
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 306467, 9 pages
http://dx.doi.org/10.1155/2013/306467

Research Article
Cross-Diffusion-Driven Instability in a Reaction-Diffusion
Harrison Predator-Prey Model

Xiaoqin Wang,1 and Yongli Cai2

1 Faculty of Science, Shaanxi University of Science and Technology, Xi’an 710021, China
2 School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, China

Correspondence should be addressed to Xiaoqin Wang; wxiqn@163.com

Received 4 August 2012; Accepted 14 December 2012

Academic Editor: Xiaodi Li

Copyright © 2013 X. Wang and Y. Cai. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present a theoretical analysis of processes of pattern formation that involves organisms distribution and their interaction of
spatially distributed population with cross-diffusion in a Harrison-type predator-prey model. We analyze the global behaviour of
the model by establishing a Lyapunov function. We carry out the analytical study in detail and find out the certain conditions for
Turing’s instability induced by cross-diffusion. And the numerical results reveal that, on increasing the value of the half capturing
saturation constant, the sequences “spots → spot-stripe mixtures → stripes → hole-stripe mixtures → holes” are observed. The
results show that the model dynamics exhibits complex pattern replication controlled by the cross-diffusion.

1. Introduction

Understanding of spatial and temporal behaviors of interact-
ing species in ecological systems is one of the central scientific
problems in population ecology [1–15], since the pioneering
work of Turing [16]. Throughout the history of theoretical
ecology, reaction-diffusion equations have been intensively
used to describe spatiotemporal dynamics [15, 17].

In recent years, the effect of cross-diffusion in reaction-
diffusion systems has received much attention by both ecol-
ogists and mathematicians, for example, see [18–25] and the
references therein. Kerner [18] was the first to examine that
cross-diffusion can induce pattern forming instability in an
ecological situation. Cross-diffusion expresses the population
fluxes of one species due to the presence of the other species.
And Gurtin [19] developed some mathematical models for
population dynamics with the inclusion of cross-diffusion
as well as self-diffusion and showed that the effect of cross-
diffusion may give rise to the segregation of two species.

In this paper, we are attempting to study the effect of
cross-diffusion in a predator-prey model with Harrison-type
functional response [26]. The model can be written as𝜕𝑢𝜕𝑡 = 𝑟𝑢 (1 − 𝑢𝐾) − 𝑐1𝑢𝑣𝑚1𝑣 + 1+ 𝐷11Δ𝑢 + 𝐷12Δ𝑣, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

𝜕𝑣𝜕𝑡 = 𝑣 (−ℎ1 + 𝑏1𝑢𝑚1𝑣 + 1)+ 𝐷21Δ𝑢 + 𝐷22Δ𝑣, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑣 (𝑥, 0) = 𝑣0 (𝑥) ,𝑥 = (𝜉, 𝜂) ∈ Ω,
(1)

where 𝑢 and 𝑣 represent population density of prey and
predator at time 𝑡, respectively. 𝑟 is the intrinsic growth rate of
prey,𝐾 is the prey carrying capacity, 𝑐1 is the capture rate,𝑚1
the half capturing saturation constant, ℎ1 is the death rate of
predator, and 𝑏1 is conversion rate. 𝐷11 and 𝐷22 are the self-
diffusion coefficients of 𝑢 and 𝑣, respectively, 𝐷12 and 𝐷21
are the cross-diffusion coefficients of 𝑢 and 𝑣, respectively.
We always assume that 𝐷11 > 0, 𝐷22 > 0 and 𝐷11𝐷22 −𝐷12𝐷21 > 0. The value of the cross-diffusion coefficient
may be positive, negative, or zero. Positive cross-diffusion
coefficient denotes, that one species tends to move in the
direction of lower concentration of another species, while
negative cross-diffusion expresses the population fluxes of
one species in the direction of higher concentration of the
other species [27]. Δ = 𝜕2/𝜕𝑥2 = 𝜕2/𝜕𝜉2 + 𝜕2/𝜕𝜂2 is the
usual Laplacian operator in 2-dimensional space.Ω ⊂ R2 is a
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bounded domain with smooth boundary 𝜕Ω. The initial data𝑢0(𝑥) and 𝑣0(𝑥) are continuous functions onΩ.
We make a change of variables:(𝑢, 𝑣, 𝑡) = (𝐾�̃�, 𝐾𝑣, �̃�𝑟) . (2)

For the sake of convenience, we still use variables 𝑢, 𝑣 instead
of �̃�, 𝑣. Thus, considering zero-flux boundary conditions,
model (1) is converted into𝜕𝑢𝜕𝑡 = 𝑢 (1 − 𝑢) − 𝑐𝑢𝑣𝑚𝑣 + 1+ 𝑑11Δ𝑢 + 𝑑12Δ𝑣, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,𝜕𝑣𝜕𝑡 = 𝑣 (−ℎ + 𝑏𝑢𝑚𝑣 + 1)+ 𝑑21Δ𝑢 + 𝑑22Δ𝑣, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,𝜕𝑢𝜕𝜈 = 𝜕𝑣𝜕𝜈 = 0, 𝑥 = (𝜉, 𝜂) ∈ 𝜕Ω, 𝑡 > 0,𝑢 (𝑥, 0) = 𝑢0 (𝑥) ≥ 0, 𝑣 (𝑥, 0) = 𝑣0 (𝑥) ≥ 0,𝑥 = (𝜉, 𝜂) ∈ Ω,

(3)

where the new parameters are𝑐 = 𝐾𝑐1𝑟 , 𝑚 = 𝐾𝑚1, ℎ = ℎ1𝑟 , 𝑏 = 𝑏1𝐾𝑟 ,
𝑑11 = 𝐷11𝑟 , 𝑑12 = 𝐷12𝑟 , 𝑑21 = 𝐷21𝑟 , 𝑑22 = 𝐷22𝑟 .

(4)𝐷 = ( 𝑑11 𝑑12𝑑21 𝑑22
) is the diffusion matrix, 𝑑11 > 0, 𝑑22 > 0, and

det(𝐷) = 𝑑11𝑑22 − 𝑑12𝑑21 > 0. 𝜈 is the outward unit normal
vector on 𝜕Ω and the zero-flux boundary conditions mean
that model (3) is self-contained and has no population flux
across the boundary 𝜕Ω [28, 29].

In particular, when 𝑑12 = 𝑑21 = 0, that is, the cross-
diffusion coefficients are equal 0, we can obtain the following
model: 𝜕𝑢𝜕𝑡 = 𝑢 (1 − 𝑢) − 𝑐𝑢𝑣𝑚𝑣 + 1+ 𝑑11Δ𝑢, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,𝜕𝑣𝜕𝑡 = 𝑣 (−ℎ + 𝑏𝑢𝑚𝑣 + 1)+ 𝑑22Δ𝑣, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,𝜕𝑢𝜕𝜈 = 𝜕𝑣𝜕𝜈 = 0, 𝑥 = (𝜉, 𝜂) ∈ 𝜕Ω, 𝑡 > 0,𝑢 (𝑥, 0) = 𝑢0 (𝑥) ≥ 0, 𝑣 (𝑥, 0) = 𝑣0 (𝑥) ≥ 0,𝑥 = (𝜉, 𝜂) ∈ Ω.

(5)

We call model (5) as self-diffusionmodel, while we call model
(3) cross-diffusion model.

The corresponding kinetic equation to models (3) and (5)
is:

.𝑢 = 𝑢 (1 − 𝑢) − 𝑐𝑢𝑣𝑚𝑣 + 1 ≜ 𝑓 (𝑢, 𝑣) ,

.𝑣 = 𝑣(−ℎ + 𝑏𝑢𝑚𝑣 + 1) ≜ 𝑔 (𝑢, 𝑣) . (6)

In recent years, there has been considerable interest to
investigate the stability behavior of a predator-prey system by
taking into account the effect of self- as well as cross-diffusion
[3, 6, 8–10, 12–15]. But in the studies on the spatiotemporal
dynamics of predator-prey system with functional response,
little attention has been paid to study on the effect of cross-
diffusion.

Mathematically speaking, an equilibrium in Turing’s
instability (diffusion-driven instability) means that it is an
asymptotically stable equilibrium 𝐸∗ of model (6) but is
unstable with respect to the solutions of reaction-diffusion
model (3) or (5). Especially, if 𝐸∗ is also stable with respect
to the solutions of the self-diffusion model (3), that is, 𝑑12 =𝑑21 = 0 in the cross-diffusion model (5), then there is
nonexistence of Turing’s instability in this situation.

And there comes a question: if there is nonexistence of
Turing’s instability in the case of self-diffusion (i.e., 𝑑12 =𝑑21 = 0), does model (5) exhibit Turing’s instability induced
by cross-diffusion?

The main purpose of this paper is to focus on the effect
of cross-diffusion on the spatiotemporal dynamics of the
reaction-diffusion predation model. The paper is organized
as follows. In Section 2, we give some properties of the
solutions of the model. In Section 3, we give the linearized
stability analysis to show (i.e., no cross-diffusion), deduce the
conditions of Turing’s instability induced by cross-diffusion,
and illustrate the different Turing patterns by using the
numerical simulations. Finally, in Section 4, some conclu-
sions and discussions are given.

2. Dynamics Analysis

In this section, we present some preliminary results, includ-
ing dissipativeness, boundedness, permanence of the solu-
tions, and the equilibria stability analysis of the models.

2.1. Dissipativeness

Theorem 1. For any solution (𝑢, 𝑣) of model (6),

lim sup
𝑡→∞

𝑢 (𝑡) ≤ 1, lim sup
𝑡→∞

𝑣 (𝑡) ≤ max{0, 𝑏 − ℎℎ𝑚 } . (7)

Hence, model (6) is dissipative.

Proof. From the first equation of model (6), it can be easily
shown that

lim sup
𝑡→∞

𝑢 (𝑡) ≤ 1. (8)
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If 𝑏 > ℎ, from the second equation of model (6), one has:

.𝑣 ≤ 𝑣 (𝑏 − ℎ − ℎ𝑚𝑣) . (9)

A standard comparison argument shows that

lim sup
𝑡→∞

𝑣 (𝑡) ≤ 𝑏 − ℎℎ𝑚 ≜ 𝛼. (10)

If 𝑏 ≤ ℎ, we have the following differential inequality:
.𝑣 ≤ −ℎ𝑚𝑣2𝑚𝑣 + 1 , (11)

and the same argument above yields

lim sup
𝑡→∞

𝑣 (𝑡) ≤ 0. (12)

In either case, the second inequality of (7) holds.

2.2. Boundedness

Theorem 2. All the solutions of model (6)which initiate inR+2
are uniformly bounded within the region Γ, where

Γ = {(𝑢, 𝑣) : 0 ≤ 𝑢 + 𝑐𝑏𝑣 ≤ 1 + 14ℎ} . (13)

Proof. Let us define the function:𝑤 (𝑡) = 𝑢 (𝑡) + 𝑐𝑏𝑣 (𝑡) . (14)

Calculating the time derivative of 𝑤(𝑡) along the trajectories
of model (6), we get

.𝑤 (𝑡) = .𝑢 + .𝑣 = 𝑢 (1 − 𝑢) − 𝑐ℎ𝑏 𝑣. (15)

Then,

.𝑤 (𝑡) + ℎ𝑤 (𝑡) = 𝑢 (1 − 𝑢) + ℎ𝑢 < 14 + ℎ. (16)

Using the theory of differential inequality, for all 𝑡 ≥ 𝑇 ≥ 0,
we have0 ≤ 𝑤 (𝑡) ≤ 1 + 14ℎ − (1 + 14ℎ − 𝑤 (𝑇)) 𝑒−(𝑡−𝑇). (17)

Hence, we have

lim sup
𝑡→∞

𝑤 (𝑡) ≤ 1 + 14ℎ . (18)

Hence, all the solutions of model (6) that initiate in R+2 are
confined in the region Γ.

2.3. Permanence

Theorem 3. If 𝑐 < 𝑚 and ℎ < (𝑏/2)(1 − 𝑐/𝑚), then model (6)
has the permanence property.

Proof. By the first equation of model (6), we have
.𝑢 = 𝑢 (1 − 𝑢) − 𝑐𝑢𝑣𝑚𝑣 + 1= 𝑢 (1 − 𝑢) − 𝑐𝑢(1/𝑚) (𝑚𝑣 + 1) − (1/𝑚)𝑚𝑣 + 1≥ 𝑢 (1 − 𝑐/𝑚 − 𝑢) . (19)

Since 𝑐 < 𝑚, by the famous comparison theorem, we have

lim inf
𝑡→∞

𝑢 (𝑡) ≥ 1 − 𝑐𝑚 > 0. (20)

Hence, for large 𝑡, 𝑢(𝑡) > (1/2)(1 − 𝑐/𝑚) ≜ 𝜂.
As a result, for large 𝑡, 𝑣 satisfies

.𝑣 ≥ 𝑣(−ℎ + 𝑏𝜂𝑚𝑣 + 1) = 𝑣 (𝑏𝜂 − ℎ − ℎ𝑚𝑣)𝑚𝑣 + 1 . (21)

Since ℎ < (𝑏/2)(1−𝑐/𝑚), by the famous comparison theorem,
we can get

lim inf
𝑡→∞

𝑣 (𝑡) ≥ 𝑏 (𝑚 − 𝑐) − 2ℎ𝑚2ℎ𝑚2 ≜ 𝛽 > 0. (22)

The proof is complete.

2.4. Stability Analysis of the Equilibria. The nonspatial model
(6) has three equilibria, which correspond to spatially homo-
geneous equilibria of model (3) andmodel (5), in the positive
quadrant:

(i) 𝐸0 = (0, 0) (total extinct) is a saddle point;
(ii) 𝐸1 = (1, 0) (extinct of the predator, or prey only) is a

saddle when 𝑏 > ℎ, or stable node when 𝑏 < ℎ;
(iii) 𝐸3 = (𝑢∗, 𝑣∗) (coexistence of prey and predator),

where 𝑢∗ = ℎ(𝑚𝑣∗ + 1)/𝑏, and 𝑣∗ satisfiesℎ𝑚2𝑣2 − (𝑚 (𝑏 − ℎ) − ℎ𝑚 − 𝑏𝑐) 𝑣 + ℎ − 𝑏 = 0. (23)

It is easy to verify that it has a unique positive equilibrium if𝑏 > ℎ.
The Jacobian matrix for the positive equilibrium 𝐸3 =(𝑢∗, 𝑣∗) is given by

𝐽 = (−ℎ (𝑚𝑣∗ + 1)𝑏 − 𝑐ℎ𝑏 (𝑚𝑣∗ + 1)𝑏𝑣∗𝑚𝑣∗ + 1 − ℎ𝑚𝑣∗𝑚𝑣∗ + 1 ) ≜ (𝐽11 𝐽12𝐽21 𝐽22) . (24)

Obviously,

det (𝐽) = ℎ𝑣∗ (ℎ𝑚3𝑣∗2 + 2ℎ𝑚2𝑣∗ + ℎ𝑚 + 𝑏𝑐)𝑏(𝑚𝑣∗ + 1)2 > 0,
tr (𝐽) = −ℎ (𝑚2𝑣∗2 + 𝑚 (2 + 𝑏) 𝑣∗ + 1)𝑏 (𝑚𝑣∗ + 1) < 0. (25)

Therefore, we can obtain the following.
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Theorem 4. Assume that the positive equilibrium 𝐸3 =(𝑢∗, 𝑣∗) exists, then 𝐸3 = (𝑢∗, 𝑣∗) is locally stable for model
(6).

In the following, we shall prove that the positive equilib-
rium 𝐸3 = (𝑢∗, 𝑣∗) of model (3) is globally asymptotically
stable.

Theorem 5. Suppose that ℎ < 𝑏, 𝑐 < 𝑚, and ℎ < (𝑏/2)(1 −𝑐/𝑚). The positive equilibrium 𝐸3 = (𝑢∗, 𝑣∗) of model (3) is
globally asymptotically stable, if,

(a1) ℎ(𝑚𝑣∗ + 1)/𝑏 − 𝑐/𝑚 + 𝛽𝑐/(𝑚𝑣∗ + 1) > 0;
(a2) ℎ(ℎ(𝑚𝑣∗ +1)/𝑏 +𝛽𝑐/(𝑚𝑣∗ +1) − 1)(1 − 1/(𝛽𝑚+1)) −ℎ2/4𝑏2 − 𝛼𝑏2/4(𝑚𝑣∗ + 1)2 > 0;
(a3) 4𝑑11𝑑22 > (𝑑12 + 𝑑21)2,

where 𝛼 = (𝑏 − ℎ)/ℎ𝑚 > 0, 𝛽 = (𝑏(𝑚 − 𝑐) − 2ℎ𝑚)/2ℎ𝑚2.
Proof. We adopt the Lyapunov function:

𝑉 (𝑡) = ∫
Ω
[𝑉1 (𝑢 (𝑥, 𝑡)) + 𝑉2 (𝑣 (𝑥, 𝑡))] 𝑑𝑥, (26)

where 𝑉1(𝑢) = (1/2)(𝑢 − 𝑢∗)2, 𝑉2(𝑣) = (1/2)(𝑣 − 𝑣∗)2.
Then,

𝑑𝑉𝑑𝑡 = ∫
Ω
(𝜕𝑢𝜕𝑡 (𝑢 − 𝑢∗) + 𝜕𝑣𝜕𝑡 (𝑣 − 𝑣∗)) 𝑑𝑥

= ∫
Ω
((𝑢 − 𝑢∗) (𝑢 − 𝑢2 − 𝑐𝑢𝑣𝑚𝑣 + 1)+ (𝑣 − 𝑣∗) (−ℎ𝑣 + 𝑏𝑢𝑣𝑚𝑣 + 1))𝑑𝑥

+ ∫
Ω
((𝑢 − 𝑢∗) (𝑑11Δ𝑢 + 𝑑12Δ𝑣)+ (𝑣 − 𝑣∗) (𝑑21Δ𝑢 + 𝑑22Δ𝑣)) 𝑑𝑥= 𝐼1 + 𝐼2,

(27)

where

𝐼1 = ∫
Ω
(𝑢 − 𝑢∗)

× (𝑢 − 𝑢2 − 𝑐𝑢𝑣𝑚𝑣 + 1 − 𝑢∗ + 𝑢∗2 + 𝑐𝑢∗𝑣∗𝑚𝑣∗ + 1)𝑑𝑥
+ ∫
Ω
(𝑣 − 𝑣∗) (−ℎ𝑣 + 𝑏𝑢𝑣𝑚𝑣 + 1 + ℎ𝑣∗ − 𝑏𝑢∗𝑣∗𝑚𝑣∗ + 1)𝑑𝑥,

𝐼2 = ∫
Ω
(𝑢 − 𝑢∗) (𝑑11Δ𝑢 + 𝑑12Δ𝑣 − 𝑑11Δ𝑢∗ − 𝑑12Δ𝑣∗) 𝑑𝑥+ ∫
Ω
(𝑣 − 𝑣∗) (𝑑21Δ𝑢 + 𝑑22Δ𝑣 − 𝑑21Δ𝑢∗ − 𝑑22Δ𝑣∗) 𝑑𝑥.

(28)

By some computational analysis, we obtain

𝐼1 = − ∫
Ω
(𝑢 − 𝑢∗)2 (𝑢 + 𝑢∗ + 𝑐𝑣𝑚𝑣∗ + 1 − 1) 𝑑𝑥

− ∫
Ω
(𝑣 − 𝑣∗)2 (ℎ − ℎ(𝑚𝑣 + 1)) 𝑑𝑥

− ∫
Ω
(𝑢 − 𝑢∗) (𝑣 − 𝑣∗) 𝑢∗ − 𝑏𝑣 (𝑚𝑣 + 1)(𝑚𝑣∗ + 1) (𝑚𝑣 + 1)𝑑𝑥.

(29)

Considering the zero-flux boundary conditions, we have

𝐼2 = −𝑑11 ∫
Ω
|∇𝑢|2𝑑𝑥 − 𝑑12 ∫

Ω
∇𝑢∇𝑣𝑑𝑥

+ 2𝑑11 ∫
Ω
∇𝑢∇𝑢∗𝑑𝑥 + 𝑑12 ∫

Ω
∇𝑢∇𝑣∗𝑑𝑥

+ 𝑑12 ∫
Ω
∇𝑣∇𝑣∗𝑑𝑥 − 𝑑11 ∫

Ω

∇𝑢∗2𝑑𝑥− 𝑑12 ∫
Ω
∇𝑢∗∇𝑣∗𝑑𝑥 − 𝑑22 ∫

Ω
|∇𝑣|2𝑑𝑥

− 𝑑21 ∫
Ω
∇𝑢∇𝑣𝑑𝑥 + 𝑑21 ∫

Ω
∇𝑣∇𝑢∗𝑑𝑥

+ 2𝑑22 ∫
Ω
∇𝑣∇𝑣∗𝑑𝑥 + 𝑑21 ∫

Ω
∇𝑢∇𝑣∗𝑑𝑥

− 𝑑21 ∫
Ω
∇𝑢∗∇𝑣∗𝑑𝑥 − 𝑑22 ∫

Ω

∇𝑣∗2𝑑𝑥= −𝑑11 ∫
Ω
|∇𝑢|2𝑑𝑥 − (𝑑12 + 𝑑21) ∫

Ω
∇𝑢∇𝑣𝑑𝑥

+ 2𝑑11 ∫
Ω
∇𝑢∇𝑢∗𝑑𝑥 − 𝑑11 ∫

Ω

∇𝑢∗2𝑑𝑥+ (𝑑12 + 𝑑21) ∫
Ω
∇𝑢∇𝑣∗𝑑𝑥

− (𝑑12 + 𝑑21) ∫
Ω
∇𝑢∗∇𝑣∗𝑑𝑥 + 𝑑12 ∫

Ω
∇𝑣∇𝑣∗𝑑𝑥

+ 2𝑑22 ∫
Ω
∇𝑣∇𝑣∗𝑑𝑥 − 𝑑22 ∫

Ω
|∇𝑣|2𝑑𝑥

− 𝑑22 ∫
Ω

∇𝑣∗2𝑑𝑥 + 𝑑21 ∫
Ω
∇𝑣∇𝑢∗𝑑𝑥.

(30)
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𝐼1 and 𝐼2 in the curly brackets can be expressed in the form−𝑋𝐴𝑋𝑇 and −𝑌𝐵𝑌𝑇, respectively, where𝑋 = (𝑢 − 𝑢∗, 𝑣 − 𝑣∗) ,𝑌 = (∇𝑢, ∇𝑣, ∇𝑢∗, ∇𝑣∗) ,
𝐴 = (𝑢 + 𝑢∗ + 𝑐𝑣𝑚𝑣∗ + 1 − 1 𝑢∗ − 𝑏𝑣 (𝑚𝑣 + 1)2 (𝑚𝑣∗ + 1) (𝑚𝑣 + 1)𝑢∗ − 𝑏𝑣 (𝑚𝑣 + 1)2 (𝑚𝑣∗ + 1) (𝑚𝑣 + 1) ℎ − ℎ𝑚𝑣 + 1 )

≜ (𝜑1 𝜑2𝜑3 𝜑4) ,

𝐵 = ((((((((
(

𝑑11 𝑑12 + 𝑑212 −𝑑11 𝑑12 + 𝑑212𝑑12 + 𝑑212 𝑑22 𝑑12 + 𝑑212 −𝑑22−𝑑11 𝑑12 + 𝑑212 𝑑11 𝑑12 + 𝑑212𝑑12 + 𝑑212 −𝑑22 𝑑12 + 𝑑212 𝑑22
))))))))
)

.
(31)𝑑𝑉/𝑑𝑡 is negative definite if the symmetric matrices 𝐴 and 𝐵

are positive. It can be easily shown that the symmetric matrix𝐵 is positive definite if4𝑑11𝑑22 > (𝑑12 + 𝑑21)2. (32)

The symmetric matrix 𝐴 is positive definite if𝜑1 > 0, 𝜑4 > 0, Φ (𝑢, 𝑣) = 𝜑1𝜑4 − 𝜑2𝜑3 > 0. (33)

Since𝜑1 = 𝑢 + 𝑢∗ + 𝑐𝑣𝑚𝑣∗ + 1 − 1 > ℎ (𝑚𝑣∗ + 1)𝑏 − 𝑐𝑚 + 𝛽𝑐𝑚𝑣∗ + 1 ,
(34)

due to (a1), 𝜑1 > 0 is true. It is easy to verify that 𝜑4 = ℎ −(ℎ/(𝑚𝑣 + 1)) > 0.
SinceΦ (𝑢, 𝑣) = ℎ (𝑢 + 𝑢∗ + 𝑐𝑣𝑚𝑣∗ + 1 − 1)

× (1 − 1𝑚𝑣 + 1) − 14( 𝑢∗ − 𝑏𝑣 (𝑚𝑣 + 1)(𝑚𝑣∗ + 1) (𝑚𝑣 + 1))2= ℎ(𝑢 + ℎ (𝑚𝑣∗ + 1)𝑏 + 𝑐𝑣𝑚𝑣∗ + 1 − 1)
× (1 − 1𝑚𝑣 + 1)− 14( ℎ𝑏(𝑚𝑣 + 1) − 𝑏𝑣𝑚𝑣∗ + 1)2,

(35)

then 𝜕Φ (𝑢, 𝑣)𝜕𝑢 = ℎ (1 − 1𝑚𝑣 + 1) > 0. (36)

Hence, Φ(𝑢, 𝑣) is strictly increasing in R+, with respect to 𝑢,
andΦ (0, 𝑣) = ℎ(ℎ (𝑚𝑣∗ + 1)𝑏 + 𝑐𝑣𝑚𝑣∗ + 1 − 1)(1 − 1𝑚𝑣 + 1)− 14( ℎ𝑏 (𝑚𝑣 + 1) − 𝑏𝑣𝑚𝑣∗ + 1)2≥ ℎ(ℎ (𝑚𝑣∗ + 1)𝑏 + 𝛽𝑐𝑚𝑣∗ + 1 − 1)(1 − 1𝛽𝑚 + 1)− ℎ24𝑏2 − 𝛼𝑏24(𝑚𝑣∗ + 1)2 .

(37)

Consequently, if (a2) holds,Φ(0, 𝑣) > 0. As a result,Φ(𝑢, 𝑣) >Φ(0, 𝑣) > 0.
Hence, 𝑉 is a Lyapunov function and the positive equi-

librium 𝐸3 of model (3) is globally asymptotically stable.This
completes the proof.

Remark 6. When 𝑑12 = 𝑑21 = 0, Theorem 5 is true, too. That
is, the positive equilibrium 𝐸3 of the self-diffusion model (5)
is globally asymptotically stable.

3. Turing’s Instability and Pattern Formation

3.1. Nonexistence of Turing’s Instability in the Self-Diffusion
Model (5). And in the presence of diffusion,wewill introduce
small perturbations 𝑈1 = 𝑢 − 𝑢∗, 𝑈2 = 𝑣 − 𝑣∗, where|𝑈1|, |𝑈2| ≪ 1. To study the effect of self-diffusion on model
(5), we consider the linearized form of system about 𝐸∗ =(𝑢∗, 𝑣∗) as follows:𝜕𝑈1𝜕𝑡 = 𝐽11𝑈1 + 𝐽12𝑈2 + 𝑑11Δ𝑈1,𝜕𝑈2𝜕𝑡 = 𝐽21𝑈1 + 𝐽22𝑈2 + 𝑑22Δ𝑈2, (38)

where 𝐽11, 𝐽12, 𝐽21, and 𝐽22 are defined as (24).
Following Malchow et al. [11], we can know any solution

of model (38) can be expanded into a Fourier series so that

𝑈1 (𝑥, 𝑡) = ∞∑
𝑛,𝑚=0

𝑢𝑛𝑚 (𝑥, 𝑡) = ∞∑
𝑛,𝑚=0

𝛼𝑛𝑚 (𝑡) sin k𝑥,
𝑈2 (𝑥, 𝑡) = ∞∑

𝑛,𝑚=0

𝑣𝑛𝑚 (𝑥, 𝑡) = ∞∑
𝑛,𝑚=0

𝛽𝑛𝑚 (𝑡) sin k𝑥, (39)

where 𝑥 = (𝜉, 𝜂), and 0 < 𝜉 < 𝐿𝑥, 0 < 𝜂 < 𝐿𝑦. k =(𝑘𝑛, 𝑘𝑚) and 𝑘𝑛 = 𝑛𝜋/𝐿𝑥, 𝑘𝑚 = 𝑚𝜋/𝐿𝑦 are the corresponding
wavenumbers.
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Substituting 𝑢𝑛𝑚 and 𝑣𝑛𝑚 into (38), we obtain𝑑𝛼𝑛𝑚𝑑𝑡 = (𝐽11 − 𝑑11𝑘2) 𝛼𝑛𝑚 + 𝐽12𝛽𝑛𝑚,𝑑𝛽𝑛𝑚𝑑𝑡 = 𝐽21𝛼𝑛𝑚 + (𝐽22 − 𝑑22𝑘2) 𝛽𝑛𝑚, (40)

where 𝑘2 = 𝑘2𝑛 + 𝑘2𝑚.
A general solution of (40) has the form 𝐶1 exp(𝜆1𝑡) +𝐶2 exp(𝜆2𝑡), where the constants 𝐶1 and 𝐶2 are determined

by the initial conditions and the exponents 𝜆1, 𝜆2 are the
eigenvalues of the following matrix:

𝐷 = (𝐽11 − 𝑑11𝑘2 𝐽12𝐽21 𝐽22 − 𝑑22𝑘2). (41)

Correspondingly, 𝜆1, 𝜆2 are the solution of the following
characteristic equation:𝜆2 − 𝜌1𝜆 + 𝜌2 = 0, (42)

where𝜌1 = −𝑘2 (𝑑11 + 𝑑22) + tr (𝐽) ,𝜌2 = 𝑑11𝑑22𝑘4 − (𝑑22𝐽11 + 𝑑11𝐽22) 𝑘2 + det (𝐽) . (43)

From (24), one can easily obtain𝜌1 < 0, 𝜌2 > 0. (44)

Then, we can conclude that the equilibrium 𝐸∗ = (𝑢∗, 𝑣∗) is
also stable for self-diffusion model (5). That is to say, there is
nonexistence of Turing’s instability in model (5).

3.2. Turing’s Instability in the Cross-Diffusion Model (3). The
linearized form of the cross-diffusion model (3) about 𝐸∗ =(𝑢∗, 𝑣∗) is as follows:𝜕𝑈1𝜕𝑡 = 𝐽11𝑈1 + 𝐽12𝑈2 + 𝑑11Δ𝑈1 + 𝑑12Δ𝑈2,𝜕𝑈2𝜕𝑡 = 𝐽21𝑈1 + 𝐽22𝑈2 + 𝑑21Δ𝑈1 + 𝑑22Δ𝑈2. (45)

The characteristic equation of the linearized model (3) is:𝜆2 − 𝜎1𝜆 + 𝜎2 = 0, (46)

where𝜎1 = −𝑘2 (𝑑11 + 𝑑22) + tr (𝐽) ,𝜎2 = det (𝐷) 𝑘4− (𝑑22𝐽11 + 𝑑11𝐽22 − 𝑑21𝐽12 − 𝑑12𝐽21) 𝑘2 + det (𝐽) .
(47)

Diffusive instability occurs when at least one of the
following conditions is violated [2]:𝜎1 < 0 or 𝜎2 < 0. (48)

It is evident that the condition 𝜎1 > 0 is not violated when
the requirement 𝐽11 + 𝐽22 < 0 is met because we assume 𝑑11 >0 and 𝑑22 > 0. Hence, only violation of the condition 𝜎2 > 0
will give rise to diffusion instability, that is, Turing’s instability.
Then the condition for diffusive instability is given by𝑑22𝐽11 + 𝑑11𝐽22 − 𝑑21𝐽12 − 𝑑12𝐽21 > 0, (49)

otherwise𝜎2 > 0 for all 𝑘 > 0 since det(𝐷) > 0 and det(𝐽) > 0.
For Turing’s instability, we must have 𝜎2 < 0 for some 𝑘.

And we notice that 𝜎2 achieves its minimum:

min
𝜇𝑖

𝜎2
= 4 det (𝐷) det (𝐽) − (𝑑22𝐽11 + 𝑑11𝐽22 − 𝑑21𝐽12 − 𝑑12𝐽21)24 det (𝐷)

(50)

at the critical value 𝑘2𝑐 > 0 when
𝑘2𝑐 = 𝑑22𝐽11 + 𝑑11𝐽22 − 𝑑21𝐽12 − 𝑑12𝐽212 det (𝐷) . (51)

As a consequence, if 𝑑22𝐽11 + 𝑑11𝐽22 − 𝑑21𝐽12 − 𝑑12𝐽21 > 0 and𝜎2 < 0 hold, then 𝐸3 = (𝑢∗, 𝑣∗) is an unstable equilibrium
with respect tomodel (3). In this case, 𝜎2 = 0 has two positive
roots 𝑘21 and 𝑘22 which satisfy

𝑘21,2 = 𝑑22𝐽11 + 𝑑11𝐽22 − 𝑑21𝐽12 − 𝑑12𝐽21 ± √Λ2 det (𝐷) , (52)

where Λ = (𝑑22𝐽11 + 𝑑11𝐽22 − 𝑑21𝐽12)2 − 4 det(𝐷) det(𝐽).
Therefore, if we can find some 𝑘2 such that 𝑘21 < 𝑘2 < 𝑘22,
then 𝜎2 < 0.

Summarizing the above calculation, we obtain the follow-
ing.

Theorem 7. Assume that the positive equilibrium 𝐸3 =(𝑢∗, 𝑣∗) exists. If the following conditions are true:
(i) 𝑑22𝐽11 + 𝑑11𝐽22 > 𝑑21𝐽12 + 𝑑12𝐽21, that is,𝑐ℎ𝑑21 > 𝑑22ℎ𝑣∗2𝑚2 + ℎ𝑣∗ (𝑏𝑑11 + 2𝑑22)𝑚 + 𝑏2𝑑12𝑣∗ + ℎ𝑑22;

(53)

(ii) 𝑑22𝐽11 + 𝑑11𝐽22 − 𝑑21𝐽12 − 𝑑12𝐽21 > 2√det(𝐷) det(𝐽),
that is,

𝑐ℎ𝑑21 − (𝑑22ℎ𝑣∗2𝑚2 + ℎ𝑣∗ (𝑏𝑑11 + 2𝑑22)𝑚 + 𝑏2𝑑12𝑣∗ + ℎ𝑑22)> 2√𝑏ℎ𝑣∗ (𝑑11𝑑22 − 𝑑12𝑑21) (ℎ𝑚3𝑣∗2 + 2ℎ𝑚2𝑣∗ + ℎ𝑚 + 𝑏𝑐),
(54)

then the positive equilibrium 𝐸3 of model (3) is Turing
unstable if 0 < 𝑘21 < 𝑘2 < 𝑘22 for some 𝑘.
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Figure 1: Five typical Turing’s patterns of 𝑢 in model (3) with fixed parameters 𝑏 = 9, 𝑐 = 0.5, 𝑑 = 0.45, 𝑑11 = 0.01, 𝑑22 = 1, 𝑑12 = −0.025, and𝑑21 = 0.01. (a) Spots pattern, 𝑚 = 0.05; (b) spot-stripe mixtures pattern, 𝑚 = 0.125; (c) stripes pattern, 𝑚 = 0.25; (d) hole-stripe mixtures,𝑚 = 0.45; (e) holes pattern,𝑚 = 0.5. Iterations: pattern (a): 5 × 105, pattern (c): 1 × 105, and others: 3 × 105.
3.3. Pattern Formation. In this section, we perform extensive
numerical simulations of the spatially extended model (3) in
two-dimensional space, and the qualitative results are shown
here. All our numerical simulations employ the zero-flux
boundary conditions with a system size of 100 × 100. Other
parameters are set as 𝑏 = 9, 𝑐 = 0.5, 𝑑 = 0.45, 𝑑11 = 0.01,𝑑22 = 1, 𝑑12 = −0.025, and 𝑑21 = 0.01.

The numerical integration of model (3) is performed
by using a finite difference approximation for the spatial
derivatives and an explicit Euler method for the time inte-
gration [30, 31] with a time stepsize of 1/1000 and the
space stepsize ℎ = 1/10. The initial condition is always a
small amplitude random perturbation around the positive
equilibrium 𝐸3 = (𝑢∗, 𝑣∗). After the initial period during
which the perturbation spread, either the model goes into a
time-dependent state or to an essentially steady-state solution
(time independent).

In the numerical simulations, different types of dynamics
are observed and it is found that the distributions of predator
and prey are always of the same type. Consequently, we can
restrict our analysis of pattern formation to one distribution.
In this section, we show the distribution of prey 𝑢, for
instance. We have taken some snapshots with red (blue)
corresponding to the high (low) value of prey 𝑢.

Figure 1 shows five typical Turing’s patterns of prey 𝑢 in
model (3) arising from random initial conditions for several
values of the control parameter𝑚.

In Figure 1(a)—𝐻0-pattern, 𝑚 = 0.05, consists of red
(maximum density of 𝑢) hexagons on a blue (minimum
density of 𝑢) background, that is, isolated zones with high
population densities. In this paper, we call this pattern as
“spots.”

In Figure 1(b), when increasing𝑚 to 0.125, a few of stripes
emerge, and the remainder of the spots pattern remains
time independent. Pattern (b) is called 𝐻0-hexagon-stripe
mixtures pattern.

While increasing 𝑚 to 0.25, model dynamics exhibits a
transition from stripes-spots growth to stripes replication,
that is, spots decay and the stripes pattern emerges (cf.
Figure 1(c)).

In Figure 1(d),𝑚 = 0.45, on increasing of𝑚, a few of blue
hexagons (i.e., holes, named by Von Hardenberg et al. [32],
associated with low population densities) fill in the stripes,
that is, the stripes-holes pattern emerges. Pattern (d) is called𝐻𝜋-hexagon-stripe mixtures pattern.

When increasing 𝑚 to 0.5, model dynamics exhibits a
transition from stripe-holes growth to spots replication, that
is, stripes decay and the holes pattern (𝐻𝜋-pattern) emerges
(cf. Figure 1(e)).
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From Figure 1, one can see that, on increasing the control
parameter 𝑚, the sequences “spots → spot-stripe mixtures→ stripes → hole-stripe mixtures → holes” are observed.
Ecologically speaking, spots pattern shows that the prey
population are driven by predators to a high level in those
regions, while holes pattern shows that the prey population
are driven by predators to a very low level in those regions.
The final result is the formation of patches of high prey
density surrounded by areas of low prey densities [3].

4. Conclusions and Remarks

In this paper, we study the spatiotemporal dynamics of a
Harrison predator-prey model with self- and cross-diffusions
under the zero-flux boundary conditions. The value of this
study lies in twofold. First, it gives the global stability of
the positive equilibrium of the model by establishing a
Lyapunov function. Second, it rigorously proves that the
Turing instability can be induced by cross-diffusion, which
shows that the model dynamics exhibits complex pattern
replication controlled by the cross-diffusion.

The most important observation in this paper is that
the cross-diffusion terms are necessary for the emergence
of Turing’s instability and pattern formation in the model.
More precisely, with the help of the numerical simulations,
the sequences “spots → spot-stripe mixtures → stripes →
hole-stripe mixtures → holes” can be observed.

On the other hand, population dynamics in the real world
is inevitably affected by environmental noise which is an
important component in an ecosystem. The deterministic
models, such as model (3) or (5), assume that parameters in
the systems are all deterministic irrespective environmental
fluctuations. It is well known that the fact that due to environ-
mental noise, the birth rate, carrying capacity, competition
coefficient, and other parameters involved in the system
exhibit random fluctuation to a greater or lesser extent [33].
We think that there may be exist other noise-controlled self-
replicating patterns in models (3) and (5). This is desirable in
future studies.

It is believed that our results related to cross-diffusion in
predator-prey interactions model would certainly be of some
help to theoretical mathematicians and ecologists who are
engaged in performing experimental work.
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modified Lotka-Volterra model,” Physics Letters A, vol. 342, no.
1-2, pp. 90–98, 2005.

[7] R. B. Hoyle, Pattern Formation: An Introduction to Methods,
Cambridge University Press, Cambridge, UK, 2006.

[8] M. Iida, M. Mimura, and H. Ninomiya, “Diffusion, cross-
diffusion and competitive interaction,” Journal of Mathematical
Biology, vol. 53, no. 4, pp. 617–641, 2006.

[9] W.Wang, Q.-X. Liu, and Z. Jin, “Spatiotemporal complexity of a
ratio-dependent predator-prey system,” Physical Review E, vol.
75, no. 5, Article ID 051913, 9 pages, 2007.

[10] A. Madzvamuse and P. K. Maini, “Velocity-induced numerical
solutions of reaction-diffusion systems on continuously grow-
ing domains,” Journal of Computational Physics, vol. 225, no. 1,
pp. 100–119, 2007.

[11] H. Malchow, S. V. Petrovskii, and E. Venturino, Spatiotemporal
Patterns in Ecology and Epidemiology–Theory, Models, and Sim-
ulation, Mathematical and Computational Biology Series,
Chapman & Hall, Boca Raton, Fla, USA, 2008.

[12] A. Morozov and S. Petrovskii, “Excitable population dynamics,
biological control failure, and spatiotemporal pattern formation
in a model ecosystem,” Bulletin of Mathematical Biology, vol. 71,
no. 4, pp. 863–887, 2009.

[13] B. Dubey, N. Kumari, and R. K. Upadhyay, “Spatiotemporal pat-
tern formation in a diffusive predator-prey system: an analytical
approach,” Journal of Applied Mathematics and Computing, vol.
31, no. 1-2, pp. 413–432, 2009.

[14] W. Wang, L. Zhang, H. Wang, and Z. Li, “Pattern formation
of a predator-prey system with Ivlev-type functional response,”
Ecological Modelling, vol. 221, no. 2, pp. 131–140, 2010.

[15] W. Wang, Y. Lin, L. Zhang, F. Rao, and Y. Tan, “Complex
patterns in a predator-preymodel with self and cross-diffusion,”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 16, no. 4, pp. 2006–2015, 2011.

[16] A. Turing, “The chemical basis ofmorphogenesis,”Philosophical
Transactions of the Royal Society B, vol. 237, pp. 37–72, 1952.

[17] Y.Huang andO.Diekmann, “Interspecific influence onmobility
and Turing instability,” Bulletin of Mathematical Biology, vol. 65,
no. 1, pp. 143–156, 2003.

[18] E. H. Kerner, “Further considerations on the statistical mechan-
ics of biological associations,” The Bulletin of Mathematical
Biophysics, vol. 21, pp. 217–255, 1959.

[19] M. E. Gurtin, “Some mathematical models for population
dynamics that lead to segregation,”Quarterly of Applied Mathe-
matics, vol. 32, pp. 1–8, 1974.

[20] T. J. McDougall and J. S. Turner, “Influence of cross diffusion on
finger double–diffusive convection,” Nature, vol. 299, no. 5886,
pp. 812–814, 1982.

[21] Y. Alimirantis and S. Papageorgiou, “Cross diffusion effects
on chemical and biological pattern formation,” Journal of
Theoretical Biology, vol. 151, pp. 289–311, 1991.

[22] J. Chattopadhyay and P. K. Tapaswi, “Order and disorder in
biological systems through negative cross-diffusion of mitotic
inhibitor-a mathematical model,” Mathematical and Computer
Modelling, vol. 17, no. 1, pp. 105–112, 1993.

[23] J. Chattopadhyay and S. Chatterjee, “Cross diffusional effect in
a Lotka-Volterra competitive system,” Nonlinear Phenomena in
Complex Systems, vol. 4, no. 4, pp. 364–369, 2001.

[24] C. Tian, Z. Lin, and M. Pedersen, “Instability induced by cross-
diffusion in reaction-diffusion systems,”Nonlinear Analysis, vol.
11, no. 2, pp. 1036–1045, 2010.



Abstract and Applied Analysis 9

[25] J. Shi, Z. Xie, and K. Little, “Cross-diffusion induced instability
and stability in reaction-diffusion systems,” The Journal of
Applied Analysis and Computation, vol. 1, no. 1, pp. 95–119, 2011.

[26] G. W. Harrison, “Multiple stable equilibria in a predator-prey
system,” Bulletin of Mathematical Biology, vol. 48, no. 2, pp. 137–
148, 1986.

[27] B. Dubey, B. Das, and J. Hussain, “A predator-prey interaction
model with self and cross-diffusion,” Ecological Modelling, vol.
141, no. 1–3, pp. 67–76, 2001.

[28] J. D. Murray, “Discussion: turing’s theory of morphogenesis-its
influence on modelling biological pattern and form,” Bulletin of
Mathematical Biology, vol. 52, no. 1, pp. 117–152, 1990.

[29] J. Chattopadhyay and P. K. Tapaswi, “Effect of cross-diffusion
on pattern formation—a nonlinear analysis,” Acta Applicandae
Mathematicae, vol. 48, no. 1, pp. 1–12, 1997.

[30] M. R. Garvie, “Finite-difference schemes for reaction-diffusion
equations modeling predator-prey interactions in MATLAB,”
Bulletin of Mathematical Biology, vol. 69, no. 3, pp. 931–956,
2007.

[31] A. Munteanu and R. Sole, “Pattern formation in noisy self-
replicating spots,” International Journal of Bifurcation and
Chaos, vol. 16, no. 12, pp. 3679–3683, 2007.

[32] J. Von Hardenberg, E. Meron, M. Shachak, and Y. Zarmi,
“Diversity of vegetation patterns and desertification,” Physical
Review Letters, vol. 87, no. 19, Article ID 198101, 4 pages, 2001.

[33] M. Liu and K. Wang, “Persistence and extinction in stochastic
non-autonomous logistic systems,” Journal of Mathematical
Analysis and Applications, vol. 375, no. 2, pp. 443–457, 2011.


