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Deadlock prevention policies are used to solve the deadlock problems of FMSs. It is well known that the theory of regions is
the efficient method for obtaining optimal (i.e., maximally permissive) controllers. All legal and live maximal behaviors of Petri
net models can be preserved by using marking/transition-separation instances (MTSIs) or event-state-separation-problem (ESSP)
methods. However, they encountered great difficulties in solving all sets of inequalities that is an extremely time consuming
problem. Moreover, the number of linear programming problems (LPPs) of legal markings is also exponential with net size when
a plant net grows exponentially. This paper proposes a novel methodology to reduce the number of MTSIs/ESSPs and LPPs. In this
paper, we used the well-known reduction approach Murata (1989) to simply the construct of system such that the problem of LPPs
can then be reduced. Additionally, critical ones of crucial marking/transition-separation instances (COCMTSI) are developed and
used in our deadlock prevention policy that allows designers to employ few MTSIs to deal with deadlocks. Experimental results
indicate that the computational cost can be reduced. To our knowledge, this deadlock prevention policy is the most efficient policy
to obtain maximal permissive behavior of Petri net models than past approaches.

1. Introduction

Many deadlock prevention schemes are developed for solving
deadlock problem of FMSs based on structural analysis [1].
Particulary, most of them employed the concept of siphons
in their deadlock prevention methods [2–9]. The main ad-
vantage of siphon control just requires a few control places
to rapidly revive the system. Further, Li and Zhou proposed
elementary siphon [10] to reduce the problem of redundant
minimal siphons. However, whatever how these experts [11–
14] make efforts in it, the siphon control algorithm cannot
obtain a maximally permissive controlled system. On the
other hand, some pioneers use reachability graph technol-
ogy to achieve the goal of a live system behavior [11–23].

Among them, the theory of regions [24] can not only obtain
an optimal (i.e., maximally permissive states) deadlock pre-
vention controller, but also without confining to a certain
class of FMSs.

Uzam [16] followed the theory of regions to further define
the deadlock zone (DZ) and the deadlock-free zone (DFZ)
for preventing deadlocks. Based on the theory of regions, an
optimal controller can be obtained when the concept of DZ
andDFZ is used to solve ESSPs.However, it suffers frommany
redundant control places problems due to numerous ESSPs.
Ghaffari et al. [20] proposed a unique interpretation of the
theory of regions and defined forbidden marking, dangerous
marking, legal marking, and the set of MTSI. Under the
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method of MTSI, an optimal PN controller synthesis method
for FMSs is proposed. Unfortunately, the problem of the
redundant control places cannot be entirely avoided in large
FMSs. To solve the problem of state explosion, Uzam [18]
uses the reduction technology to improve the previous ones
based on the theory of regions.This technology is also used in
this paper to simplify the structure of FMSs. For reducing the
number ofMTSIs, Li et al. [25] adopted a combined algorithm
based on siphon control method and the theory of regions.
However, it still fails to need to determine all sets of MTSIs in
second stage, and its application seems to be limited in S3PR
[1] nets.Wei and Li [26] also proposed a suboptimal deadlock
prevention policy using structural analysis and the theory of
regions. However, the maximally permissive behavior cannot
be obtained once the initial markings of the controlled net
are changed. Uzam and Zhou [11] use a simple iterative
skill for removing all markings in the deadlock zone based
on the theory of regions. However, the reachability graph
must be generated at each iterative stage. As a result, as
indicated by [27], the computational efficiency is lower than
the conventional policy [16, 20].

It is worthy to notice that Piroddi et al. [28, 29] pro-
posed combined selective siphons and critical markings in
a reachability graph algorithm to obtain maximally permis-
sive controllers via iterations. All uncontrolled siphons are
needed first to be identified. And then the relation between
uncontrolled siphons and critical markings is further located.
However, the main drawback is that the reachability graph is
still generated at each iterative stage until all critical markings
are controlled. Nevertheless, the policy not only solves the
deadlock problem successfully, but also obtains a maximally
permissive controller. To our knowledge, the policy is the first
deadlock prevention policy to achieve the goal that can obtain
maximally permissive controllers for all S3PR models in the
existing literature. On the other hand, CMTSI is proposed
to enhance the computational efficiency of the conventional
MTSI algorithm [12, 14, 30]. The three articles show the
CMTSI policy is capable of obtaining an efficient and optimal
controller in small S3PR nets. In this paper, the selective
siphon method and reduction technology are merged in
our new deadlock prevention policy. The advantage of the
proposedmethod is that the number of two types CMTSI can
then be simplified. And LPP is also reduced.

The rest of this paper is organized as follows. Section 2
presents the basic definitions, properties of PNs, and the the-
ory of regions. Section 3 then describes the proposed dead-
lock prevention policy. Next, Section 4 presents the exper-
imental results. Section 5 gives the comparison results. Con-
clusions are made in Section 6.

2. Preliminaries [23]

A PN is a 5-tuple, PN = (𝑃, 𝑇, 𝐹,𝑊,𝑀
0
), where 𝑃 is a finite

set of places; 𝑇 is a finite set of transitions, with 𝑃 ∪ 𝑇 ̸= 0

and 𝑃 ∩ 𝑇 = 0; 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is the set of all
directed arcs, 𝑊 : (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) → 𝑁 is the weight
functionwhere𝑁 = {0, 1, 2, . . .} and𝑀

0
:𝑃 → 𝑁 is the initial

marking. 𝑁 is said to be ordinary, denoted as (𝑃, 𝑇, 𝐹), if

for all 𝑓 ∈ 𝐹,𝑊(𝑓) = 1. 𝑁+(𝑝, 𝑡) = 𝑊(𝑝, 𝑡) is the input
function that means the multiplicity of a directed arc from 𝑝

to 𝑡 if (𝑝, 𝑡) ∈ 𝐹. 𝑁−(𝑝, 𝑡) = 𝑊(𝑡, 𝑝) is the output function
that means the multiplicity of a directed arc from 𝑡 to 𝑝 if
(𝑡, 𝑝) ∈ 𝐹. The set of input (resp., output) transitions of a
place 𝑝 is denoted by ∙𝑝 (resp., 𝑝∙). Similarly, the set of input
(resp., output) places of a transition 𝑡 is denoted by ∙𝑡 (resp.,
𝑡

∙). A PN structure (𝑃, 𝑇, 𝐹,𝑊) is denoted by𝑁. A PN with a
given initial marking is denoted by (𝑁,𝑀

0
). A PN is said to

be pure if no places are both input and output places of the
same transition.The so-called incidence matrix [𝑁] of a pure
PN is defined as [𝑁] = [𝑁]

−
− [𝑁]

+. A transition 𝑡 is said to
be enabled at marking 𝑀 if, for all 𝑝 ∈

∙
𝑡, 𝑀(𝑝) ≥ 𝑊(𝑝, 𝑡)

or 𝑝 is marked with at least 𝑊(𝑝, 𝑡) tokens, as denoted by
𝑀[𝑡 >. A transition may fire if it is enabled. In an ordinary
net, it is enabled if and only if for all 𝑝 ∈

∙
𝑡, 𝑀(𝑝) ≥ 1.

Firing 𝑡 at 𝑀 gives a new marking 𝑀

󸀠 such that, for all
𝑝 ∈ 𝑃, 𝑀󸀠(𝑝) = 𝑀(𝑝) − 𝑊(𝑝, 𝑡) + 𝑊(𝑡, 𝑝). It is denoted as
𝑀[𝑡 > 𝑀

󸀠
].𝑀 indicates the number of tokens in each place,

which means the current state of the modeled system. When
marking 𝑀

𝑛
can be reached from 𝑀

0
by firing a sequence

of transitions 𝜎, this process is denoted by 𝑀[𝜎 > 𝑀
𝑛
]

and satisfies the state equation 𝑀
𝑛
= 𝑀 + [𝑁]𝜎⃗. Here, 𝜎⃗ is

a vector of nonnegative integers, called counting vector, and
𝜎⃗(𝑡) indicates the algebraic sum of all occurrences of 𝑡 in 𝜎.
The set of all reachablemarkings for a PNgiven𝑀

0
is denoted

by 𝑅(𝑁,𝑀
0
). In this paper, we only focus on the reachable

markings. The spurious ones are not under consideration.
A transition t is said to be live if for any 𝑀 ∈ 𝑅(𝑁,𝑀

0
)

there exists a sequence of transitions whose firing leads to
𝑀

󸀠 that enables 𝑡. A PN is said to be live if all the transitions
are live. Liveness of a PN means that for each marking 𝑀 ∈

𝑅(𝑁,𝑀
0
) reachable from𝑀

0
it is finally possible to fire 𝑡, for

all 𝑡 ∈ 𝑇 through some firing sequence. (𝑁,𝑀
0
) is said to be

reversible if for each marking 𝑀 ∈ 𝑅(𝑁,𝑀
0
)𝑀
0
is reachable

from 𝑀. Thus, in a reversible net it is always possible to go
back to initial marking (state) 𝑀

0
. A marking 𝑀

󸀠 is said to
be a home state if for each marking 𝑀 ∈ 𝑅(𝑁,𝑀

0
)𝑀

󸀠 is
reachable from𝑀. Reversibility is a special case of the home
state property; that is, if the home state 𝑀

󸀠
= 𝑀
0
, then

the net is reversible. A PN contains a deadlock if there is a
marking 𝑀 ∈ 𝑅(𝑁,𝑀

0
) at which no transition is enabled.

Such amarking is called a deadmarking. Deadlock situations
are as a result of inappropriate resource allocation policies or
exhaustive use of some or all resources.

On the other hand, a conventional MTSI [21]/ESSP
[16] is proposed to prevent deadlock PN systems. The two
methods concerned about the forbidden state problem for
liveness requirements. It is assumed that 𝑀

𝐹
is the set of

forbidden markings. For convenience, we employed its sev-
eral definitions which are related with our approach as
follows.

Definition 1. Let the set 𝑀
𝐿
of legal/admissible markings be

the maximal set of reachable markings in 𝑅(𝑁,𝑀
0
).

Clearly, 𝑀
𝐿

= 𝑅(𝑁,𝑀
0
) − 𝑀

𝐹
. To solve the control

problem, one has to identify the set of MTSI from a
legal/admissible marking to a nonadmissible marking. The
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additional monitors are used to prevent these transitions
from occurring in order to keep the state space of the
controlled system in the set of legal markings.

Definition 2. The set of MTSI that the supervisor has to
disable Ω = {(𝑀, 𝑡) | ∃𝑀𝑡 > 𝑀

󸀠
∧ ∈ 𝑀

𝐿
∧ 𝑀

󸀠
∉ 𝑀
𝐿
}.

An optimal controller is the one that ensures the reachability
of all markings in 𝑀

𝐿
and that forbids all state transitions in

Ω.
Additionally, the theory of regions is proposed for the

synthesis of pure nets given a finite transition system [22],
which can be adopted to synthesize the liveness-enforcing
net supervisor (LENS) for a plant model. Ghaffari et al. [20]
give a new interpretation of the theory of regions using net
notations and show how to adopt it to synthesize the liveness-
enforcing net supervisor for a PNmodeled net.This theory is
briefly introduced below.

Let 𝑇 be a set of transitions and 𝐺 a finite directed graph
whose arcs are labeled by transitions in 𝑇. Assume that there
exists a node V in 𝐺 such that there exists a path from it to
any node. The objective of the theory of regions is to find a
pure PN (i.e., (𝑁,𝑀

0
)), having 𝑇 as its set of transitions and

characterized by its incidence matrix [𝑁](𝑝, 𝑡) and its initial
marking 𝑀

0
, such that its reachability graph is 𝐺 and the

marking of node V is 𝑀
0
. In the following, 𝑀 denotes both

a reachable marking and its corresponding node in 𝐺.

Consider any place 𝑝 of the net (𝑁,𝑀
0
) we look for.

Because (𝑁,𝑀
0
) is pure, 𝑝 can be fully characterized by its

corresponding incidence vector [𝑁](𝑝, ⋅)
⃗

Γ
𝑀
, where ⃗

Γ
𝑀
is the

counting vector of path Γ
𝑀
. For any transition 𝑡 that is enabled

at𝑀, that is, 𝑡 is the label of an outgoing arc of the node𝑀 in
𝐺,

𝑀

󸀠
(𝑝) = 𝑀(𝑝) + [𝑁] (𝑝, ⋅)

⃗
Γ
𝑀
, ∀ (𝑀,𝑀

󸀠
) ∈ 𝐺,

and 𝑀[𝑡 > 𝑀

󸀠
.

(1)

Consider now any oriented cycle 𝛾 of a reachability graph.
Applying the state equation to a node in 𝛾 and summing them
up give the following cycle equation:

∑

𝑡∈𝑇

[𝑁] (𝑝, 𝑡) ⃗𝛾 (𝑡) = 0, ∀𝛾 ∈ 𝐶, (2)

where 𝛾 is an oriented cycle of 𝐺,

󳨀⇀

𝛾 (𝑡) is a T-vector, 𝛾(𝑡)
denotes the algebraic sum of all occurrences of 𝑡 in 𝛾, and 𝐶

is the set of oriented cycles of 𝐺.
According to the definition of 𝐺, there exists an oriented

path Γ
𝑀
from 𝑀

0
to 𝑀. Applying (1) along the path leads to

𝑀(𝑝) = 𝑀
0
(𝑝) + [𝑁](𝑝, ⋅)

⃗
Γ
𝑀
. There are several paths from

𝑀
0
to𝑀. Under the cycle equations, the product [𝑁](𝑝, ⋅)

⃗
Γ
𝑀

is the same for all these paths. As a result, Γ
𝑀
can be arbitrarily

chosen. The reachability of any marking𝑀 in 𝐺 implies that

𝑀(𝑝) = 𝑀
0
(𝑝) + [𝑁] (𝑝, ⋅)

⃗
Γ
𝑀

≥ 0, ∀𝑀 ∈ 𝐺. (3)

The above equation is called the reachability condition.
Notably, (3) is necessary but not sufficient. Here spurious

markings may be generated. However, their consideration is
beyond this study.

It is now clear that the cycle equations and reachability
conditions hold for any place 𝑝. For each pair (𝑀, 𝑡) such that
𝑀 is a reachablemarking of𝐺 and 𝑡 is a transition not enabled
at𝑀, 𝑡 should be prevented from happening by some place 𝑝.
Since the net is pure, 𝑡 is prevented from happening at 𝑀 by
a place 𝑝 if and only if

𝑀
0
(𝑝) + [𝑁] (𝑝, ⋅)

⃗
Γ
𝑀

+ [𝑁] (𝑝, 𝑡) ≤ −1. (4)

The above is called the event separation condition of (𝑀, 𝑡).
The set of all possible pairs (𝑀, 𝑡) where 𝑀 is a reachable
marking and 𝑡 is not enabled at 𝑀 is called the set of
event separation instances ormarking/transitions-separation
instance (MTSI). To solve the control problem, the set of
MTSI needed to be identified firstly. The corresponding
control places can then be located to prevent transitions of
the controlled system from firing in order to keep the state
space of legal markings only.

Accordingly, every marking 𝑀 in the legal behavior of
the reachability graphmust still be reachable after the control
place (𝑝

𝑐
) is added. It implies that 𝑝

𝑐
must satisfy reachability

condition of the legal behavior, cycle equations, and the event
separation condition of (𝑀, 𝑡).The three conditions are listed
below:

𝑀(𝑝
𝑐
) = 𝑀

0
(𝑝
𝑐
) + [𝑁] (𝑝𝑐

, ⋅)
⃗

Γ
𝑀

≥ 0, ∀𝑀 ∈ 𝑀
𝐿
,

∑

𝑡∈𝑇

[𝑁] (𝑝𝑐
, 𝑡) ⃗𝛾 (𝑡) = 0, ∀𝛾 ∈ 𝐶,

𝑀
0
(𝑝
𝑐
) + [𝑁] (𝑝𝑐

, ⋅)
⃗

Γ
𝑀

+ [𝑁] (𝑝𝑐
, 𝑡) ≤ −1.

(5)

Equation (5) is used to determine the additional control place
𝑝
𝑐
. Notably, different MTSIs may obtain the same solutions.

As a result, the number of control places will bemuch smaller
than the sets of MTSIs. In the following section, a more
efficient method to reduce the number of MTSIs will be
introduced. For convenience, our proposed new deadlock
preventionmethod will follow the above interpretation of the
theory of regions.

3. Optimal Control Methodology for Linear
Programming Problems

We suppose that a deadlock-prone PN model contains at
least a dead marking in its reachability graph at which no
transitions are enabled. Therefore, the dead marking 𝑀

𝐷
is

defined formally as follows.

Definition 3. The dead markings 𝑀
𝐷

= {𝑀 ∈ 𝑅(𝑁,𝑀
0
) | at

𝑀, no transitions are enabled}.

Definition 4. A zone consisting of all dead markings is called
dead zone, denoted by 𝑍

𝐷
.

Once reachable markings enter the dead zone, the system
is deadlock. If there is no marking in the dead zone for a
reachability graph, the system is called a live one. Therefore,
the final goal of this research is to control a deadlock-prone
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system and then it can become live. For this purpose, the
markings in a deadlocked system must be identified. All
markings of a reachability graph can be divided into three
groups: legalmarkings (𝑀

𝐿
), quasi-deadmarkings (𝑀

𝑄
), and

dead markings (𝑀
𝐷
).

Definition 5. The quasi-dead markings 𝑀
𝑄

= {𝑀 ∈ 𝑅(𝑁,

𝑀
0
) | 𝑀 must eventually evolve to a dead one regard-less of

transition firing sequences}.

Definition 6. A zone consisting of all quasi-dead markings is
called the quasi-dead zone, denoted by 𝑍

𝑄
.

Markings except quasi-dead markings and dead mark-
ings are legal ones. Once a legal marking is enforced into the
quasi-dead zone, the net will eventually become deadlock.

Definition 7. A zone consisting of all legal markings is called
legal zone, that is, 𝑍

𝐿
= 𝑅(𝑁,𝑀

0
) − 𝑍
𝐷
− 𝑍
𝑄
.

Ramadge and Wonham [31] have demonstrated that a
system has maximally permissive behavior if 𝑍

𝐿
exists and

the system behavior cannot be led outside 𝑍
𝐿
. Therefore, all

quasi-dead and dead markings are needed to remove and all
legal markings are reverse in the reachability graph if one
wants to obtain the maximally permissive behavior.

In our previouswork [12], we first proposed the concept of
CMTSI. Only one type CMTSI is identified to replace with all
MTSIs. And also it can make the dead-prone PNmodel alive.
In [14, 30], two types of CMTSIs are introduced. For detailed
information please refer to [14, 30]; this work just shows the
main definitions.

Definition 8. Type I CMTSI: Ω󸀠 = {(𝑀, 𝑡) | 𝑀 ∈ 𝑀
𝐿
, 𝑡 ∈ 𝑇,

and ∃𝑀

󸀠
∈ 𝑀
𝐷
, such that 𝑀[𝑡 > 𝑀

󸀠
]}. Denote the set of all

the dead markings related to Ω

󸀠 as 𝑀󸀠
𝐷
, that is, 𝑀󸀠

𝐷
= {𝑀

󸀠
∈

𝑀
𝐷
| ∃(𝑀, 𝑡) ∈ Ω

󸀠 such that𝑀[𝑡 > 𝑀

󸀠
]}.

Definition 9. 𝜎
𝑘
is defined as a transition firing sequence

starting in a quasi-dead marking (𝑀
𝑄
) and ending in a

deadlock marking in 𝑀
𝐷
, where 𝑖 = |𝜎

𝑘
| is the number of

transitions in 𝜎
𝑘
, called its length. Denote a firing sequence

with the shortest length (i.e., smallest 𝑖) from any quasi-dead
marking to𝑀

󸀠 as 𝜎∗(𝑀󸀠) given𝑀

󸀠
∈ 𝑀
𝐷
− 𝑀

󸀠

𝐷
.

Definition 10. Type II CMTSI: Ω󸀠󸀠 = {(𝑀, 𝑡) | 𝑀 ∈ 𝑀
𝐿
, 𝑡 ∈

𝑇, ∃𝑀

󸀠
∈ 𝑀
𝑄
,𝑀

󸀠
∈ 𝑀
𝐷
, and a firing sequence 𝜎 = 𝜎

∗
(𝑀

󸀠󸀠
)

from 𝑀

󸀠 to 𝑀

󸀠󸀠 such that 𝑀[𝑡 > 𝑀

󸀠
] and 𝑀

󸀠
[𝜎 > 𝑀

󸀠󸀠
]}.

The set of dead markings associated with type II CMTSI is
denoted as𝑀󸀠󸀠

𝐷
, called type II deadlocks.𝑀󸀠󸀠

𝐷
= {𝑀

󸀠󸀠
∈ 𝑀
𝐷
|

∃(𝑀, 𝑡) ∈ Ω

󸀠󸀠
, 𝑀

󸀠
∈ 𝑀
𝑄
, and a firing sequence 𝜎 from𝑀

󸀠 to
𝑀

󸀠󸀠 such that𝑀[𝑡 > 𝑀

󸀠
] and 𝜎 = 𝜎

∗
(𝑀

󸀠󸀠
)}.

Definition 11. A dead marking is always with its correspond-
ing CMTSI. As a result, the corresponding CMTSI is of either
type I or II. Note that type I may be regarded as a special case
of type II CMTSI by defining 𝜎∗ = 0 (no need to enter𝑍

𝑄
but

directly to 𝑍
𝐷
), and type I CMTSI should be processed first.

In [33], the selective siphon with critical marking control
approach [28] is merged in the new deadlock prevention.

Based on [33], we propose critical ones of crucial marking/
transition-separation instance (COCMTSI) that allows us to
locate oneCOCMTSI fromCMTSI.Once theCOCMTSIs are
controlled, all the paths from legal markings to critical mark-
ings are accordingly forbidden. In other words, one selective
siphon can control two (or above two) critical markings if
those critical markings are in the same minimal siphon. In
the following, uncontrolled siphons, critical markings, and
selected siphons are defined.

Definition 12. Uncontrolled siphons and critical markings
[28].

Let Π = {𝑆
1
, . . . , 𝑆

𝑛
} the set of minimal siphons of PN.

(i) The set Π
𝑢
= {𝑆
𝑗
∈ Π | 𝐸

𝑆𝑗
̸= 0}, where 𝐸

𝑆𝑗
= {𝑀 ∈

𝑅(𝑁,𝑀
0
) | 𝜆

𝑇

𝑆𝑗
𝑀 = 0}, is the set of uncontrolled

siphons.

(ii) The set Π
𝑀

= {𝑆
𝑗
∈ Π
𝑢
| 𝜆

𝑇

𝑆𝑗
𝑀 = 0} denotes the set

of empty siphons in the marking𝑀.

(iii) For any Π

∗
⊆ Π
𝑢
, 𝐸
Π
∗ = ∪
𝑆𝑗∈Π
∗𝐸
𝑆𝑗
is the set of mark-

ings where at least one siphon in Π

∗ is empty.

(iv) The set 𝐸
Π𝑢

denotes the set of critical markings.
(v) A covering set of uncontrolled siphons (CSUS) is a

subset of siphons Π
𝑐
⊆ Π
𝑢
, such that 𝐸

Π𝑐
= 𝐸
Π𝑢
.

Definition 13. The set CMTSI (type I and type II) belong to
COCMTSI (𝑊

𝐶
) once they can be included in same selective

siphons.

Definition 14. The set CMTSI (type I and type II) belongs
to COCMTSI (Ω

𝑐
) once they can be included in the same

selective siphons.
For example, based on Table 1, there are five CMTSIs

needed to process. Further, it is obvious that CMTSI 𝑎 and
CMTSI 𝑏 are included in selective siphon I. Similarly, CMTSI
𝑐 and CMTSI 𝑑 are included in selective siphon II. According
to Definition 14, CMTSI 𝑎 and CMTSI 𝑏 can be considered
as the same set of the COCMTSI 𝑥. Similarly, CMTSI 𝑐 and
CMTSI 𝑑 are the same set of the COCMTSI 𝑦.Therefore, one
can just choose anyone CMTSI (i.e., CMTSI 𝑎 or CMTSI 𝑏) to
calculate since both belong to COCMTSI 𝑥. As a result, only
three CMTSIs needed to process if the COCMTSI algorithm
is used.

Definition 15. One CMTSI which is not included in any
selective siphon needs to be processed.

Petri nets reduction approach is a well-known method to
derive the properties of a complex PN model, while preserv-
ing the concerned properties, such as boundedness, liveness,
and reversibility [31]. By simplifying the PN structure, it is
an efficient analysis way to derive the properties of a complex
PNmodel. Here, six simple reduction rules are used.They are
(a) fusion of series places; (b) fusion of series transitions; (c)
fusion of parallel places; (d) fusion of parallel transitions; and
(e) elimination of self-loop places; (f) Elimination of self-loop
transitions. Besides, if we assume that (𝑁,𝑀

0
) is an original

PN, and (𝑁

󸀠
,𝑀

󸀠

0
) is the simplified PN then (𝑁

󸀠
,𝑀

󸀠

0
) is live,



Journal of Applied Mathematics 5

Table 1: The relations between selective siphons and CMTSIs.

CMTSI 𝑎 CMTSI 𝑏 CMTSI 𝑐 CMTSI 𝑑 CMTSI 𝑒
Selective siphon I (𝑆

1
) ⊚ ⊚

Selective siphon II (𝑆
2
) ⊚ ⊚

Selective siphon III (𝑆
3
) ⊚

COCMTSI 𝑥 COCMTSI 𝑦 COCMTSI 𝑧

Table 2: The detailed information of dead markings.

Marking number
Information of marking

[p1, p2, p3, p4, p5, p6, p8, p9, p10, p11, p12, p14, p15, p16,
p17, p18, p19]

Marking number
Information of marking

[p1, p2, p3, p4, p5, p6, p8, p9, p10, p11, p12, p14, p15, p16,
p17, p18, p19]

M80 [3, 1, 1, 1, 0, 0, 4, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0] M93 [5, 0, 1, 0, 0, 0, 3, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0]
M125 [4, 0, 0, 0, 1, 1, 4, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0] M130 [4, 0, 1, 1, 0, 0, 3, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0]
M134 [4, 1, 0, 1, 0, 0, 3, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0] M137 [6, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0]
M152 [2, 1, 1, 1, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] M153 [3, 0, 1, 0, 1, 1, 4, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0]
M154 [3, 0, 0, 1, 1, 1, 4, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0] M156 [4, 0, 1, 0, 0, 1, 3, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0]
M163 [5, 0, 0, 1, 0, 0, 2, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0] M170 [3, 0, 1, 1, 0, 1, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
M171 [3, 1, 0, 1, 0, 1, 3, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0] M172 [4, 0, 0, 0, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0]
M174 [5, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0] M176 [4, 0, 0, 1, 0, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]

Table 3: The detailed information of quasi-dead markings.

Marking number
Information of marking

[p1, p2, p3, p4, p5, p6, p8, p9, p10, p11, p12, p14, p15, p16,
p17, p18, p19]

Marking number
Information of marking

[p1, p2, p3, p4, p5, p6, p8, p9, p10, p11, p12, p14, p15, p16,
p17, p18, p19]

M26 [3, 1, 1, 1, 0, 0, 6, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1] M35 [5, 0, 1, 0, 0, 0, 5, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1]
M42 [3, 1, 1, 1, 0, 0, 5, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0] M52 [5, 0, 1, 0, 0, 0, 4, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0]
M59 [3, 1, 1, 1, 0, 0, 5, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1] M68 [4, 0, 1, 1, 0, 0, 5, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1]
M72 [5, 0, 1, 0, 0, 0, 4, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1] M75 [4, 1, 0, 1, 0, 0, 5, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1]
M79 [6, 0, 0, 0, 0, 0, 4, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1] M85 [4, 0, 1, 0, 1, 0, 4, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0]
M89 [4, 0, 1, 1, 0, 0, 4, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0] M96 [4, 1, 0, 1, 0, 0, 4, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0]
M99 [6, 0, 0, 0, 0, 0, 3, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0] M100 [2, 1, 1, 1, 0, 1, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]
M106 [4, 0, 1, 0, 0, 1, 4, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] M107 [4, 0, 1, 0, 0, 1, 5, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1]
M111 [4, 0, 1, 1, 0, 0, 4, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1] M116 [4, 1, 0, 1, 0, 0, 4, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1]
M118 [5, 0, 0, 1, 0, 0, 4, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1] M119 [6, 0, 0, 0, 0, 0, 3, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1]
M120 [2, 1, 1, 1, 0, 1, 5, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0] M124 [3, 1, 1, 0, 0, 1, 4, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0]
M126 [4, 0, 1, 0, 0, 1, 4, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0] M127 [3, 1, 0, 1, 0, 1, 4, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0]
M136 [5, 0, 0, 1, 0, 0, 3, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0] M138 [2, 1, 1, 1, 0, 1, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1]
M141 [3, 0, 1, 1, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0] M142 [3, 0, 1, 1, 0, 1, 5, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1]
M143 [4, 0, 1, 0, 0, 1, 4, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1] M146 [3, 1, 0, 1, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1]
M150 [5, 0, 0, 0, 0, 1, 4, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1] M151 [5, 0, 0, 1, 0, 0, 3, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1]
M155 [3, 0, 1, 1, 0, 1, 4, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0] M159 [3, 1, 0, 1, 0, 1, 4, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0]
M162 [5, 0, 0, 0, 0, 1, 3, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0] M164 [3, 0, 1, 1, 0, 1, 4, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1]
M166 [3, 1, 0, 1, 0, 1, 4, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1] M168 [4, 0, 0, 1, 0, 1, 4, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1]
M169 [5, 0, 0, 0, 0, 1, 3, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1] M173 [4, 0, 0, 1, 0, 1, 3, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0]
M175 [4, 0, 0, 1, 0, 1, 3, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1]
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Table 4: The information of all MTSIs.

Marking number MTSI number Marking number MTSI number Marking number MTSI number
M26 {M16, t1} M35 {M20, t11} M42 {M26, t9}
M52 {M34, t11} M59 {M42, t10} M59 {M47, t1}
M68 {M47, t11} M72 {M52, t10} M75 {M55, t1}
M79 {M57, t11} M80 {M67, t1} M85 {M63, t9}
M85 {M67, t4} M89 {M67, t11} M96 {M74, t1}
M99 {M77, t11} M100 {M81, t1} M106 {M84, t9}
M106 {M90, t2} M107 {M84, t11} M116 {M95, t1}
M118 {M95, t11} M120 {M103, t1} M124 {M104, t9}
M125 {M105, t9} M125 {M109, t4} M127 {M108, t9}
M127 {M109, t1} M134 {M115, t1} M136 {M115, t11}
M138 {M123, t1} M141 {M123, t9} M142 {M123, t11}
M146 {M129, t1} M150 {M132, t11} M153 {M139, t9}
M154 {M140, t9} M159 {M145, t1} M162 {M148, t11}
M166 {M158, t1} M168 {M158, t11} M171 {M165, t1}
M172 {M165, t4} M172 {M167, t9} M173 {M165, t11}

Table 5: The information of type I CMTSIs.

Dead marking number MTSI number Dead marking number MTSI number Dead marking number MTSI number
M80 {M67, t1} M125 {M105, t9} M125 {M109, t4}
M134 {M115, t1} M153 {M139, t9} M154 {M140, t9}
M171 {M165, t1} M172 {M165, t4} M172 {M167, t9}

Table 6: The information of type II CMTSIs.

Dead marking numberQuasi-dead marking number MTSI number Dead marking number Quasi-dead marking number MTSI number
M93 M52 {M34, t11} M130 M89 {M64, t11}
M137 M99 {M77, t11} M152 M138 {M123, t1}
M152 M141 {M123, t9} M156 M106 {M84, t9}
M156 M106 {M90, t2} M156 M107 {M84, t11}
M163 M136 {M115, t11} M170 M141 {M123, t9}
M170 M142 {M123, t11} M174 M162 {M148, t11}
M176 M173 {M165, t11}

safe, and bounded if and only if (𝑁,𝑀
0
) is live, safe, and

bounded.

4. Our New Deadlock Prevention Algorithm

For convenience, we employ a flowchart (i.e., shown in
Figure 1) to present our new deadlock prevention algorithm
that consists of six stages. The detailed steps are as follows.
First of all, the reduction technology is used to simply the
construct of Petri net system. Second, we have to locate all
reachablemarkings.Then, we need to identify CMTSIs. Next,
we have to check all dead/quasi-dead markings of CMTSIs
whether they are included in selective siphons or not. It is
worthy to notice that if CMTSIs are included in the same
siphons, they are called COCMTSIs. Additionally, we can
choose any CMTSI to be processed if the CMTSI belongs to
COCMTSIs. Finally, control places can be obtained to control
the deadlock problem.

Table 7:The relation between type I CMTSIs and selective siphons.

Dead marking
number MTSI number Critical marking Selective siphon

M80 {M67, t1} M80 S2
M125 {M105, t9} M125 S3
M134 {M115, t1} M134 S2
M153 {M139, t9} M153 S3
M154 {M140, t9} M154 S3
M171 {M165, t1} M171 S2
M172 {M165, t4} M172 S3

Obviously, the reduction approach is able to reduce the
number of LPPs. According to the conventional theory of
regions, everyMTSI is needed to process with all reachability
condition equations and cycle equations. Hence, COCMTSIs
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In control places stage
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No
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Find out Ω󳰀 Find out Ω󳰀󳰀

Identify selective siphons

Find out all minimal siphons

Pick one of Ω󳰀 and Ω󳰀󳰀

Categorize Ω󳰀 and Ω󳰀󳰀 One of ΩC

Identify all ΩC

Pick one of Ω (Ω = Ω󳰀 and Ω󳰀󳰀)
to generate the event separation conditions

Generate all cycle equations and all legal
reachability condition equations

Obtain Cp

End

Remove redundant Cp and
choose the optimal sets of Cp

End and show
“no optimal solution”

Output all choose
optimal sets of Cp

In reachability graph stage
Identify and find out all MD,MQ, andML

Output allM󳰀
D,M󳰀󳰀

D, ΩC,MD,MQ, andML

All Ω are calculated?

All Ω󳰀 and Ω󳰀󳰀 are checked?

Obtain solution?

Ω󳰀 and Ω󳰀󳰀 ∈ any selective siphon?

AllMD are checked?

MD ∈ M
󳰀
D ?

M0(pc) + [N](pc, ·)
−→
ΓM + [N](p, t) ≤ −1

∑
t∈T

[N](pc, t)
−→𝛾 (t) = 0, ∀𝛾 ∈ C

M(pc) = M0(pc) + [N](pc, ·)
−→
ΓM ≥ 0, ∀M ∈ ML

Figure 1: The flowchart of our deadlock prevention policy.

can reduce the number of LPPs. It means that less MTSI
needs less LPPs to be handled. Since COCMTSI (Ω

𝐶
) ⊆

(Ω

󸀠
∪ Ω

󸀠󸀠
) ⊆ Ω, the number of LPPs will be reduced. Based

on the above discussion, we can infer that our proposed
deadlock prevention policy is more efficient than the relative

methods in [12, 14, 16, 20]. For instance, a classical FMS (i.e.,
shown in Figure 2) which is taken from [32] is employed as
an example. In this case, it is with 16 deadmarkings, 61 quasi-
dead markings, and 205 legal markings. One can realize that
there are 205 LPPs needed to process since 205 legalmarkings
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Figure 2: A classical Petri net-based S3PR model [32].
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Figure 3: The reduced model of Figure 2.

Table 8:The relation between type II CMTSIs and selective siphons.

Dead marking
number MTSI number Critical marking Selective siphon

M93 {M34, t11} M52 S1
M130 {M64, t11} M89 S1
M137 {M77, t11} M99 S1
M152 {M123, t1} M138 S2
M152 {M123, t9} M141 No match
M156 {M84, t9} M106 No match
M156 {M84, t11} M107 S1
M163 {M115, t11} M136 S1
M170 {M123, t11} M142 S1
M174 {M148, t11} M162 S1
M176 {M165, t11} M173 S1

Table 9: Total COCMTSIs.

Dead marking
number MTSI number Critical marking Selective siphon

M93 {M34, t11} M52 S1
M80 {M67, t1} M80 S2
M125 {M105, t9} M125 S3
M152 {M123, t9} M141 No match
M156 {M84, t9} M106 No match

will generate 205 reachability condition equations. Our new
deadlock prevention policy will be introduced as follows.

In reduction approach stage, one can then obtain the
reducedmodel shown in Figure 3 due to fusion of series tran-
sitions rule.
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Table 10: The additional control places in this example.

Control places number 𝑀
0
(𝐶
𝑝𝑖
) ∙(𝐶

𝑝𝑖
) (𝐶

𝑝𝑖
)∙ Information of control places

[𝑀
0
, 𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
, 𝑡
7
, 𝑡
8
, 𝑡
9
, 𝑡
10
, 𝑡
11
, 𝑡
12
, 𝑡
13
, 𝑡
14
]

𝐶
1

1 t5, t13 t4, t11 [1, 0, 0, 0, −1, 1, 0, 0, 0, 0, 0, −1, 0, 1, 0]
𝐶
2

2 t6, t13 t1, t11 [2, −1, 0, 0, 0, 0, 1, 0, 0, 0, 0, −1, 0, 1, 0]
𝐶
3

3 t5, t7, t11 t4, t6, t9 [3, 0, 0, 0, −1, 1, −1, 1, 0, −1, 0, 1, 0, 0, 0]
𝐶
4

3 t6, t11 t3, t4, t9 [3, 0, 0, −1, −1, 0, 1, 0, 0, −1, 0, 1, 0, 0, 0]
𝐶
5

3 t7, t11 t3, t5, t9 [3, 0, 0, −1, 0, −1, 0, 1, 0, −1, 0, 1, 0, 0, 0]
𝐶
6

4 t7, t11 t1, t9 [4, −1, 0, 0, 0, 0, 0, 1, 0, −1, 0, 1, 0, 0, 0]

Table 11: Comparison of the controlled example.

Policy by Number monitors Reachable markings optimal? Number MTSI Number LPP
[16] 8 205 Yes 59 205
[18] 8 205 Yes 59 205
[14] 6 205 Yes 18 205
[13] 6 205 Yes 18 119
[33] 6 205 Yes 5 205
This Paper 6 205 Yes 5 119

In reachability graph stage, one can locate 176 reachable
markings (i.e., 𝑀

1
− 𝑀
176

) by PNTOOL [34]. Then 16 dead
markings (i.e., 𝑀

80
, 𝑀
93
, 𝑀
125

, 𝑀
130

, 𝑀
134

, 𝑀
137

, 𝑀
152

,
𝑀
153

, 𝑀
154

, 𝑀
156

,𝑀
163

,𝑀
170

, 𝑀
171

, 𝑀
172

,𝑀
174

, and𝑀
176

)
can be identified. Additionally, according to Definition 3, 41
quasi-dead markings (i.e., 𝑀

26
, 𝑀
35
, 𝑀
42
, 𝑀
52
, 𝑀
59
, 𝑀
68
,

𝑀
72
, 𝑀
75
, 𝑀
79
, 𝑀
85
, 𝑀
89
, 𝑀
96
, 𝑀
99
, 𝑀
100

, 𝑀
106

, 𝑀
107

,
𝑀
111

,𝑀
116

,𝑀
118

,𝑀
119

,𝑀
120

,𝑀
124

,𝑀
126

,𝑀
127

, 𝑀
136

,𝑀
138

,
𝑀
141

,𝑀
142

,𝑀
143

,𝑀
146

,𝑀
150

,𝑀
151

,𝑀
155

,𝑀
159

,𝑀
162

,𝑀
164

,
𝑀
166

, 𝑀
168

, 𝑀
169

, 𝑀
173

, and 𝑀
175

) can be obtained. For
convenience, the detailed information of the dead markings
and the quasi-dead markings is listed in Tables 2 and 3.

In identification CMTSI stage, according to Definitions 8
and 10, one can identify all CMTSIs fromMTSIs.The detailed
information of identifying process please refers to [14, 30].
Table 4 shows all MTSIs.

Hence, the number of legal markings (i.e., 176 − (16 +

41) = 119) can then be determined. Additionally, types I and
II CMTSIs can be obtained that are listed in Tables 5 and 6.

In siphon classification stage, according to the defi-
nition in [28], there are three sets of selective siphons
𝑆
1

= {𝑝
2
, 𝑝
5
, 𝑝
15
, 𝑝
18
}, 𝑆
2

= {𝑝
5
, 𝑝
14
, 𝑝
15
, 𝑝
18
}, and 𝑆

3
=

{𝑝
2
, 𝑝
11
, 𝑝
16
, 𝑝
17
, 𝑝
18
, 𝑝
19
} in this example. Please note that

there are six sets of minimal siphons in it initially.
In identification COCMTSI stage, all CMTSIs need to

identify whether CMTSIs belong to COCMTSIs or not.
Therefore, we just need to identify the markings 𝑀

80
, 𝑀
125

,
𝑀
134

, 𝑀
153

, 𝑀
154

, 𝑀
171

, and 𝑀
172

(i.e., type I CMTSI)
and 𝑀

52
, 𝑀
89
, 𝑀
99
,𝑀
138

, 𝑀
141

, 𝑀
106

, 𝑀
107

, 𝑀
136

, 𝑀
142

,
𝑀
162

, and 𝑀
173

(i.e., type II CMTSI) if they are included
in 𝑆
1
, 𝑆
2
, and 𝑆

3
or not. After this stage, the identified

COCMTSIs are listed in Tables 7 and 8. From Tables 7 and
8, it is obvious that 𝑀

52
,𝑀
89
,𝑀
99
,𝑀
107

,𝑀
136

,𝑀
142

,𝑀
162

,
and 𝑀

173
are included in 𝑆

1
; 𝑀
80
, 𝑀
134

, 𝑀
171

, and 𝑀
152

are included in 𝑆
2
; and 𝑀

125
,𝑀
153

,𝑀
154

, and 𝑀
172

are
included in 𝑆

3
. In addition, the other two markings𝑀

141
and

𝑀
106

are not included in any selective siphons. Therefore,
𝑀
52
,𝑀
89
,𝑀
99
,𝑀
107

,𝑀
136

,𝑀
142

,𝑀
162

, and 𝑀
173

belong to
same COCMTSI group. Similarly, 𝑀

80
, 𝑀
134

, 𝑀
171

, and
𝑀
152

belong to the same COCMTSI group, and 𝑀
125

, 𝑀
153

,
𝑀
154

, and 𝑀
172

belong to the same COCMTSI group. Just
one CMTSI is picked up from same COCMTSI group.
Conveniently, the type I CMTSI from the three sets of
COCMTSI. They are {𝑀

34
, 𝑡
11
}, {𝑀

67
, 𝑡
1
}, and {𝑀

105
, 𝑡
9
},

shown in Table 9. Besides, the two sets of CMTSI {𝑀
123

, 𝑡
9
}

and {𝑀
84
, 𝑡
9
} are necessarily considered. In sum, there are five

sets of COCMTSIs needed to be calculated.
In control places stage, six control places can then

be obtained by using the theory of regions. The detailed
information of the six control places is listed in Table 10.

5. Comparison with Previous Methods

This section compares this work with the past deadlock
prevention policies [13, 14, 16, 18, 22, 33].

Obviously, based on Table 11, this work presents a com-
putationally improved optimal control algorithm among the
existing literature. The reason is that five sets MTSIs and 119
LPPs are needed to be handled by using our new policy.

6. Conclusion

Linear programming is amathematicalmethod for determin-
ing a way to achieve the best outcome (such as maximum
profit or lowest cost) in a given mathematical model for
some list of requirements represented as linear relationships.
Our proposed policy can be implemented for simplifying
the number of LPPs for solving deadlock prevention for
FMSs. The underlying notion of the conventional work is
that many MTSIs and LPPs must be solved to prevent legal
markings from entering the illegal zone in the original PN
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model. For this purpose, one must generate all MTSIs and
LPPs in a reachability graph such that they need to pay for
the high computation cost. However, this work proposed an
efficient way which used CMTSIs, the reduction technology,
and COCMT to reduce the computation cost. The proposed
method can reduce numerousMTSIs and LPPs such that only
a few CMTSIs and LPPs are required in this new deadlock
prevention policy. Based on the experimental results, our new
policy is more efficient than the existing optimal policies as
mentioned above. Additionally, our control policy can obtain
simplified controlled Petri nets because less control places are
needed and also the controlled nets are ordinary.

In the future work, the existing literature [35–37] which
first investigates the deadlock resolution in the paradigm of
Petri nets allowing assembly operations, multiple-type and
multiple-quantity resource acquisition, and production ratio
among jobs maybe can be considered in our future work.
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