾
󵄨󵄨󵄨󵄨

√4𝑞2
1
sin2𝛼 + cos2𝛼 + 1

𝑠
𝐵
3𝜆
𝑞
3
. (35)

Hence, if 𝜆 ≥ max{4𝑞2
1
, 4𝑞
2

2
, 4𝑞
2

3
} we procure (28).

Theorem 4. The problem (1)–(7) has an infinite set of positive
eigenvalues.

Proof. Differentiating (16) with respect to 𝑥, we readily see
that

𝑤
󸀠

3
(𝑥, 𝜆) = −

𝑠

𝛾
𝑤
2
(ℎ
2
, 𝜆) sin 𝑠 (𝑥 − ℎ

2
)

+
𝑤
󸀠

2
(ℎ
2
, 𝜆)

𝛾
cos 𝑠 (𝑥 − ℎ

2
)

− ∫

𝑥

ℎ
2

𝑞 (𝜏) cos 𝑠 (𝑥 − 𝜏)𝑤
3
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏.

(𝑠 = √𝜆, 𝜆 > 0) .

(36)

With the helps of (14), (15), (16), (24), (30), and (36), we have
the following:

[
1

𝛾
{
1

𝛿
(sin𝛼 cos 𝑠ℎ

1
−
cos𝛼
𝑠

sin 𝑠ℎ
1

−
1

𝑠
∫

ℎ
1

0

𝑞 (𝜏) sin 𝑠 (ℎ
1
− 𝜏)𝑤

1
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏)

× cos 𝑠 (ℎ
2
− ℎ
1
)

−
1

𝑠𝛿
(𝑠 sin𝛼 sin 𝑠ℎ

1
+ cos𝛼 cos 𝑠ℎ

1

+∫

ℎ
1

0

𝑞 (𝜏) cos 𝑠 (ℎ
1
− 𝜏)𝑤

1
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏)

× sin 𝑠 (ℎ
2
− ℎ
1
)

−
1

𝑠
∫

ℎ
2

ℎ
1

𝑞 (𝜏) sin 𝑠 (ℎ
2
− 𝜏)𝑤

2
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏}

× cos 𝑠 (𝜋 − ℎ
2
)

+
1

𝑠𝛾
{−
𝑠

𝛿
(sin𝛼 cos 𝑠ℎ

1
−
cos𝛼
𝑠

sin 𝑠ℎ
1

−
1

𝑠
∫

ℎ
1

0

𝑞 (𝜏) sin 𝑠 (ℎ
1
− 𝜏)

× 𝑤
1
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏)

× sin 𝑠 (ℎ
2
− ℎ
1
)

+
1

𝛿
(− 𝑠 sin𝛼 sin 𝑠ℎ

1
− cos𝛼 cos 𝑠ℎ

1

− ∫

ℎ
1

0

𝑞 (𝜏) cos 𝑠 (ℎ
1
− 𝜏)

×𝑤
1
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏)

× cos 𝑠 (ℎ
2
− ℎ
1
)

− ∫

ℎ
2

ℎ
1

𝑞 (𝜏) cos 𝑠 (ℎ
2
− 𝜏) 𝑤

2
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏}

× sin 𝑠 (𝜋 − ℎ
2
)

−
1

𝑠
∫

𝜋

ℎ
2

𝑞 (𝜏) sin 𝑠 (𝜋 − 𝜏)𝑤
3
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏] cos𝛽

+ [−
𝑠

𝛾
{
1

𝛿
( sin𝛼 cos 𝑠ℎ

1
−
cos𝛼
𝑠

sin 𝑠ℎ
1

−
1

𝑠
∫

ℎ
1

0

𝑞 (𝜏) sin 𝑠 (ℎ
1
− 𝜏)

×𝑤
1
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏)

× cos 𝑠 (ℎ
2
− ℎ
1
)

−
1

𝑠𝛿
(𝑠 sin𝛼 sin 𝑠ℎ

1
+ cos𝛼 cos 𝑠ℎ

1

+ ∫

ℎ
1

0

𝑞 (𝜏) cos 𝑠 (ℎ
1
− 𝜏)

×𝑤
1
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏)

× sin 𝑠 (ℎ
2
− ℎ
1
)

−
1

𝑠
∫

ℎ
2

ℎ
1

𝑞 (𝜏) sin 𝑠 (ℎ
2
− 𝜏)𝑤

2
(𝜏 − Δ (𝜏) , 𝜆) }

× sin 𝑠 (𝜋 − ℎ
2
)
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+
1

𝛾
{−
𝑠

𝛿
× (sin𝛼 cos 𝑠ℎ

1
−
cos𝛼
𝑠

sin 𝑠ℎ
1

−
1

𝑠
∫

ℎ
1

0

𝑞 (𝜏) sin 𝑠 (ℎ
1
− 𝜏)

× 𝑤
1
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏)

× sin 𝑠 (ℎ
2
− ℎ
1
)

+
1

𝛿
(− 𝑠 sin𝛼 sin 𝑠ℎ

1
− cos𝛼 cos 𝑠ℎ

1

− ∫

ℎ
1

0

𝑞 (𝜏) cos 𝑠 (ℎ
1
− 𝜏)

×𝑤
1
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏)

× cos 𝑠 (ℎ
2
− ℎ
1
)

−∫

ℎ
2

ℎ
1

𝑞 (𝜏) cos 𝑠 (ℎ
2
− 𝜏)𝑤

2
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏}

× cos 𝑠 (𝜋 − ℎ
2
)

− ∫

𝜋

ℎ
2

𝑞 (𝜏) cos 𝑠 (𝜋 − 𝜏)𝑤
3
(𝜏 − Δ (𝜏) , 𝜆) 𝑑𝜏] sin𝛽 = 0.

(37)

Let 𝜆 be sufficiently big. Then, by (26), (27), and (28), (37)
may be rewritten in the following form:

−
𝑠 sin𝛼 sin𝛽

𝛾𝛿
{cos 𝑠ℎ

2
sin 𝑠 (𝜋 − ℎ

2
)

+ sin 𝑠ℎ
2
cos 𝑠 (𝜋 − ℎ

2
)} + 𝑂 (1) = 0,

(38)

𝑠 sin 𝑠𝜋 + 𝑂 (1) = 0. (39)

Obviously, for big 𝑠 (39) has an infinite set of roots. Thus, the
proof of the theorem is completed.

3. Asymptotic Formulas for
Eigenvalues and Eigenfunctions

Now we begin to study asymptotic properties of eigenvalues
and eigenfunctions. In the following we will assume that is
sufficiently big. From (14) and (26), we obtain

𝑤
1
(𝑥, 𝜆) = 𝑂 (1) on [0, ℎ

1
] . (40)

By (15) and (27), this leads to

𝑤
2
(𝑥, 𝜆) = 𝑂 (1) on [ℎ

1
, ℎ
2
] . (41)

By (16) and (28), this leads to

𝑤
3
(𝑥, 𝜆) = 𝑂 (1) on [ℎ

2
, 𝜋] . (42)

The existence and continuity of the derivatives 𝑤󸀠
1𝑠
(𝑥, 𝜆) for

0 ≤ 𝑥 ≤ ℎ
1
, |𝜆| < ∞, 𝑤󸀠

2𝑠
(𝑥, 𝜆) for ℎ

1
≤ 𝑥 ≤ ℎ

2
, |𝜆| < ∞ and

𝑤
󸀠

3𝑠
(𝑥, 𝜆) for ℎ

2
≤ 𝑥 ≤ 𝜋, |𝜆| < ∞ follows fromTheorem 1.4.1

in [5].

Lemma 5. The following holds true:

𝑤
󸀠

1𝑠
(𝑥, 𝜆) = 𝑂 (1) , 𝑥 ∈ [0, ℎ

1
] , (43)

𝑤
󸀠

2𝑠
(𝑥, 𝜆) = 𝑂 (1) , 𝑥 ∈ [ℎ

1
, ℎ
2
] , (44)

𝑤
󸀠

3𝑠
(𝑥, 𝜆) = 𝑂 (1) , 𝑥 ∈ [ℎ

2
, 𝜋] . (45)

Proof. By differentiating (16) with respect to 𝑠, we get, by (43)
and (44) the following:

𝑤
󸀠

3𝑠
(𝑥, 𝜆)

= −
1

𝑠
∫

𝑥

ℎ
2

𝑞 (𝜏) sin 𝑠 (𝑥 − 𝜏)𝑤󸀠
3𝑠
(𝜏 − Δ (𝜏) , 𝜆) + 𝑍 (𝑥, 𝜆) ,

(|𝑍 (𝑥, 𝜆)| ≤ 𝑍0) .

(46)

Let 𝐷
𝜆
= max

[ℎ
2
,𝜋]
|𝑤
󸀠

3𝑠
(𝑥, 𝜆)|. Then the existence of 𝐷

𝜆
fol-

lows from continuity of derivation for 𝑥 ∈ [ℎ
2
, 𝜋]. From (46)

𝐷
𝜆
≤
1

𝑠
𝑞
3
𝐷
𝜆
+ 𝑍
0
. (47)

Now let 𝑠 ≥ 2𝑞
3
. Then 𝐷

𝜆
≤ 2𝑍

0
and the validity of the

asymptotic formula (45) follows. Formulas (43) and (44) may
be proved analogically.

Theorem 6. Let 𝑛 be a natural number. For each sufficiently
big 𝑛 there is exactly one eigenvalue of the problem (1)–(7) near
𝑛
2.

Proof. We consider the expression which is denoted by 𝑂(1)
in (39). If formulas (40)–(45) are taken into consideration, it
can be shown by differentiation with respect to 𝑠 that for big
𝑠 this expression has bounded derivative. We will show that,
for big 𝑛, only one root (39) lies near to each 𝑛. We consider
the function 𝜙(𝑠) = 𝑠 sin 𝑠𝜋 + 𝑂(1). Its derivative, which has
the form 𝜙󸀠(𝑠) = sin 𝑠𝜋+𝑠𝜋 cos 𝑠𝜋+𝑂(1), does not vanish for
𝑠 close to 𝑛 for sufficiently big 𝑛. Thus our assertion follows
by Rolle’s Theorem.

Let 𝑛 be sufficiently big. In what follows we will denote by
𝜆
𝑛
= 𝑠
2

𝑛
the eigenvalue of the problem (1)–(7) situated near 𝑛2.

We set 𝑠
𝑛
= 𝑛+𝛿

𝑛
.Then from (39) it follows that 𝛿

𝑛
= 𝑂(1/𝑛).

Consequently

𝑠
𝑛
= 𝑛 + 𝑂(

1

𝑛
) , (48)

𝜆
𝑛
= 𝑛
2
+ 𝑂 (1) . (49)

Formula (48) makes it possible to obtain asymptotic expres-
sions for eigenfunction of the problem (1)–(7). From (14),
(30), and (40), we get

𝑤
1
(𝑥, 𝜆) = sin𝛼 cos 𝑠𝑥 + 𝑂(1

𝑠
) , (50)

𝑤
󸀠

1
(𝑥, 𝜆) = −𝑠 sin𝛼 sin 𝑠𝑥 + 𝑂 (1) . (51)
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From expressions of (15), (31), (39), and (41), we easily see that

𝑤
2
(𝑥, 𝜆) =

sin𝛼
𝛿

cos 𝑠𝑥 + 𝑂(1
𝑠
) ,

𝑤
3
(𝑥, 𝜆) =

sin𝛼
𝛿𝛾

cos 𝑠𝑥 + 𝑂(1
𝑠
) .

(52)

By substituting (48) into (50), (52), we find that

𝑢
1𝑛
= 𝑤
1
(𝑥, 𝜆
𝑛
) = sin𝛼 cos 𝑛𝑥 + 𝑂(1

𝑛
) ,

𝑢
2𝑛
= 𝑤
2
(𝑥, 𝜆
𝑛
) =

sin𝛼
𝛿

cos 𝑛𝑥 + 𝑂(1
𝑛
) ,

𝑢
3𝑛
= 𝑤
3
(𝑥, 𝜆
𝑛
) =

sin𝛼
𝛿𝛾

cos 𝑛𝑥 + 𝑂(1
𝑛
) .

(53)

Hence the eigenfunctions 𝑢
𝑛
(𝑥) have the following asymp-

totic representation:

𝑢
𝑛
(𝑥) =

{{{{{{{{{{{

{{{{{{{{{{{

{

sin𝛼 cos 𝑛𝑥 + 𝑂(1
𝑛
) , for 𝑥 ∈ [0, ℎ

1
) ,

sin𝛼
𝛿

cos 𝑛𝑥 + 𝑂(1
𝑛
) , for 𝑥 ∈ (ℎ

1
, ℎ
2
) ,

sin𝛼
𝛿𝛾

cos 𝑛𝑥 + 𝑂(1
𝑛
) , for 𝑥 ∈ (ℎ

2
, 𝜋] .

(54)

Under some additional conditions the more exact asymptot-
ic formulas which depend upon the retardation may be
obtained. Let us assume that the following conditions are ful-
filled.

(a)The derivatives 𝑞󸀠(𝑥) andΔ󸀠󸀠(𝑥) exist and are bounded
in [0, ℎ

1
) ∪ (ℎ
1
, ℎ
2
) ∪ (ℎ
2
, 𝜋] and have finite limits 𝑞󸀠(ℎ

1
± 0) =

lim
𝑥→ℎ

1
±0
𝑞
󸀠
(𝑥), 𝑞󸀠(ℎ

2
±0) = lim

𝑥→ℎ
2
±0
𝑞
󸀠
(𝑥) andΔ󸀠󸀠(ℎ

1
±0) =

lim
𝑥→ℎ

1
±0
Δ
󸀠󸀠
(𝑥), Δ󸀠󸀠(ℎ

2
±0) = lim

𝑥→ℎ
2
±0
Δ
󸀠󸀠
(𝑥), respectively.

(b) Δ󸀠(𝑥) ≤ 1 in [0, ℎ
1
) ∪ (ℎ

1
, ℎ
2
) ∪ (ℎ

2
, 𝜋], Δ(0) = 0,

lim
𝑥→ℎ

1
+0
Δ(𝑥) = 0, and lim

𝑥→ℎ
2
+0
Δ(𝑥) = 0.

It is easy to see that, using (b)

𝑥 − Δ (𝑥) ≥ 0, 𝑥 ∈ [0, ℎ
1
) ,

𝑥 − Δ (𝑥) ≥ ℎ
1
, 𝑥 ∈ (ℎ

1
, ℎ
2
) ,

𝑥 − Δ (𝑥) ≥ ℎ
2
, 𝑥 ∈ (ℎ

2
, 𝜋]

(55)

are obtained.
By (50), (52), and (55), we have

𝑤
1
(𝜏 − Δ (𝜏) , 𝜆) = sin𝛼 cos 𝑠 (𝜏 − Δ (𝜏)) + 𝑂(1

𝑠
) , (56)

𝑤
2
(𝜏 − Δ (𝜏) , 𝜆) =

sin𝛼
𝛿

cos 𝑠 (𝜏 − Δ (𝜏)) + 𝑂(1
𝑠
) , (57)

𝑤
3
(𝜏 − Δ (𝜏) , 𝜆) =

sin𝛼
𝛿𝛾

cos 𝑠 (𝜏 − Δ (𝜏)) + 𝑂(1
𝑠
) (58)

on [0, ℎ
1
), (ℎ
1
, ℎ
2
) and (ℎ

2
, 𝜋], respectively.

Under the conditions (a) and (b) the following formulas:

∫

𝑥

0

𝑞 (𝜏) cos 𝑠 (2𝜏 − Δ (𝜏)) 𝑑𝜏 = 𝑂(1
𝑠
) ,

∫

𝑥

0

𝑞 (𝜏) sin 𝑠 (2𝜏 − Δ (𝜏)) 𝑑𝜏 = 𝑂(1
𝑠
)

(59)

can be proved by the same technique in Lemma 3.3.3 in [5].
Putting the expressions (56), (57), and (58) into (37), and

then using (59), after long operations we have

cos 𝑠𝜋 sin (𝛼 − 𝛽) − 𝑠 sin𝛼 sin𝛽 sin 𝑠𝜋
𝛿𝛾

−
sin𝛼 sin𝛽
2𝛿𝛾

∫

𝜋

0

𝑞 (𝜏) cos 𝑠 (𝜋 − Δ (𝜏)) 𝑑𝜏

+ 𝑂(
1

𝑠
) = 0.

(60)

Hence

tan 𝑠𝜋 = 1
𝑠
(
sin (𝛼 − 𝛽)
sin𝛼 sin𝛽

−
1

2
∫

𝜋

0

𝑞 (𝜏) cos 𝑠 (𝜋 − Δ (𝜏)) 𝑑𝜏)

+ 𝑂(
1

𝑠2
) .

(61)

Again, if we take 𝑠
𝑛
= 𝑛 + 𝛿

𝑛
, then from (48)

tan ((𝑛 + 𝛿
𝑛
) 𝜋) = tan 𝛿

𝑛
𝜋

=
1

𝑛
(
sin (𝛼 − 𝛽)
sin𝛼 sin𝛽

−
1

2
∫

𝜋

0

𝑞 (𝜏) cos 𝑠 (𝜋 − Δ (𝜏)) 𝑑𝜏)

+ 𝑂(
1

𝑛2
) .

(62)

Hence for big 𝑛,

𝛿
𝑛
=
1

𝑛𝜋
(
sin (𝛼 − 𝛽)
sin𝛼 sin𝛽

−
1

2
∫

𝜋

0

𝑞 (𝜏) cos 𝑠 (𝜋 − Δ (𝜏)) 𝑑𝜏)

+ 𝑂(
1

𝑛2
)

(63)

and finally

𝑠
𝑛
= 𝑛 +

1

𝑛𝜋
(
sin (𝛼 − 𝛽)
sin𝛼 sin𝛽

−
1

2
∫

𝜋

0

𝑞 (𝜏) cos 𝑠 (𝜋 − Δ (𝜏)) 𝑑𝜏)

+ 𝑂(
1

𝑛2
) .

(64)

Thus, we have proven the following theorem.
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Theorem 7. If conditions (a) and (b) are satisfied, then the
eigenvalues 𝜆

𝑛
= 𝑠
2

𝑛
of the problem (1)–(7) have the (64)

asymptotic formula for 𝑛 → ∞.

Now, we may obtain sharper asymptotic formulas for the
eigenfunctions. From (14), (56), and (59), we have

𝑤
1
(𝑥, 𝜆) = sin𝛼 cos 𝑠𝑥 [1 + 1

2𝑠
∫

𝑥

0

𝑞 (𝜏) sin 𝑠Δ (𝜏) 𝑑𝜏]

−
sin 𝑠𝑥
𝑠

[cos𝛼 + sin𝛼
2
∫

𝑥

0

𝑞 (𝜏) cos 𝑠Δ (𝜏) 𝑑𝜏]

+ 𝑂(
1

𝑠2
) , 𝑥 ∈ [0, ℎ

1
) .

(65)

Now, replacing 𝑠 by 𝑠
𝑛
and using (64), we have

𝑢
1𝑛
(𝑥)

= 𝑤
1
(𝑥, 𝜆
𝑛
)

= sin𝛼{cos 𝑛𝑥 [1 + 1

2𝑛
∫

𝑥

0

𝑞 (𝜏) sin (𝑛Δ (𝜏)) 𝑑𝜏]

−
sin 𝑛𝑥
𝑛𝜋

[(
sin (𝛼 − 𝛽)
sin𝛼 sin𝛽

−
1

2
∫

𝜋

0

𝑞 (𝜏) cos (𝑛 (𝜋 − Δ (𝜏))) 𝑑𝜏)𝑥

+(cot𝛼+ 1
2
∫

𝑥

0

𝑞 (𝜏) cos (𝑛Δ (𝜏)) 𝑑𝜏)𝜋]}

+ 𝑂(
1

𝑛2
) .

(66)

From (15), (57), (59), and (65) we have

𝑤
2
(𝑥, 𝜆) =

sin𝛼 cos 𝑠𝑥
𝛿

[1 +
1

2𝑠
∫

𝑥

0

𝑞 (𝜏) sin 𝑠Δ (𝜏) 𝑑𝜏]

−
sin 𝑠𝑥
𝑠𝛿

[cos𝛼 + sin𝛼
2
∫

𝑥

0

𝑞 (𝜏) cos 𝑠Δ (𝜏) 𝑑𝜏]

+ 𝑂(
1

𝑠2
) , 𝑥 ∈ (ℎ

1
, ℎ
2
) .

(67)

Now, replacing 𝑠 by 𝑠
𝑛
and using (64), we have

𝑢
2𝑛
(𝑥)

= 𝑤
2
(𝑥, 𝜆
𝑛
)

=
sin𝛼
𝛿
{cos 𝑛𝑥 [1 + 1

2𝑛
∫

𝑥

0

𝑞 (𝜏) sin (𝑛Δ (𝜏)) 𝑑𝜏]

−
sin 𝑛𝑥
𝑛𝜋

[(
sin (𝛼 − 𝛽)
sin𝛼 sin𝛽

−
1

2
∫

𝜋

0

𝑞(𝜏)cos(𝑛(𝜋−Δ(𝜏)))𝑑𝜏)𝑥

+(cot𝛼+ 1
2
∫

𝑥

0

𝑞(𝜏)cos(𝑛Δ (𝜏)) 𝑑𝜏)𝜋]}

+ 𝑂(
1

𝑛2
) .

(68)

From (16), (58), (59), (65), and (67) and after long opera-
tions, we have

𝑤
3
(𝑥, 𝜆) =

sin𝛼 cos 𝑠𝑥
𝛿𝛾

[1 +
1

2𝑠
∫

𝑥

0

𝑞 (𝜏) sin 𝑠Δ (𝜏) 𝑑𝜏]

−
sin 𝑠𝑥
𝑠𝛿𝛾

[cos𝛼 + sin𝛼
2
∫

𝑥

0

𝑞 (𝜏) cos 𝑠Δ (𝜏) 𝑑𝜏]

+ 𝑂(
1

𝑠2
) , 𝑥 ∈ (ℎ

2
, 𝜋] .

(69)

Now replacing 𝑠 by 𝑠
𝑛
and using (64), we have

𝑢
3𝑛
(𝑥)

= 𝑤
3
(𝑥, 𝜆
𝑛
)

=
sin𝛼
𝛿𝛾

{cos 𝑛𝑥 [1 + 1

2𝑛
∫

𝑥

0

𝑞 (𝜏) sin (𝑛Δ (𝜏)) 𝑑𝜏]

−
sin 𝑛𝑥
𝑛𝜋

[(
sin (𝛼 − 𝛽)
sin𝛼 sin𝛽

−
1

2
∫

𝜋

0

𝑞(𝜏)cos(𝑛(𝜋−Δ(𝜏)))𝑑𝜏)𝑥

+(cot𝛼+ 1
2
∫

𝑥

0

𝑞 (𝜏)cos(𝑛Δ(𝜏)) 𝑑𝜏)𝜋]}

+ 𝑂(
1

𝑛2
) .

(70)

Thus, we have proven the following theorem.

Theorem 8. If conditions (a) and (b) are satisfied, then the
eigenfunctions 𝑢

𝑛
(𝑥) of the problem (1)–(7) have the following

asymptotic formula for 𝑛 → ∞:

𝑢
𝑛
(𝑥) =

{{

{{

{

𝑢
1𝑛
(𝑥) , 𝑥 ∈ [0, ℎ

1
) ,

𝑢
2𝑛
(𝑥) , 𝑥 ∈ (ℎ

1
, ℎ
2
) ,

𝑢
3𝑛
(𝑥) , 𝑥 ∈ (ℎ

2
, 𝜋] ,

(71)

where 𝑢
1𝑛
(𝑥), 𝑢

2𝑛
(𝑥), and 𝑢

3𝑛
(𝑥) are determined as in (49),

(68), and (70), respectively.
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[11] E. Şen and S. Araci, “Computation of Eigenvalues and funda-
mental solutions of a fourth-order boundary value,” Proceedings
of the JangjeonMathematical Society, vol. 15, no. 4, pp. 455–464,
2012.
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