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The aim of this work is to study the semidiscrete finite element discretization for a class of semilinear parabolic integrodifferential
optimal control problems.We derive a posteriori error estimates in 𝐿

2
(𝐽; 𝐿

2
(Ω))-norm and 𝐿

2
(𝐽;𝐻

1
(Ω))-norm for both the control

and coupled state approximations. Such estimates can be used to construct reliable adaptive finite element approximation for
semilinear parabolic integrodifferential optimal control problem. Furthermore, we introduce an adaptive algorithm to guide the
mesh refinement. Finally, a numerical example is given to demonstrate the theoretical results.

1. Introduction

With the advances of scientific computing, optimal control
problems are now widely used in multidisciplinary appli-
cations such as physical, biological, medicine, engineering
design, finance, fluidmechanics, and socioeconomic systems.
As a result, more and more people will benefit greatly by
learning to solve the optimal control problems numerically.
Realizing such growing needs, books and papers on optimal
control put more weight on numerical methods.

In modeling a wide range of problems for physical, eco-
nomic, and social processes, optimal control problems
described by integrodifferential equations play an important
role. Parabolic integrodifferential optimal control problems
are very important model in engineering numerical sim-
ulation, for example, biology mechanics, nuclear reaction
dynamics, heat conduction in materials with memory, visco-
elasticity, and so forth. Finite element approximation of
optimal control problems has a very important status in the
numerical methods for these problems. The finite element
approximation of optimal control problem by piecewise con-
stant functions was well investigated by Falk [1] and Geveci
[2].The finite elementmethods for semilinear elliptic optimal
control problems were discussed by Casas et al. in [3]. In [4],

the author studied the finite element discretization for a class
of quadratic boundary optimal control problems governed
by nonlinear elliptic equations and obtained a posteriori
error estimates for the coupled state and control approxima-
tion. Many introductions about the numerical computation
method for optimal control problems can be found in [5–8].

As one of important kinds of optimal control prob-
lems, parabolic integrodifferential optimal control problem
is widely used in scientific and engineering computing. The
literature in this aspect was huge, see; for example, [9].
In [10], Brunner and Yan analyzed finite element Galerkin
discretization for a class of optimal control problems gov-
erned by integral equations and integrodifferential equations
and derived a priori error estimates and a posteriori error
estimators for the approximation solutions.

Adaptive finite element method is the most important
method to boost accuracy of the finite element discretization.
It ensures a higher density of nodes in certain area of the
given domain, where the solution is discontinuous or more
difficult to approximate, using an a posteriori error indicator.
A posteriori error estimates are computable quantities in
terms of the discrete solution and they measure the actual
discrete errors without the knowledge of exact solutions.
They are essential in designing algorithms for mesh which
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equidistribute the computational effort and optimize the
computation. The literature in this was huge. In [11], the
authors presented an a posteriori error analysis for finite
element approximation of distributed convex elliptic optimal
control problems. They derived a posteriori error estimates
for the coupled state and control approximations. Such
estimates can be used to construct reliable adaptive finite
element approximation schemes for control problems. In [12],
Verfürth gave a general framework for deriving a posteri-
ori error estimates for approximate solutions of nonlinear
elliptic equations. He obtained a posteriori error estimates,
which can easily be computed from the given data of the
problem and the computed numerical solution and which
give global upper and local lower bounds on the error of
the numerical solution. Some of techniques directly relevant
to our work can be found in [11, 12]. Recently, in [13–16],
we derived a priori error estimates and a posteriori error
estimates for optimal control problems using mixed finite
element methods. Although a posteriori error estimates of
finite element approximation were widely used in numerical
simulations, they have not yet been utilized in nonlinear
parabolic integrodifferential optimal control problem.

In this paper, we adopt the standard notation 𝑊
𝑚,𝑝

(Ω)

for Sobolev spaces on Ω with a norm ‖ ⋅ ‖
𝑚,𝑝

given by
‖V‖𝑝

𝑚,𝑝
= ∑

|𝛼|≤𝑚
‖𝐷

𝛼V‖𝑝
𝐿
𝑝
(Ω)

and a seminorm | ⋅ |
𝑚,𝑝

given by
|V|𝑝𝑚,𝑝 = ∑

|𝛼|=𝑚
‖𝐷

𝛼V‖𝑝
𝐿
𝑝
(Ω)

. We set 𝑊
𝑚,𝑝

0
(Ω) = {V ∈

𝑊
𝑚,𝑝

(Ω) : V|
𝜕Ω

= 0}. For 𝑝 = 2, we denote 𝐻
𝑚
(Ω) =

𝑊
𝑚,2

(Ω), 𝐻𝑚

0
(Ω) = 𝑊

𝑚,2

0
(Ω), and ‖ ⋅ ‖

𝑚
= ‖ ⋅ ‖

𝑚,2
, ‖ ⋅ ‖ =

‖ ⋅ ‖
0,2
. We denote by 𝐿

𝑠
(0, 𝑇;𝑊

𝑚,𝑝
(Ω)) the Banach space of

all 𝐿
𝑠 integrable functions from 𝐽 to 𝑊

𝑚,𝑝
(Ω) with norm

‖V‖
𝐿
𝑠
(𝐽;𝑊
𝑚,𝑝

(Ω))
= (∫

𝑇

0
‖V‖𝑠

𝑊
𝑚,𝑝

(Ω)
𝑑𝑡)

1/𝑠

for 𝑠 ∈ [1,∞), and the
standard modification for 𝑠 = ∞. The details can be found in
[9].

In this paper, we derive a posteriori error estimates for
a class of semilinear parabolic integrodifferential optimal
control problems. To the best of our knowledge in the
context of semilinear parabolic integrodifferential optimal
control problems, these estimates are new. We consider the
following semilinear parabolic integrodifferential optimal
control problems:

min
𝑢(𝑡)∈𝐾⊂𝑈

{∫

𝑇

0

(
1

2

𝑦 − 𝑦
0



2

+
𝛼

2
‖𝑢‖

2
)𝑑𝑡} (1)

subject to the state equation

𝑦
𝑡
− div (𝐴∇𝑦 (𝑥, 𝑡))

− ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦 (𝑥, 𝜏)) 𝑑𝜏 + 𝜙 (𝑦)

= 𝑓 + 𝐵𝑢, 𝑥 ∈ Ω, 𝑡 ∈ 𝐽,

𝑦 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ 𝐽,

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , 𝑥 ∈ Ω,

(2)

where the bounded open set Ω ⊂ R2 is 2 regular convex
polygon with boundary 𝜕Ω, 𝐽 = (0, 𝑇], 𝑓 ∈ 𝐿

2
(Ω), 𝜓 =

𝜓(𝑥, 𝑡, 𝜏) = 𝜓
𝑖,𝑗
(𝑥, 𝑡, 𝜏)

2×2
∈ 𝐶

∞
(0, 𝑇; 𝐿

2
(Ω))

2×2, 𝑦
0
∈ 𝐻

1
(Ω),

𝛼 is a positive constant, and 𝐵 is a continuous linear operator
from 𝐾 to 𝐿

2
(Ω). For any 𝑅 > 0, the function 𝜙(⋅) ∈

𝑊
2,∞

(−𝑅, 𝑅), 𝜙
(𝑦) ∈ 𝐿

2
(Ω) for any 𝑦 ∈ 𝐿

2
(𝐽;𝐻

1

0
(Ω)), and

𝜙

(𝑦) ≥ 0. We assume that the coefficient matrix 𝐴(𝑥) =

(𝑎
𝑖,𝑗
(𝑥))

2×2
∈ (𝑊

1,∞
(Ω))

2×2 is a symmetric positive definite
matrix and there is a constant 𝑐 > 0 satisfying for any vector
X ∈ R2, X𝑡

𝐴X ≥ 𝑐‖X‖
2

R2 . Here, 𝐾 denotes the admissible set
of the control variable defined by

𝐾 = {𝑢 (𝑥, 𝑡) ∈ 𝑈 = 𝐿
2
(𝐽; 𝐿

2
(Ω)) : 𝑢 (𝑥, 𝑡) ≥ 0, 𝑡 ∈ 𝐽} .

(3)

Assume that there are constants 𝑐 and 𝐶, such that for all 𝑡
and 𝜏 in [0, 𝑇]:

𝑎 (𝑧, 𝑧) ≥ 𝑐‖𝑧‖
2

1,Ω
, ∀𝑧 ∈ 𝑉, (4)

|𝑎 (𝑧, 𝑤)| ≤ 𝐶‖𝑧‖
1,Ω

⋅ ‖𝑤‖1,Ω, ∀𝑧, 𝑤 ∈ 𝑉, (5)
𝜓 (𝑡, 𝜏; 𝑧, 𝑤)

 ≤ 𝐶‖𝑧‖
1,Ω

⋅ ‖𝑤‖1,Ω, ∀𝑧, 𝑤 ∈ 𝑉. (6)

The plan of this paper is as follows. In the next section,
we present the finite element discretization for semilinear
parabolic integrodifferential optimal control problems. A
posteriori error estimates are established for the optimal
control problems in Section 3. In Section 4, we introduce
an adaptive algorithm to guide the mesh refinement. In
Section 5, a numerical example is given to demonstrate our
theoretical results. Finally, we analyze the conclusion and
future work in Section 6.

2. Finite Elements for Integrodifferential
Optimal Control

We will now describe the finite element discretization
of semilinear parabolic integrodifferential optimal control
problems (1)-(2). Let 𝑉 = 𝐻

1

0
(Ω) and 𝑊 = 𝐿

2
(Ω). Let

𝑎 (𝑦, 𝑤) = ∫
Ω

(𝐴∇𝑦) ⋅ ∇𝑤, ∀𝑦, 𝑤 ∈ 𝑉,

𝜓 (𝑡, 𝜏; 𝑧, 𝑤) = (𝜓 (𝑡, 𝜏) ∇𝑧, ∇𝑤) , ∀𝑧, 𝑤 ∈ 𝑉 × 𝑉,

(𝑢, V) = ∫
Ω

𝑢V, ∀ (𝑢, V) ∈ 𝑊 × 𝑊,

(𝑓
1
, 𝑓

2
) = ∫

Ω

𝑓
1
𝑓
2
, ∀ (𝑓

1
, 𝑓

2
) ∈ 𝑊 × 𝑊.

(7)

Then, the semilinear parabolic integrodifferential optimal
control problems (1)-(2) can be restated as

min
𝑢(𝑡)∈𝐾

{∫

𝑇

0

(
1

2

𝑦 − 𝑦
0



2

+
𝛼

2
‖𝑢‖

2
)𝑑𝑡} (8)
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subject to

(𝑦
𝑡
, 𝑤) + 𝑎 (𝑦, 𝑤) + ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦 (𝜏) , 𝑤) 𝑑𝜏 + (𝜙 (𝑦) , 𝑤)

= (𝑓 + 𝐵𝑢, 𝑤) , ∀𝑤 ∈ 𝑉, 𝑡 ∈ 𝐽,

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , 𝑥 ∈ Ω,

(9)

where the inner product in 𝐿
2
(Ω) or 𝐿

2
(Ω)

2 is indicated by
(⋅, ⋅). From Yanik and Fairweather [17], we know that the
above weak form has at least one solution in 𝑦 ∈ 𝑊(0, 𝑇) =

{𝑤 ∈ 𝐿
2
(0, 𝑇;𝐻

1
(Ω)), 𝑤



𝑡
∈ 𝐿

2
(0, 𝑇;𝐻

−1
(Ω))}.

It is well known (see, e.g., [11]) that the optimal control
problem has a solution (𝑦, 𝑢), and if a pair (𝑦, 𝑢) is the
solution of (8)-(9), then there is a costate 𝑝 ∈ 𝑉 such that
triplet (𝑦, 𝑝, 𝑢) satisfies the following optimality conditions:

(𝑦
𝑡
, 𝑤) + 𝑎 (𝑦, 𝑤)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦 (𝜏) , 𝑤) 𝑑𝜏 + (𝜙 (𝑦) , 𝑤)

= (𝑓 + 𝐵𝑢, 𝑤) , ∀𝑤 ∈ 𝑉,

(10)

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , 𝑥 ∈ Ω, (11)

− (𝑝
𝑡
, 𝑤) + 𝑎 (𝑞, 𝑝) + ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞, 𝑝 (𝜏)) 𝑑𝜏 + (𝜙

(𝑦) 𝑝, 𝑞)

= (𝑦 − 𝑦
0
, 𝑞) , ∀𝑞 ∈ 𝑉,

(12)

𝑝 (𝑥, 𝑇) = 0, 𝑥 ∈ Ω, (13)

∫

𝑇

0

(𝛼𝑢 + 𝐵
∗
𝑝, V − 𝑢)

𝑈
𝑑𝑡 ≥ 0, ∀V ∈ 𝐾, (14)

where 𝐵
∗ is the adjoint operator of 𝐵. In the rest of the

paper, we will simply write the product as (⋅, ⋅) whenever no
confusion should be caused.

Let us consider the finite element approximation of the
optimal control problem (8)-(9). Again here we consider
only 𝑛-simplex elements and conforming finite elements.

Let Tℎ be regular partition of Ω. Associated with Tℎ is
a finite dimensional subspace 𝑉

ℎ
of 𝐶(Ω), such that 𝜒|

𝜏
are

polynomials of 𝑚-order (𝑚 ≥ 1) for all 𝜒 ∈ 𝑉
ℎ
and 𝜏 ∈ Tℎ.

It is easy to see that 𝑉
ℎ

⊂ 𝑉. Let ℎ
𝜏
denote the maximum

diameter of the element 𝜏 inTℎ, ℎ = max
𝜏∈Tℎ{ℎ𝜏

}.
Due to the limited regularity of the optimal control 𝑢 in

general, there will be no advantage in considering higher-
order finite element spaces for the control. So, we only
consider the piecewise constant finite element space for the
approximation of the control, though higher-order finite
element spaces will be used to approximate the state and
the costate. Let 𝑃

0
(𝜏) denote all the 0-order polynomial over

𝜏. Therefore, we take 𝐾
ℎ

= {𝑢 ∈ 𝐾 : 𝑢(𝑥, 𝑡)|
𝜏

∈

𝑃
0
(𝜏)}. In addition,𝐶 or 𝑐 denotes a general positive constant

independent of ℎ.

By the definition of finite element subspace, the finite
element discretization of (8)-(9) is as follows: compute
(𝑦

ℎ
, 𝑢

ℎ
) ∈ 𝑉

ℎ
× 𝐾

ℎ
such that

min
𝑢ℎ∈𝐾ℎ

{∫

𝑇

0

(
1

2

𝑦ℎ
− 𝑦

0



2

+
𝛼

2

𝑢ℎ



2

)𝑑𝑡} (15)

(𝑦
ℎ𝑡
, 𝑤

ℎ
) + 𝑎 (𝑦

ℎ
, 𝑤

ℎ
) + ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦
ℎ
(𝜏) , 𝑤

ℎ
) 𝑑𝜏

+ (𝜙 (𝑦
ℎ
) , 𝑤

ℎ
) = (𝑓 + 𝐵𝑢

ℎ
, 𝑤

ℎ
) ,

(16)

𝑦
ℎ
(𝑥, 0) = 𝑦

ℎ

0
(𝑥) , 𝑥 ∈ Ω, (17)

where 𝑤
ℎ
∈ 𝑉

ℎ
, 𝑦ℎ

0
∈ 𝑉

ℎ
is an approximation of 𝑦

0
.

Again, it follows that the optimal control problems (15)–
(17) have a solution (𝑦

ℎ
, 𝑢

ℎ
), and if a pair (𝑦

ℎ
, 𝑢

ℎ
) is the

solution of (15)–(17), then there is a costate 𝑝
ℎ

∈ 𝑉
ℎ

such that triplet (𝑦
ℎ
, 𝑝

ℎ
, 𝑢

ℎ
) satisfies the following optimality

conditions:

(𝑦
ℎ𝑡
, 𝑤

ℎ
) + 𝑎 (𝑦

ℎ
, 𝑤

ℎ
) + ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦
ℎ
(𝜏) , 𝑤

ℎ
) 𝑑𝜏

+ (𝜙 (𝑦
ℎ
) , 𝑤

ℎ
) = (𝑓 + 𝐵𝑢

ℎ
, 𝑤

ℎ
) ,

(18)

𝑦
ℎ
(𝑥, 0) = 𝑦

ℎ

0
(𝑥) , 𝑥 ∈ Ω, (19)

− (𝑝
ℎ𝑡
, 𝑤

ℎ
) + 𝑎 (𝑞

ℎ
, 𝑝

ℎ
) + ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞
ℎ
, 𝑝

ℎ
(𝜏)) 𝑑𝜏

+ (𝜙

(𝑦

ℎ
) 𝑝

ℎ
, 𝑞

ℎ
) = (𝑦

ℎ
− 𝑦

0
, 𝑞

ℎ
) ,

(20)

𝑝
ℎ
(𝑥, 𝑇) = 0, 𝑥 ∈ Ω, (21)

∫

𝑇

0

(𝛼𝑢
ℎ
+ 𝐵

∗
𝑝
ℎ
, V

ℎ
− 𝑢

ℎ
) 𝑑𝑡 ≥ 0, (22)

where 𝑤
ℎ
, 𝑞

ℎ
∈ 𝑉

ℎ
, and V

ℎ
∈ 𝐾

ℎ
.

In the rest of the paper, we will use some intermediate
variables. For any control function 𝑢

ℎ
∈ 𝐾, we first define

the state solution (𝑦(𝑢
ℎ
), 𝑝(𝑢

ℎ
)) satisfying

(𝑦
𝑡
(𝑢

ℎ
) , 𝑤) + 𝑎 (𝑦 (𝑢

ℎ
) , 𝑤)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦 (𝑢
ℎ
) (𝜏) , 𝑤) 𝑑𝜏

+ (𝜙 (𝑦 (𝑢
ℎ
)) , 𝑤) = (𝑓 + 𝐵𝑢

ℎ
, 𝑤) ,

(23)

∀𝑤 ∈ 𝑉, 𝑦 (𝑢
ℎ
) (𝑥, 0) = 𝑦

0
(𝑥) , 𝑥 ∈ Ω, (24)

− (𝑝
𝑡
(𝑢

ℎ
) , 𝑞) + 𝑎 (𝑞, 𝑝 (𝑢

ℎ
)) + ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞, 𝑝 (𝑢
ℎ
) (𝜏)) 𝑑𝜏

+ (𝜙

(𝑦 (𝑢

ℎ
)) 𝑝 (𝑢

ℎ
) , 𝑞)

(25)

= (𝑦 (𝑢
ℎ
) − 𝑦

0
, 𝑞) , ∀𝑞 ∈ 𝑉, 𝑝 (𝑢

ℎ
) (𝑥, 𝑇) = 0, 𝑥 ∈ Ω.

(26)

Now, we restate the following well-known estimates in
[9].
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Lemma 1. Let �̂�
ℎ
be the Clément-type interpolation operator

defined in [9]. Then for any V ∈ 𝐻
1
(Ω) and all element 𝜏,

V − �̂�
ℎ
V𝐿2(𝜏) + ℎ

𝜏

∇ (V − �̂�
ℎ
V)𝐿2(𝜏)

≤ 𝐶ℎ
𝜏

∑

𝜏

∩𝜏 ̸= 0

|V|𝐿2(𝜏),

V − �̂�
ℎ
V𝐿2(𝑙) ≤ 𝐶ℎ

1/2

𝑙
∑

𝑙⊂𝜏


|∇V|𝐿2(𝜏),

(27)

where 𝑙 is the edge of the element.

For 𝜑 ∈ 𝑊
ℎ
, we will write

𝜙 (𝜑) − 𝜙 (𝜌) = −𝜙

(𝜑) (𝜌 − 𝜑)

= −𝜙

(𝜌) (𝜌 − 𝜑) + 𝜙


(𝜑) (𝜌 − 𝜑)

2

,

(28)

where

𝜙

(𝜑) = ∫

1

0

𝜙

(𝜑 + 𝑠 (𝜌 − 𝜑)) 𝑑𝑠,

𝜙

(𝜑) = ∫

1

0

(1 − 𝑠) 𝜙

(𝜌 + 𝑠 (𝜑 − 𝜌)) 𝑑𝑠

(29)

are bounded functions in Ω [12].

3. A Posteriori Error Estimates

In this section, we will obtain a posteriori error estimates
for semilinear parabolic integrodifferential optimal control
problems. Firstly, we estimate the error ‖𝑢 − 𝑢

ℎ
‖
𝐿
2
(𝐽;𝐿
2
(Ω))

.
For given 𝑢 ∈ 𝐾, let𝑀 be the inverse operator of the state

equation (10), such that 𝑦(𝑢) = 𝑀𝐵𝑢 is the solution of the
state equation (10). Similarly, for given 𝑢

ℎ
∈ 𝐾

ℎ
, 𝑦

ℎ
(𝑢

ℎ
) =

𝑀
ℎ
𝐵𝑢

ℎ
is the solution of the discrete state equation (16). Let

𝑆 (𝑢) =
1

2

𝑀𝐵𝑢 − 𝑦
0



2

+
𝛼

2
‖𝑢‖

2
,

𝑆
ℎ
(𝑢

ℎ
) =

1

2

𝑀ℎ
𝐵𝑢

ℎ
− 𝑦

0



2

+
𝛼

2

𝑢ℎ



2

.

(30)

It is clear that 𝑆 and 𝑆
ℎ
are well defined and continuous on 𝐾

and 𝐾
ℎ
. Also the functional 𝑆

ℎ
can be naturally extended on

𝐾. Then (8) and (15) can be represented as

min
𝑢∈𝐾

{𝑆 (𝑢)} , (31)

min
𝑢ℎ∈𝐾ℎ

{𝑆
ℎ
(𝑢

ℎ
)} . (32)

It can be shown that

(𝑆

(𝑢) , V) = (𝛼𝑢 + 𝐵

∗
𝑝, V) ,

(𝑆

(𝑢

ℎ
) , V) = (𝛼𝑢

ℎ
+ 𝐵

∗
𝑝 (𝑢

ℎ
) , V) ,

(𝑆


ℎ
(𝑢

ℎ
) , V) = (𝛼𝑢

ℎ
+ 𝐵

∗
𝑝
ℎ
, V) ,

(33)

where 𝑝(𝑢
ℎ
) is the solution of (23)–(25).

In many applications, 𝑆(⋅) is uniformly convex near
the solution 𝑢 (see, e.g., [18]). The convexity of 𝑆(⋅) is
closely related to the second-order sufficient conditions of
the control problems, which was assumed in many studies
on numerical methods of the problems. If 𝑆(⋅) is uniformly
convex, then there is a 𝑐 > 0, such that

∫

𝑇

0

(𝑆

(𝑢) − 𝑆


(𝑢

ℎ
) , 𝑢 − 𝑢

ℎ
) 𝑑𝑡 ≥ 𝑐

𝑢 − 𝑢
ℎ



2

𝐿
2
(𝐽;𝐿
2
(Ω))

, (34)

where 𝑢 and 𝑢
ℎ
are the solutions of (31) and (32), respectively.

We will assume the above inequality throughout this paper.
Let 𝑝(𝑢

ℎ
) be the solution of (23)–(25); we establish the

following error estimate.

Theorem 2. Let 𝑢 and 𝑢
ℎ
be the solutions of (31) and (32),

respectively. Assume that 𝐾
ℎ

⊂ 𝐾. In addition, assume that
(𝑆



ℎ
(𝑢

ℎ
))|

𝜏
∈ 𝐻

𝑠
(𝜏), for all 𝜏 ∈ T

ℎ
, (𝑠 = 0, 1), and there is a

V
ℎ
∈ 𝐾

ℎ
such that


(𝑆



ℎ
(𝑢

ℎ
) , V

ℎ
− 𝑢)


≤ 𝐶 ∑

𝜏∈Tℎ

ℎ
𝜏


𝑆


ℎ
(𝑢

ℎ
)
𝐻𝑠(𝜏)

𝑢 − 𝑢
ℎ



𝑠

𝐿
2
(𝜏)

.

(35)

Then, one has

𝑢 − 𝑢
ℎ



2

𝐿
2
(𝐽;𝐿
2
(Ω))

≤ 𝐶𝜂
2

1
+ 𝐶

𝑝ℎ
− 𝑝 (𝑢

ℎ
)


2

𝐿
2
(𝐽;𝐻
1
(Ω))

, (36)

where

𝜂
2

1
= ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
1+𝑠

𝜏

𝛼𝑢
ℎ
+ 𝐵

∗
𝑝
ℎ



1+𝑠

𝐻
𝑠
(𝜏)

𝑑𝑡. (37)

Proof. It follows from (31) and (32) that

∫

𝑇

0

(𝑆

(𝑢) , 𝑢 − V) ≤ 0, ∀V ∈ 𝐾, (38)

∫

𝑇

0

(𝑆


ℎ
(𝑢

ℎ
) , 𝑢

ℎ
− V

ℎ
) ≤ 0, ∀V

ℎ
∈ 𝐾

ℎ
⊂ 𝐾. (39)

Then it follows from (35), (39), and the Schwartz inequality,
that

𝑐
𝑢 − 𝑢

ℎ



2

𝐿
2
(𝐽;𝐿
2
(Ω))

≤ ∫

𝑇

0

(𝑆

(𝑢) − 𝑆


(𝑢

ℎ
) , 𝑢 − 𝑢

ℎ
) 𝑑𝑡

≤ −∫

𝑇

0

(𝑆

(𝑢

ℎ
) , 𝑢 − 𝑢

ℎ
) 𝑑𝑡

= ∫

𝑇

0

{(𝑆


ℎ
(𝑢

ℎ
) , 𝑢

ℎ
− 𝑢)

+ (𝑆


ℎ
(𝑢

ℎ
) − 𝑆


(𝑢

ℎ
) , 𝑢 − 𝑢

ℎ
)} 𝑑𝑡
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≤ ∫

𝑇

0

{(𝑆


ℎ
(𝑢

ℎ
) , V

ℎ
− 𝑢)

+ (𝑆


ℎ
(𝑢

ℎ
) − 𝑆


(𝑢

ℎ
) , 𝑢 − 𝑢

ℎ
)} 𝑑𝑡

≤ 𝐶∫

𝑇

0

{

{

{

∑

𝜏∈Tℎ

ℎ
1+𝑠

𝜏


𝑆


ℎ
(𝑢

ℎ
)


1+𝑠

𝐻
𝑠
(𝜏)

+

𝑆


ℎ
(𝑢

ℎ
) − 𝑆


(𝑢

ℎ
)


2

𝐿
2
(Ω)

}

}

}

𝑑𝑡

+
𝑐

2

𝑢 − 𝑢
ℎ



2

𝐿
2
(𝐽;𝐿
2
(Ω))

.

(40)

It is not difficult to show that

𝑆


ℎ
(𝑢

ℎ
) = 𝛼𝑢

ℎ
+ 𝐵

∗
𝑝
ℎ
, 𝑆


(𝑢

ℎ
) = 𝛼𝑢

ℎ
+ 𝐵

∗
𝑝 (𝑢

ℎ
) ,

(41)

where 𝑝(𝑢
ℎ
) is defined in (23)–(26). Thanks to (11), it is easy

to derive

∫

𝑇

0


𝑆


ℎ
(𝑢

ℎ
) − 𝑆


(𝑢

ℎ
)
𝐿2(Ω)

𝑑𝑡

= ∫

𝑇

0

𝐵
∗
(𝑝

ℎ
− 𝑝 (𝑢

ℎ
))
𝐿2(Ω)

𝑑𝑡

≤ 𝐶
𝑝ℎ

− 𝑝 (𝑢
ℎ
)
𝐿2(𝐽;𝐿2(Ω))

≤ 𝐶
𝑝ℎ

− 𝑝 (𝑢
ℎ
)
𝐿2(𝐽;𝐻1(Ω))

.

(42)

Then, by the estimates (40) and (42), we can prove the
requested result (36).

Now, we estimate the error ‖𝑦(𝑢
ℎ
) − 𝑦

ℎ
‖
𝐿
2
(𝐽;𝐻
1
(Ω))

.

Theorem 3. Let (𝑦(𝑢
ℎ
), 𝑝(𝑢

ℎ
)) and (𝑦

ℎ
, 𝑝

ℎ
) be the solutions of

(23)–(26) and (18)–(22), respectively. Then

𝑦 (𝑢
ℎ
) − 𝑦

ℎ



2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶

4

∑

𝑖=2

𝜂
2

𝑖
, (43)

where

𝜂
2

2
= ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
2

𝜏
∫
𝜏

(𝑓 + 𝐵𝑢
ℎ
− 𝑦

ℎ𝑡
+ div (𝐴∇𝑦

ℎ
)

+ ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) 𝑑𝜏

−𝜙 (𝑦
ℎ
) )

2

𝑑𝑡,

𝜂
2

3
= ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴∇𝑦
ℎ
) ⋅ 𝑛

+∫

𝑡

0

(𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) ⋅ 𝑛 𝑑𝜏]

2

𝑑𝑙 𝑑𝑡,

𝜂
2

4
=

𝑦ℎ
(𝑥, 0) − 𝑦

0
(𝑥)



2

𝐿
2
(Ω)

,

(44)

where 𝑙 is a face of an element 𝜏, ℎ
𝑙
is the size of face 𝑙, and

[(𝐴∇𝑦
ℎ
) ⋅ 𝑛] is the 𝐴-normal derivative jump over the interior

face 𝑙, defined by

[(𝐴∇𝑦
ℎ
) ⋅ 𝑛]

𝑙
= (𝐴∇𝑦

ℎ
|
𝜏
1

𝑙

− 𝐴∇𝑦
ℎ
|
𝜏
2

𝑙

) ⋅ 𝑛, (45)

where 𝑛 is the unit normal vector on 𝑙 = 𝜏
1

𝑙
∩ 𝜏

2

𝑙
outwards 𝜏1

𝑙
.

For convenience, one defines [(𝐴∇𝑦
ℎ
) ⋅ 𝑛]

𝑙
= 0 when 𝑙 ⊂ 𝜕Ω.

Proof. Let 𝑒𝑦
𝐼
be the Clément-type interpolator of 𝑒𝑦 defined

in Lemma 1. It follows from (18) and (23) that we have

((𝑦
ℎ
− 𝑦 (𝑢

ℎ
))

𝑡
, 𝑤

ℎ
) + 𝑎 (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑤

ℎ
)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; (𝑦
ℎ
− 𝑦 (𝑢

ℎ
)) (𝜏) , 𝑤

ℎ
) 𝑑𝜏

+ (𝜙 (𝑦
ℎ
) − 𝜙 (𝑦 (𝑢

ℎ
)) , 𝑤

ℎ
) = 0, ∀𝑤

ℎ
∈ 𝑉

ℎ
.

(46)

Let 𝑒𝑦 = 𝑦
ℎ
− 𝑦(𝑢

ℎ
); by using (46), then we obtain

((𝑦
ℎ
− 𝑦 (𝑢

ℎ
))

𝑡
, 𝑒

𝑦
) + 𝑎 (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑦
)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; (𝑦
ℎ
− 𝑦 (𝑢

ℎ
)) (𝜏) , 𝑒

𝑦
) 𝑑𝜏

+ (𝜙 (𝑦
ℎ
) − 𝜙 (𝑦 (𝑢

ℎ
)) , 𝑒

𝑦
)

= ((𝑦
ℎ
− 𝑦 (𝑢

ℎ
))

𝑡
, 𝑒

𝑦
− 𝑒

𝑦

𝐼
) + 𝑎 (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑦
− 𝑒

𝑦

𝐼
)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; (𝑦
ℎ
− 𝑦 (𝑢

ℎ
)) (𝜏) , 𝑒

𝑦
− 𝑒

𝑦

𝐼
) 𝑑𝜏

+ (𝜙 (𝑦
ℎ
) − 𝜙 (𝑦 (𝑢

ℎ
)) , 𝑒

𝑦
− 𝑒

𝑦

𝐼
)

= (𝑦
ℎ𝑡
, 𝑒

𝑦
− 𝑒

𝑦

𝐼
) + 𝑎 (𝑦

ℎ
, 𝑒

𝑦
− 𝑒

𝑦

𝐼
)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦
ℎ
(𝜏) , 𝑒

𝑦
− 𝑒

𝑦

𝐼
) 𝑑𝜏

+ (𝜙 (𝑦
ℎ
) , 𝑒

𝑦
− 𝑒

𝑦

𝐼
) − (𝑓 + 𝐵𝑢

ℎ
, 𝑒

𝑦
− 𝑒

𝑦

𝐼
)

= ∑

𝜏

∫
𝜏

(𝑦
ℎ𝑡

− div (𝐴∇𝑦
ℎ
)

− ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
) 𝑑𝜏

+ 𝜙 (𝑦
ℎ
) − 𝑓 − 𝐵𝑢

ℎ
, 𝑒

𝑦
− 𝑒

𝑦

𝐼
)
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+ ∑

𝜏

∫
𝜕𝜏

[ (𝐴∇𝑦
ℎ
) ⋅ 𝑛

+∫

𝑡

0

(𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) ⋅ 𝑛 𝑑𝜏] (𝑒

𝑦
− 𝑒

𝑦

𝐼
)] .

(47)

Then, we have

1

2

𝑑

𝑑𝑡

𝑦ℎ
− 𝑦 (𝑢

ℎ
)


2

0,Ω
+ 𝑐

𝑦ℎ
− 𝑦 (𝑢

ℎ
)


2

1,Ω

≤ ((𝑦
ℎ
− 𝑦 (𝑢

ℎ
))

𝑡
, 𝑒

𝑦
) + 𝑎 (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑦
)

+ (𝜙 (𝑦
ℎ
) − 𝜙 (𝑦 (𝑢

ℎ
)) , 𝑒

𝑦
)

≤ ∑

𝜏

∫
𝜏

(𝑦
ℎ𝑡

− div (𝐴∇𝑦
ℎ
) − ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
) 𝑑𝜏

+𝜙 (𝑦
ℎ
) − 𝑓 − 𝐵𝑢

ℎ
, 𝑒

𝑦
− 𝑒

𝑦

𝐼
)

+ ∑

𝜏

∫
𝜕𝜏

[(𝐴∇𝑦
ℎ
) ⋅ 𝑛 + ∫

𝑡

0

(𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) ⋅ 𝑛 𝑑𝜏]

× (𝑒
𝑦
− 𝑒

𝑦

𝐼
)

− ∫

𝑡

0

𝜓 (𝑡, 𝜏; (𝑦
ℎ
− 𝑦 (𝑢

ℎ
)) (𝜏) , 𝑒

𝑦
) 𝑑𝜏.

(48)

By integrating time from 0 to 𝑡 in the above inequality,
combining (6) and the Schwartz inequality, we have

1

2

𝑦ℎ
− 𝑦 (𝑢

ℎ
)


2

0,Ω
+ 𝑐∫

𝑡

0

𝑦ℎ
− 𝑦(𝑢

ℎ
)


2

1,Ω
𝑑𝜏

≤ 𝐶∫

𝑡

0

∑

𝜏

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ𝑡

− div (𝐴∇𝑦
ℎ
)

− ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
) 𝑑𝜏

+𝜙 (𝑦
ℎ
) − 𝑓 − 𝐵𝑢

ℎ
)

2

𝑑𝜏

+ ∫

𝑡

0

∑

𝜏

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴∇𝑦
ℎ
) ⋅ 𝑛

+ ∫

𝑡

0

(𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) ⋅ 𝑛 𝑑𝜏]

2

𝑑𝜏

+ 𝛿∫

𝑡

0

𝑦ℎ
− 𝑦 (𝑢

ℎ
)


2

1,Ω
𝑑𝜏

+ 𝐶∫

𝑡

0

∫
𝜏

(𝑦ℎ
− 𝑦 (𝑢

ℎ
)) (𝑠)



2

1,Ω
𝑑𝑠 𝑑𝜏

+
𝑦ℎ

(𝑥, 0) − 𝑦
0
(𝑥)



2

𝐿
2
(Ω)

.

(49)

Since 𝛿 is small enough, then from (49) and the Gronwall
inequality, we have

∫

𝑡

0

𝑦ℎ
− 𝑦 (𝑢

ℎ
)


2

1,Ω
𝑑𝜏

≤ 𝐶∫

𝑡

0

∑

𝜏

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ𝑡

− div (𝐴∇𝑦
ℎ
)

− ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
) 𝑑𝜏

+ 𝜙 (𝑦
ℎ
) − 𝑓 − 𝐵𝑢

ℎ
)

2

𝑑𝜏

+ 𝐶∫

𝑡

0

∑

𝜏

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴∇𝑦
ℎ
) ⋅ 𝑛 + ∫

𝑡

0

(𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏))

⋅𝑛 𝑑𝜏]

2

𝑑𝜏 +
𝑦ℎ

(𝑥, 0) − 𝑦
0
(𝑥)



2

𝐿
2
(Ω)

.

(50)

So, by using the inequality (50) we obtain

𝑦ℎ
− 𝑦 (𝑢

ℎ
)


2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶

4

∑

𝑖=2

𝜂
2

𝑖
. (51)

This completes the proof.

Analogous to Theorem 3, we can prove the following
estimates.

Theorem 4. Let (𝑦(𝑢
ℎ
), 𝑝(𝑢

ℎ
)) and (𝑦

ℎ
, 𝑝

ℎ
) be the solutions of

(23)–(26) and (18)–(22), respectively. Then

𝑝 (𝑢
ℎ
) − 𝑝

ℎ



2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶

6

∑

𝑖=2

𝜂
2

𝑖
, (52)

where

𝜂
2

5
= ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ
− 𝑦

0
+ 𝑝

ℎ𝑡
+ div (𝐴

∗
∇𝑝

ℎ
)

+ ∫

𝑇

𝑡

div (𝜓
∗
(𝜏, 𝑡) ∇𝑝

ℎ
(𝜏)) 𝑑𝜏

−𝜙

(𝑦

ℎ
) 𝑝

ℎ
)

2

𝑑𝜏 𝑑𝑡,

𝜂
2

6
= ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴
∗
∇𝑝

ℎ
) ⋅ 𝑛

+∫

𝑡

0

((𝜓
∗
(𝑡, 𝜏) ∇𝑝

ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏]

2

𝑑𝑙 𝑑𝑡,

(53)

where 𝜂
2
–𝜂

4
are defined in Theorem 3, 𝑙 is a face of an element

𝜏, and [(𝐴
∗
∇𝑝

ℎ
) ⋅ 𝑛] is the 𝐴-normal derivative jump over the

interior face 𝑙, defined by

[(𝐴
∗
∇𝑝

ℎ
) ⋅ 𝑛]

𝑙
= (𝐴

∗
∇𝑝

ℎ
|
𝜏
1

𝑙

− 𝐴
∗
∇𝑝

ℎ
|
𝜏
2

𝑙

) ⋅ 𝑛, (54)
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where 𝑛 is the unit normal vector on 𝑙 = 𝜏
1

𝑙
∩ 𝜏

2

𝑙
outwards 𝜏1

𝑙
.

For convenience, one defines [(𝐴∇𝑝
ℎ
) ⋅ 𝑛]

𝑙
= 0 when 𝑙 ⊂ 𝜕Ω.

Proof. Let 𝑒𝑝 = 𝑝(𝑢
ℎ
) − 𝑝

ℎ
, and let 𝑒𝑝

𝐼
= �̂�

ℎ
𝑒
𝑝, where �̂�

ℎ
is the

Clément-type interpolator defined in Lemma 1. Then, from
(20) and (25), we obtain

− (𝑞
ℎ
, (𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑞

ℎ
, 𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞
ℎ
(𝑡) , (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙

(𝑦

ℎ
) 𝑝

ℎ
− 𝜙


(𝑦 (𝑢

ℎ
)) 𝑝 (𝑢

ℎ
) , 𝑞

ℎ
)

= (𝑦
ℎ
− 𝑦 (𝑢

ℎ
) , 𝑞

ℎ
) , ∀𝑞

ℎ
∈ 𝑉

ℎ
.

(55)

Namely,

− (𝑞
ℎ
, (𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑞

ℎ
, 𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞
ℎ
(𝑡) , (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙

(𝑦

ℎ
) (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) , 𝑞

ℎ
)

= (𝑦
ℎ
− 𝑦 (𝑢

ℎ
) , 𝑞

ℎ
)

− ((𝜙

(𝑦

ℎ
) − 𝜙


(𝑦 (𝑢

ℎ
))) 𝑝 (𝑢

ℎ
) , 𝑞

ℎ
) .

(56)

By using (56), we obtain

− (𝑒
𝑝
, (𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑒

𝑝
, 𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑒
𝑝
(𝑡) , (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙

(𝑦

ℎ
) (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) , 𝑒

𝑝
)

= − (𝑒
𝑝
− 𝑒

𝑝

𝐼
, (𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑒

𝑝
− 𝑒

𝑝

𝐼
, 𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; (𝑒
𝑝
− 𝑒

𝑝

𝐼
) (𝑡) , (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙

(𝑦

ℎ
) (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) , 𝑒

𝑝
− 𝑒

𝑝

𝐼
)

− (𝑒
𝑝

𝐼
, (𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑒

𝑝

𝐼
, 𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑒
𝑝

𝐼
(𝑡) , (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙

(𝑦

ℎ
) (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) , 𝑒

𝑝

𝐼
)

= − (𝑒
𝑝
− 𝑒

𝑝

𝐼
, (𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑒

𝑝
− 𝑒

𝑝

𝐼
, 𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; (𝑒
𝑝
− 𝑒

𝑝

𝐼
) (𝑡) , (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙

(𝑦

ℎ
) (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) , 𝑒

𝑝
− 𝑒

𝑝

𝐼
) + (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑝

𝐼
)

− ((𝜙

(𝑦

ℎ
) − 𝜙


(𝑦 (𝑢

ℎ
))) 𝑝 (𝑢

ℎ
) , 𝑒

𝑝

𝐼
)

= − (𝑒
𝑝
− 𝑒

𝑝

𝐼
, 𝑝

ℎ𝑡
) + 𝑎 (𝑒

𝑝
− 𝑒

𝑝

𝐼
, 𝑝

ℎ
)

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; (𝑒
𝑝
− 𝑒

𝑝

𝐼
) (𝑡) , 𝑝

ℎ
) (𝜏) 𝑑𝜏

+ (𝜙

(𝑦

ℎ
) (𝑝

ℎ
) , 𝑒

𝑝
− 𝑒

𝑝

𝐼
)

+ (𝑒
𝑝
− 𝑒

𝑝

𝐼
, 𝑝

𝑡
(𝑢

ℎ
)) − 𝑎 (𝑒

𝑝
− 𝑒

𝑝

𝐼
, 𝑝 (𝑢

ℎ
))

− ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; (𝑒
𝑝
− 𝑒

𝑝

𝐼
) (𝑡) , 𝑝 (𝑢

ℎ
) (𝜏)) 𝑑𝜏

− (𝜙

(𝑦

ℎ
) (𝑝 (𝑢

ℎ
)) , 𝑒

𝑝
− 𝑒

𝑝

𝐼
) + (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑝

𝐼
)

− ((𝜙

(𝑦

ℎ
) − 𝜙


(𝑦 (𝑢

ℎ
))) 𝑝 (𝑢

ℎ
) , 𝑒

𝑝

𝐼
)

= ∑

𝜏

∫
𝜏

( − 𝑦
ℎ
+ 𝑦

0
− 𝑝

ℎ𝑡
− div (𝐴

∗
∇𝑝

ℎ
)

−∫

𝑇

𝑡

div (𝜓
∗
(𝜏, 𝑡) ∇𝑝

ℎ
(𝜏)) 𝑑𝜏 + 𝜙


(𝑦

ℎ
) 𝑝

ℎ
)

× (𝑒
𝑝
− 𝑒

𝑝

𝐼
)

+ ∑

𝜏

∫
𝜕𝜏

((𝐴
∗
∇𝑝

ℎ
) ⋅ 𝑛 + ∫

𝑡

0

((𝜓
∗
(𝑡, 𝜏) ∇𝑝

ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏)

× (𝑒
𝑝
− 𝑒

𝑝

𝐼
) + (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑝

𝐼
)

− ((𝜙

(𝑦

ℎ
) − 𝜙


(𝑦 (𝑢

ℎ
))) 𝑝 (𝑢

ℎ
) , 𝑒

𝑝
) .

(57)

Then, we have

−
1

2

𝑑

𝑑𝑡

𝑝ℎ
− 𝑝 (𝑢

ℎ
)


2

0,Ω
+ 𝑐

𝑝ℎ
− 𝑝 (𝑢

ℎ
)


2

1,Ω

≤ − (𝑒
𝑝
, (𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

𝑡
) + 𝑎 (𝑒

𝑝
, 𝑝

ℎ
− 𝑝 (𝑢

ℎ
))

+ (𝜙

(𝑦

ℎ
) (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) , 𝑒

𝑝
)

≤ ∑

𝜏

∫
𝜏

( − 𝑦
ℎ
+ 𝑦

0
− 𝑝

ℎ𝑡
− div (𝐴

∗
∇𝑝

ℎ
)

− ∫

𝑇

𝑡

div (𝜓
∗
(𝜏, 𝑡) ∇𝑝

ℎ
(𝜏)) 𝑑𝜏

+𝜙

(𝑦

ℎ
) 𝑝

ℎ
) (𝑒

𝑝
− 𝑒

𝑝

𝐼
)

+ ∑

𝜏

∫
𝜕𝜏

( (𝐴
∗
∇𝑝

ℎ
) ⋅ 𝑛

+∫

𝑇

𝑡

((𝜓
∗
(𝑡, 𝜏) ∇𝑝

ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏)

× (𝑒
𝑝
− 𝑒

𝑝

𝐼
) + (𝑦

ℎ
− 𝑦 (𝑢

ℎ
) , 𝑒

𝑝

𝐼
)

− ((𝜙

(𝑦

ℎ
) − 𝜙


(𝑦 (𝑢

ℎ
))) 𝑝 (𝑢

ℎ
) , 𝑒

𝑝
)

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑒
𝑝
(𝑡) , (𝑝

ℎ
− 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏.

(58)
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By integrating time from 𝑡 to 𝑇 in the above inequality,
combining (6) and the Schwartz inequality, we have

1

2

𝑝ℎ
− 𝑝 (𝑢

ℎ
)


2

0,Ω
+ 𝑐∫

𝑇

𝑡

𝑝ℎ
− 𝑝 (𝑢

ℎ
)


2

1,Ω
𝑑𝜏

≤ 𝐶∫

𝑇

𝑡

∑

𝜏

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ
− 𝑦

0
+ 𝑝

ℎ𝑡
+ div (𝐴

∗
∇𝑝

ℎ
)

+ ∫

𝑇

𝑡

div (𝜓
∗
(𝜏, 𝑡) ∇𝑝

ℎ
(𝜏)) 𝑑𝜏

− 𝜙

(𝑦

ℎ
)𝑝

ℎ
)

2

𝑑𝜏

+ ∫

𝑇

𝑡

∑

𝜏

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴
∗
∇𝑝

ℎ
) ⋅ 𝑛

+∫

𝑇

𝑡

((𝜓
∗
(𝑡, 𝜏) ∇𝑝

ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏]

2

𝑑𝜏

+ 𝛿∫

𝑇

𝑡

𝑝ℎ
− 𝑝 (𝑢

ℎ
)


2

1,Ω
𝑑𝜏

+ 𝐶∫

𝑇

𝑡

∫
𝜏

(𝑝ℎ
− 𝑝 (𝑢

ℎ
)) (𝑠)



2

1,Ω
𝑑𝑠 𝑑𝜏

+ 𝐶∫

𝑇

𝑡

∫
𝜏

𝑦ℎ
− 𝑦 (𝑢

ℎ
)


2

0,Ω
𝑑𝜏.

(59)

Since 𝛿 is small enough, then from (59) and the Gronwall
inequality, we have

∫

𝑇

𝑡

𝑝ℎ
− 𝑝 (𝑢

ℎ
)


2

1,Ω
𝑑𝜏

≤ 𝐶∫

𝑇

𝑡

∑

𝜏

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ
− 𝑦

0
+ 𝑝

ℎ𝑡
+ div (𝐴

∗
∇𝑝

ℎ
)

+ ∫

𝑇

𝑡

div (𝜓
∗
(𝜏, 𝑡) ∇𝑝

ℎ
(𝜏)) 𝑑𝜏

−𝜙

(𝑦

ℎ
) 𝑝

ℎ
)

2

𝑑𝜏

+ ∫

𝑇

𝑡

∑

𝜏

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴
∗
∇𝑝

ℎ
) ⋅ 𝑛

+∫

𝑇

𝑡

((𝜓
∗
(𝑡, 𝜏) ∇𝑝

ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏]

2

𝑑𝜏

+
𝑦 (𝑢

ℎ
) − 𝑦

ℎ



2

𝐿
2
(𝐽;𝐿
2
(Ω))

≤ 𝐶∫

𝑇

𝑡

∑

𝜏

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ
− 𝑦

0
+ 𝑝

ℎ𝑡
+ div (𝐴

∗
∇𝑝

ℎ
)

+ ∫

𝑇

𝑡

div (𝜓
∗
(𝜏, 𝑡) ∇𝑝

ℎ
(𝜏)) 𝑑𝜏

−𝜙

(𝑦

ℎ
) 𝑝

ℎ
)

2

𝑑𝜏

+ ∫

𝑇

𝑡

∑

𝜏

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴
∗
∇𝑝

ℎ
) ⋅ 𝑛

+∫

𝑇

𝑡

((𝜓
∗
(𝑡, 𝜏) ∇𝑝

ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏]

2

𝑑𝜏

+
𝑦 (𝑢

ℎ
) − 𝑦

ℎ



2

𝐿
2
(𝐽;𝐻
1
(Ω))

.

(60)

Finally, combine inequality (60) andTheorem 3 to obtain

𝑝 (𝑢
ℎ
) − 𝑝

ℎ



2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶

6

∑

𝑖=2

𝜂
2

𝑖
. (61)

This completes the proof.

Hence, we combineTheorems 2–4 to conclude.

Theorem 5. Let (𝑦, 𝑝, 𝑢) and (𝑦
ℎ
, 𝑝

ℎ
, 𝑢

ℎ
) be the solutions of

(10)–(14) and (18)–(22), respectively. Then
𝑢 − 𝑢

ℎ



2

𝐿
2
(𝐽;𝐿
2
(Ω))

+
𝑦 − 𝑦

ℎ



2

𝐿
2
(𝐽;𝐻
1
(Ω))

+
𝑝 − 𝑝

ℎ



2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶

6

∑

𝑖=1

𝜂
2

𝑖
,

(62)

where 𝜂
1
–𝜂

6
are defined in Theorems 2–4, respectively.

Proof. From (10)–(14) and (23)–(26), we obtain the error
equations

(𝑦
𝑡
− 𝑦

𝑡
(𝑢

ℎ
) , 𝑤) + 𝑎 (𝑦 − 𝑦 (𝑢

ℎ
) , 𝑤)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; (𝑦 − 𝑦 (𝑢
ℎ
)) (𝜏) , 𝑤

ℎ
) 𝑑𝜏

+ (𝜙 (𝑦) − 𝜙 (𝑦 (𝑢
ℎ
)) , 𝑤) = (𝐵 (𝑢 − 𝑢

ℎ
) , 𝑤) ,

− (𝑝
𝑡
− 𝑝

𝑡
(𝑢

ℎ
) , 𝑞) + 𝑎 (𝑞, 𝑝 − 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞
ℎ
(𝑡) , (𝑝 − 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙

(𝑦) 𝑝 − 𝜙


(𝑦 (𝑢

ℎ
)) 𝑝 (𝑢

ℎ
) , 𝑞) = (𝑦 − 𝑦 (𝑢

ℎ
) , 𝑞)

(63)

for all 𝑤 ∈ 𝑉 and 𝑞 ∈ 𝑉. Thus, it follows from (63) that

(𝑦
𝑡
− 𝑦

𝑡
(𝑢

ℎ
) , 𝑤) + 𝑎 (𝑦 − 𝑦 (𝑢

ℎ
) , 𝑤)

+ ∫

𝑡

0

𝜓 (𝑡, 𝜏; (𝑦 − 𝑦 (𝑢
ℎ
)) (𝜏) , 𝑤

ℎ
) 𝑑𝜏

+ (𝜙 (𝑦) − 𝜙 (𝑦 (𝑢
ℎ
)) , 𝑤) = (𝐵 (𝑢 − 𝑢

ℎ
) , 𝑤) ,
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− (𝑝
𝑡
− 𝑝

𝑡
(𝑢

ℎ
) , 𝑞) + 𝑎 (𝑞, 𝑝 − 𝑝 (𝑢

ℎ
))

+ ∫

𝑇

𝑡

𝜓 (𝜏, 𝑡; 𝑞
ℎ
(𝑡) , (𝑝 − 𝑝 (𝑢

ℎ
)) (𝜏)) 𝑑𝜏

+ (𝜙

(𝑦 (𝑢

ℎ
)) (𝑝 − 𝑝 (𝑢

ℎ
)) , 𝑞)

= (𝑦 − 𝑦 (𝑢
ℎ
) , 𝑞) + (𝜙


(𝑦 (𝑢

ℎ
)) (𝑦 (𝑢

ℎ
) − 𝑦) 𝑝, 𝑞) .

(64)

By using the stability results in [17, 19], then we can prove that

𝑦 − 𝑦 (𝑢
ℎ
)


2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶
𝑢 − 𝑢

ℎ



2

𝐿
2
(𝐽;𝐿
2
(Ω))

,

𝑝 − 𝑝 (𝑢
ℎ
)


2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤
𝑦 − 𝑦 (𝑢

ℎ
)


2

𝐿
2
(𝐽;𝐻
1
(Ω))

≤ 𝐶
𝑢 − 𝑢

ℎ



2

𝐿
2
(𝐽;𝐿
2
(Ω))

.

(65)

Finally, combiningTheorems 2–4 and (65) leads to (62).

4. An Adaptive Algorithm

In this section, we introduce an adaptive algorithm to guide
the mesh refinement process. A posteriori error estimates
which have been derived in Section 3 are used as an error
indicator to guide the mesh refinement in adaptive finite
element method.

Now, we discuss the adaptive mesh refinement strategy.
The general idea is to refine the mesh such that the error
indicator like 𝜂 is equally distributed over the computational
mesh. Assume that an a posteriori error estimator 𝜂 has the
form of 𝜂2

= ∑
𝜏𝑖
𝜂
2

𝜏𝑖
, where 𝜏

𝑖
is the finite elements. At each

iteration, an average quantity of all 𝜂2

𝜏𝑖
is calculated, and each

𝜂
2

𝜏𝑖
is then compared with this quantity. The element 𝜏

𝑖
is to

be refined if 𝜂2

𝜏𝑖
is larger than this quantity. As 𝜂

2

𝜏𝑖
represents

the total approximation error over 𝜏
𝑖
, this strategymakes sure

that higher density of nodes is distributed over the area where
the error is higher.

Based on this principle, we define an adaptive algo-
rithm of the semilinear parabolic integrodifferential optimal
control problems (1)-(2) as follows: starting from initial
triangulations T

ℎ0
of Ω, we construct a sequence of refined

triangulation T
ℎ𝑗

as follows. Given T
ℎ𝑗
, we compute the

solutions (𝑦
ℎ
, 𝑝

ℎ
, 𝑢

ℎ
) of the system (18)–(22) and their error

estimator as follows:

𝜂
2

𝜏
= ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
1+𝑠

𝜏

𝛼𝑢
ℎ
+ 𝐵

∗
𝑝
ℎ



1+𝑠

𝐻
𝑠
(𝜏)

𝑑𝑡

+ ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
2

𝜏
∫
𝜏

(𝑓 + 𝐵𝑢
ℎ
− 𝑦

ℎ𝑡
+ div (𝐴∇𝑦

ℎ
)

+ ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) 𝑑𝜏

−𝜙 (𝑦
ℎ
) )

2

𝑑𝜏 𝑑𝑡

+ ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴∇𝑦
ℎ
) ⋅ 𝑛

+∫

𝑡

0

((𝜓 (𝑡, 𝜏) ∇𝑦
ℎ
(𝜏)) ⋅ 𝑛) 𝑑𝜏]

2

𝑑𝑙 𝑑𝑡

+
𝑦ℎ

(𝑥, 0) − 𝑦
0
(𝑥)



2

𝐿
2
(Ω)

+ ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
2

𝜏
∫
𝜏

(𝑦
ℎ
− 𝑦

0
+ 𝑝

ℎ𝑡
+ div (𝐴

∗
∇𝑝

ℎ
)

+ ∫

𝑇

𝑡

div (𝜓
∗
(𝜏, 𝑡) ∇𝑝

ℎ
(𝜏)) 𝑑𝜏

−𝜙

(𝑦

ℎ
) 𝑝

ℎ
)𝑑𝜏 𝑑𝑡

+ ∫

𝑇

0

∑

𝜏∈Tℎ

ℎ
𝑙
∫
𝜕𝜏

[ (𝐴
∗
∇𝑝

ℎ
) ⋅ 𝑛

+ ∫

𝑡

0

((𝜓
∗
(𝑡, 𝜏) ∇𝑝

ℎ
(𝜏))

⋅𝑛) 𝑑𝜏]

2

𝑑𝑙 𝑑𝑡,

𝐸
𝑗
= ∑

𝜏∈Tℎ

𝜂
2

𝜏
.

(66)

Then, we adopt the following mesh refinement strategy:
all the triangles 𝜏 ∈ T

ℎ𝑗
satisfying 𝜂

2

𝜏
≥ 𝜌𝐸

𝑗
/𝑛 are divided

into four new triangles in T
ℎ𝑗+1

by joining the midpoints of
the edges, where 𝑛 is the number of the elements ofT

ℎ𝑗
and 𝜌

is a given constant. In order tomaintain the new triangulation
T

ℎ𝑗+1
to be regular and conformal, some additional triangles

need to be divided into two or four new triangles depending
on whether they have one or more neighbors which have
been refined.Then, we obtain the newmeshT

ℎ𝑗+1
.The above

procedure will continue until 𝐸
𝑗

≤ tol, where tol is a given
tolerance error.

5. Numerical Example

In this section, we will give a numerical example to illustrate
our theoretical results. Our numerical example is the follow-
ing semilinear parabolic integrodifferential optimal control
problem:

min
𝑢(𝑡)∈𝐾

{∫

1

0

(
1

2

𝑦 − 𝑦
0



2

+
1

2

𝑢 − 𝑢
0



2

)𝑑𝑡}

𝑦
𝑡
− div (∇𝑦 (𝑥, 𝑡)) − ∫

𝑡

0

div (𝜓 (𝑡, 𝜏) ∇𝑦 (𝑥, 𝜏)) 𝑑𝜏

+ 𝜙 (𝑦) = 𝑓 + 𝑢, 𝑥 ∈ Ω, 𝑡 ∈ 𝐽,
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𝑦 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ 𝐽,

𝑦 (𝑥, 0) = 0, 𝑥 ∈ Ω,

− 𝑝
𝑡
− div (∇𝑝 (𝑥, 𝑡)) − ∫

1

𝑡

div (𝜓
∗
(𝜏, 𝑡) ∇𝑝 (𝑥, 𝜏)) 𝑑𝜏

+ 𝜙

(𝑦) 𝑝 = 𝑦 − 𝑦

0
, 𝑥 ∈ Ω, 𝑡 ∈ 𝐽,

𝑝 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ 𝐽,

𝑝 (𝑥, 1) = 0, 𝑥 ∈ Ω.

(67)

In this example, we choose the domainΩ = [0, 1]× [0, 1].
Let Ω be partitioned into T

ℎ
as described Section 2. For the

constrained optimization problem:

min
𝑢∈𝐾⊂𝑈

∫

1

0

𝑆 (𝑢) 𝑑𝑡, (68)

where 𝑆(𝑢) = (1/2)‖𝑦 − 𝑦
0
‖
2
+ (1/2)‖𝑢 − 𝑢

0
‖
2 is a convex

functional on 𝑈 and 𝐾 = {𝑢 ∈ 𝑈 : 𝑢 ≥ 0 a.e. in Ω × 𝐽};
the iterative scheme reads (𝑛 = 0, 1, 2, . . .)

𝑏 (𝑢
𝑛+1/2

, V) = 𝑏 (𝑢
𝑛
, V) − 𝜌

𝑛
(𝑆


(𝑢

𝑛
) , V) , ∀V ∈ 𝑈,

𝑢
𝑛+1

= 𝑃
𝑏

𝐾
(𝑢

𝑛+1/2
) ,

(69)

where 𝑏(⋅, ⋅) is a symmetric and positive definite bilinear
form such that there exist constants 𝑐

0
and 𝑐

1
satisfying

|𝑏 (𝑢, V)| ≤ 𝑐
1‖𝑢‖𝑈‖V‖𝑈, ∀𝑢, V ∈ 𝑈,

𝑏 (𝑢, 𝑢) ≥ 𝑐
0‖𝑢‖

2

𝑈
,

(70)

and the projection operator 𝑃
𝑏

𝐾
𝑈 → 𝐾 is defined: for given

𝑤 ∈ 𝑈 find 𝑃
𝑏

𝐾
𝑤 ∈ 𝐾 such that

𝑏 (𝑃
𝑏

𝐾
𝑤 − 𝑤, 𝑃

𝑏

𝐾
𝑤 − 𝑤) = min

𝑢∈𝐾

𝑏 (𝑢 − 𝑤, 𝑢 − 𝑤) . (71)

The bilinear form 𝑏(⋅, ⋅) provides suitable preconditioning
for the projection algorithm. An application of (69) to the
discretized semilinear parabolic integrodifferential optimal
control problem yields the following algorithm:

𝑏 (𝑢
𝑛+1/2

, V
ℎ
) = 𝑏 (𝑢

𝑛
, V

ℎ
) − 𝜌

𝑛
(𝑢

𝑛
+ 𝑝

𝑛
, V

ℎ
) , ∀V

ℎ
∈ 𝐾

ℎ
,

∫

1

0

((𝑦
𝑡
, 𝑤) + 𝑎 (𝑦, 𝑤) + ∫

𝑡

0

𝜓 (𝑡, 𝜏; 𝑦 (𝜏) , 𝑤) 𝑑𝜏

+ (𝜙 (𝑦) , 𝑤) ) 𝑑𝑡 = ∫

1

0

(𝑓 + 𝑢, 𝑤) 𝑑𝑡, ∀𝑤 ∈ 𝑉,

∫

1

0

(− (𝑝
𝑡
, 𝑞) + 𝑎 (𝑞, 𝑝) + ∫

1

𝑡

𝜓 (𝜏, 𝑡; 𝑞, 𝑝 (𝜏)) 𝑑𝜏

+ (𝜙

(𝑦) 𝑝, 𝑞) ) 𝑑𝑡 = ∫

1

0

(𝑦 − 𝑦
0
, 𝑞) 𝑑𝑡, ∀𝑞 ∈ 𝑉,

𝑢
𝑛+1

= 𝑃
𝑏

𝐾
(𝑢

𝑛+1/2
) , 𝑢

𝑛+1/2
, 𝑢

𝑛
∈ 𝐾

ℎ
.

(72)

Themain computational effort is to solve the state and costate
equations and to compute the projection 𝑃

𝑏

𝐾
𝑢
𝑛+1/2

. In this
paper, we use a fast algebraicmultigrid solver to solve the state
and costate equations. Then, it is clear that the key to saving
computing time is how to compute 𝑃

𝑏

𝐾
𝑢
𝑛+1/2

efficiently. For
the piecewise constant elements, 𝐾

ℎ
= {𝑢

ℎ
: 𝑢

ℎ
≥ 0} and

𝑏(𝑢, V) = (𝑢, V)
𝑈
; then

𝑃
𝑏

𝐾
𝑢
𝑛+1/2

|
𝜏
= max (0, avg (𝑢

𝑛+1/2
) |

𝜏
) , (73)

where avg(𝑢
𝑛+1/2

)|
𝜏
is the average of 𝑢

𝑛+1/2
over 𝜏.

In solving our discretized optimal control problem, we
use the preconditioned projection gradient method with
𝑏(𝑢, V) = (𝑢, V)

𝑈
and a fixed step size 𝜌 = 0.9. We now briefly

describe the solution algorithm to be used for solving the
numerical example in this section as follows.

(1) Solve the discretized optimization problem with the
projection gradient method on the current meshes
and calculate the error estimators 𝜂

𝑖
.

(2) Adjust themeshes using the estimators andupdate the
solution on new meshes, as described.

Now, we give a numerical example to illustrate our
theoretical results.

Example 1. Let 𝜓(𝑡, 𝜏) = 1, 𝜙(𝑦) = 𝑦
5. We choose the state

function by

𝑦 (𝑥
1
, 𝑥

2
) = 2 sin𝜋𝑥

1
sin𝜋𝑥

2
sin𝜋𝑡. (74)

The function 𝑓 is given by 𝑓(𝑥) = 𝑦
𝑡
− div(∇𝑦(𝑥, 𝑡)) −

∫
𝑡

0
div(∇𝑦(𝑥, 𝜏))𝑑𝜏+𝑦

5
−𝑢.The costate function can be chosen

as

𝑝 (𝑥
1
, 𝑥

2
) = sin𝜋𝑥

1
sin𝜋𝑥

2
sin𝜋𝑡. (75)

The function 𝑦
0
is given by 𝑦

0
(𝑥) = 𝑦 + 𝑝

𝑡
+ div(∇𝑝(𝑥, 𝑡)) +

∫
1

𝑡
div(∇𝑝(𝑥, 𝜏))𝑑𝜏 − 5𝑦

4
𝑝. We assume that

𝜆 = {
0.8, 𝑥

1
+ 𝑥

2
> 1.0,

0.3, 𝑥
1
+ 𝑥

2
≤ 1.0,

𝑢
0
(𝑥

1
, 𝑥

2
) = 1 − sin 𝜋𝑥

1

2
− sin 𝜋𝑥

2

2
+ 𝜆.

(76)

Thus, the control function is given by

𝑢 (𝑥
1
, 𝑥

2
) = max (𝑢

0
− 𝑝, 0) . (77)

In this example, the control function 𝑢 has a strong
discontinuity introduced by 𝑢

0
. The control function 𝑢 is

discretized by piecewise constant functions, whereas the
state 𝑦 and the costate𝑝were approximated by piecewise lin-
ear functions. In Table 1, numerical results of 𝑢, 𝑦, and 𝑝 on
uniform and adaptive meshes are presented. It can be found
that the adaptive meshes generated using our error indicators
can save substantial computational work, in comparison with
the uniform meshes. On the other hand, for the discontinu-
ous control variable 𝑢, the accuracy has become better from
the uniform meshes to the adaptive meshes in Table 1.
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Table 1: Numerical results on uniform and adaptive meshes.

On uniform mesh On adaptive mesh
𝑢 𝑦 𝑝 𝑢 𝑦 𝑝

Nodes 8097 8097 8097 1102 1969 1969
Sides 23968 23968 23968 3143 5744 5744
Elements 15872 15872 15872 2042 3776 3776
Dofs 15872 15872 15872 2042 3776 3776
Total 𝐿2 error 4.312𝑒 − 03 5.457𝑒 − 3 2.869𝑒 − 3 4.018𝑒 − 03 5.365𝑒 − 3 2.768𝑒 − 3

6. Conclusion and Future Works

In this paper, we discuss the semi-discrete finite element
methods of the semilinear parabolic integrodifferential opti-
mal control problems (1)-(2).We have established a posteriori
error estimates for each the state, the costate, and the
control approximation. The posteriori error estimates for
those problems by finite element methods seem to be new.

In our future work, we will use the mixed finite element
method to deal with nonlinear parabolic integrodifferential
optimal control problems. Furthermore, we will consider a
posteriori error estimates and superconvergence of mixed
finite element solution for nonlinear parabolic integrodiffer-
ential optimal control problems.
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