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We use the third-order shear deformation theory and a collocation technique with polyharmonic splines to predict natural
frequencies of moderately thick isotropic plates.The natural frequencies of vibration are computed for various plates and compared
with some available published results. Through numerical experiments, the capability and efficiency of the present method for
eigenvalue problems are demonstrated, and the numerical accuracy and convergence are thoughtfully examined.

1. Introduction

Radial basis functions (RBFs) have recently proved to be an
excellent technique for interpolating data and functions. A
radial basis function 𝜙(‖𝑥 − 𝑥𝑗‖) can be considered a spline
that depends on the Euclidean distance between distinct data
centers 𝑥𝑗, 𝑗 = 1, 2, . . . , 𝑁 ∈ R𝑛, also called nodal or
collocation points. Not only RBFs are adequate to scattered
data approximation and in general to interpolation theory, as
proposed by Hardy [1], but also excellent for solving partial
differential equations (PDEs) as first introduced by Kansa [2].

Kansa proposed an unsymmetric RBF collocation
method based upon multiquadric interpolation functions,
in which the shape parameter is considered to be variable
across the problem domain. The distribution of the shape
parameter is obtained by an optimization approach, in
which the value of the shape parameter is assumed to be
proportional to the curvature of the unknown solution of the
original partial differential equation. In this way, it is possible
to reduce the condition number of the matrix at the expense
of implementing an additional iterative algorithm. In the
present work, we will implement the unsymmetric global
collocation method in a form that is independent of this
shape parameter based on unshifted polyharmonic splines.

In some respect this can be seen as a more stable form than
multiquadrics.

Structures composed of laminated materials are among
the most important structures used in modern engineering
and, especially, in the aerospace industry. Such lightweight
structures are also being increasingly used in civil, mechan-
ical, and transportation engineering applications. The rapid
increase of the industrial use of these structures has necessi-
tated the development of new analytical and numerical tools
that are suitable for the analysis and study of the mechanical
behavior of such structures. The behavior of structures com-
posed of advanced composite materials is considerably more
complicated than for isotropic ones. The strong influences
of anisotropy, the transverse stresses through the thickness
of a laminate, and the stress distributions at interfaces are
among the most important factors that affect the general
performance of such structures.The use of shear deformation
theories has been the topic of intensive research, as in [7–19],
among many others.

The analysis of laminated plates by finite element meth-
ods is now considerably established. The use of alternative
methods such as the meshless methods based on radial basis
functions is attractive due to the absence of a mesh and the
ease of collocation methods. The use of radial basis function
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for the analysis of structures and materials has been previ-
ously studied by numerous authors [20–31]. More recently
the authors have applied RBFs to the static deformations
of composite beams and plates [32–35]. Recent meshless
techniques were discussed in [36–42].

In this paper the use of radial basis functions to isotropic
and composite plates using a third-order shear deformation
theory is investigated. The quality of the present method in
predicting free vibrations of isotropic and laminated compos-
ite plates is compared and discussed with other methods in
some numerical examples.

2. The Radial Basis Function Method

2.1. The Eigenproblem. Radial basis functions (RBF) approx-
imations are grid-free numerical schemes that can exploit
accurate representations of the boundary, are easy to imple-
ment, and can be spectrally accurate [43, 44].

In this section the formulation of a global unsymmetrical
collocation RBF-based method to compute eigenvalues of
elliptic operators is presented.

Consider a linear elliptic partial differential operator 𝐿
and a bounded regionΩ in R𝑛 with some boundary 𝜕Ω. The
eigenproblem looks for eigenvalues (𝜆) and eigenvectors (u)
that satisfy

𝐿u + 𝜆u = 0 in Ω,

𝐿𝐵u = 0 on 𝜕Ω,
(1)

where 𝐿𝐵 is a linear boundary operator. The eigenproblem
of (1) is replaced by a finite-dimensional eigenvalue problem,
based on RBF approximations.

The operator 𝐿 is approximated by a matrix that incorpo-
rates the boundary conditions and then solve the eigenvalues
and eigenvectors of this matrix by standard techniques.

2.2. Radial Basis Functions. The radial basis function (𝜙)
approximation of a function (u) is given by

ũ (x) =
𝑁

∑
𝑖=1

𝛼𝑖𝜙 (
𝑥 − 𝑦𝑖

2) , x ∈ R
𝑛
, (2)

where𝑦𝑖, 𝑖 = 1, . . . , 𝑁 is a finite set of distinct points (centers)
inR𝑛.The coefficients𝛼𝑖 are calculated so that ũ satisfies some
boundary conditions. Although many other functions could
be used, as illustrated by several authors [1, 2, 45], here we use
unshifted polyharmonic splines in the form

𝜙 (𝑟) = 𝑟
2𝑚+1

, 𝑚 ∈ 𝑍, (3)

where the Euclidean distance 𝑟 is real and nonnegative.
Considering 𝑁 distinct interpolations, and knowing

𝑢(𝑥𝑗), 𝑗 = 1, 2, . . . , 𝑁, we find 𝛼𝑖 by the solution of a 𝑁 × 𝑁
linear system A𝛼 = u, where A = [𝜙(‖𝑥 − 𝑦𝑖‖2)]𝑁×𝑁, 𝛼 =

[𝛼1, 𝛼2, . . . , 𝛼𝑁]
𝑇 and u = [𝑢(𝑥1), 𝑢(𝑥2), . . . , 𝑢(𝑥𝑁)]

𝑇.The RBF
interpolation matrix 𝐴 is positive definite for some RBFs
[46] but in general provides ill-conditioned systems. This ill-
conditioning problem is due to full matrices produced by the

collocationmethod and worsens with the increase of number
of nodes. However it was shown by Schaback that the more
ill-conditioned the problem the better the solution, until a
flatness of the function occurs. In our numerical experiments
this ill-conditioning did not produce any inconvenience to
quality of solution.

2.3. Solution of the Eigenproblem. We follow a simple scheme
for the solution of the eigenproblem (1). We consider 𝑁𝐼
nodes in the interior of the domain and 𝑁𝐵 nodes on the
boundary, with𝑁 = 𝑁𝐼 + 𝑁𝐵.

We denote interpolation points by 𝑥𝑖 ∈ Ω, 𝑖 = 1, . . . , 𝑁𝐼
and 𝑥𝑖 ∈ 𝜕Ω, 𝑖 = 𝑁𝐼 + 1, . . . , 𝑁. For the interior points we
have that
𝑁

∑
𝑖=1

𝛼𝑖𝐿𝜙 (
𝑥 − 𝑦𝑖

2) = 𝜆ũ (𝑥𝑗) , 𝑗 = 1, 2, . . . , 𝑁𝐼 (4)

or

𝐿
𝐼
𝛼 = 𝜆ũ𝐼, (5)

where

𝐿
𝐼
= [𝐿𝜙 (

𝑥 − 𝑦𝑖
2)]𝑁𝐼×𝑁

, (6)

For the boundary conditions we have

𝑁

∑
𝑖=1

𝛼𝑖𝐿𝐵𝜙 (
𝑥 − 𝑦𝑖

2) = 0, 𝑗 = 𝑁𝐼 + 1, . . . , 𝑁 (7)

or

B𝛼 = 0. (8)

Therefore we can write a finite-dimensional problem as a
generalized eigenvalue problem

[
𝐿𝐼

B] 𝛼 = 𝜆 [
A𝐼
0 ] 𝛼, (9)

where

A𝐼 = 𝜙[(
𝑥𝑁𝐼 − 𝑦𝑗

2)]𝑁𝐼×𝑁
,

B𝐼 = 𝐿𝐵𝜙[(
𝑥𝑁𝐼+1 − 𝑦𝑗

2)]𝑁𝐵×𝑁
.

(10)

3. Third-Order Theory

The displacement field for the third-order shear deformation
theory of Hardy [1] is obtained as

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0 (𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑥 (𝑥, 𝑦, 𝑡) −
4

3ℎ2
𝑧
3
(𝜃𝑥+

𝜕𝑤

𝜕𝑥
),

V (𝑥, 𝑦, 𝑧, 𝑡) = V0 (𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑦 (𝑥, 𝑦, 𝑡) −
4

3ℎ2
𝑧
3
(𝜃𝑦+

𝜕𝑤

𝜕𝑦
),

𝑤 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0 (𝑥, 𝑦, 𝑡) ,

(11)
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where 𝑢 and V are the in-plane displacements at any point
(𝑥, 𝑦, 𝑧), 𝑢0,V0 denote the in-plane displacement of the point
(𝑥, 𝑦, 0) on the midplane, 𝑤 is the deflection, and 𝜃𝑥 and 𝜃𝑦
are the rotations of the normals to the midplane about the 𝑦-
and 𝑥-axes, respectively.

The strain-displacement relationships are given as

{{{{{{
{{{{{{
{

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧

}}}}}}
}}}}}}
}

=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

𝜕𝑢

𝜕𝑥

𝜕V

𝜕𝑦
𝜕𝑢

𝜕𝑦
+

𝜕V

𝜕𝑥

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥

𝜕V

𝜕𝑧
+

𝜕𝑤

𝜕𝑦

}}}}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}}}}}
}

. (12)

Therefore strains can be expressed as

{{
{{
{

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

}}
}}
}

=

{{{{{
{{{{{
{

𝜖(0)𝑥𝑥

𝜖(0)𝑦𝑦

𝛾(0)𝑥𝑦

}}}}}
}}}}}
}

+ 𝑧

{{{{{
{{{{{
{

𝜖(1)𝑥𝑥

𝜖(1)𝑦𝑦

𝛾(1)𝑥𝑦

}}}}}
}}}}}
}

+ 𝑧
3

{{{{{
{{{{{
{

𝜖(3)𝑥𝑥

𝜖(3)𝑦𝑦

𝛾(3)𝑥𝑦

}}}}}
}}}}}
}

,

{
𝛾𝑥𝑧
𝛾𝑦𝑧

} =
{{
{{
{

𝛾(0)𝑥𝑧

𝛾(0)𝑦𝑧

}}
}}
}

+ 𝑧
2
{{
{{
{

𝛾(2)𝑥𝑧

𝛾(2)𝑦𝑧

}}
}}
}

,

(13)

where

{{{{{
{{{{{
{

𝜖(0)𝑥𝑥

𝜖(0)𝑦𝑦

𝛾(0)𝑥𝑦

}}}}}
}}}}}
}

=

{{{{{{{{
{{{{{{{{
{

𝜕𝑢0
𝜕𝑥

𝜕V0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕V0
𝜕𝑥

}}}}}}}}
}}}}}}}}
}

,

{{{{{
{{{{{
{

𝜖(1)𝑥𝑥

𝜖(1)𝑦𝑦

𝛾(1)𝑥𝑦

}}}}}
}}}}}
}

=

{{{{{{{{{
{{{{{{{{{
{

𝜕𝜃𝑥
𝜕𝑥

𝜕𝜃𝑦

𝜕𝑦

𝜕𝜃𝑥
𝜕𝑦

+
𝜕𝜃𝑦

𝜕𝑥

}}}}}}}}}
}}}}}}}}}
}

,

{{{{{
{{{{{
{

𝜖(3)𝑥𝑥

𝜖(3)𝑦𝑦

𝛾(3)𝑥𝑦

}}}}}
}}}}}
}

= −𝑐1

{{{{{{{{{
{{{{{{{{{
{

𝜕𝜃𝑥
𝜕𝑥

+
𝜕2𝑤0
𝜕𝑥2

𝜕𝜃𝑦

𝜕𝑦
+

𝜕2𝑤0
𝜕𝑦2

𝜕𝜃𝑥
𝜕𝑦

+
𝜕𝜃𝑦

𝜕𝑥
+ 2

𝜕2𝑤0
𝜕𝑥𝜕𝑦

}}}}}}}}}
}}}}}}}}}
}

,

{
{
{

𝛾(0)𝑥𝑧

𝛾(0)𝑦𝑧

}
}
}

=

{{{
{{{
{

𝜕𝑤0
𝜕𝑥

+ 𝜃𝑥

𝜕𝑤0
𝜕𝑦

+ 𝜃𝑦

}}}
}}}
}

;
{
{
{

𝛾(2)𝑥𝑧

𝛾(2)𝑦𝑧

}
}
}

= −𝑐2

{{{
{{{
{

𝜕𝑤0
𝜕𝑥

+ 𝜃𝑥

𝜕𝑤0
𝜕𝑦

+ 𝜃𝑦

}}}
}}}
}

(14)

and 𝑐1 = 4/3ℎ2, 𝑐2 = 3𝑐1.
A laminate can be manufactured from orthotropic layers

(or plies) of preimpregnated unidirectional fibrous composite
materials. Neglecting 𝜎𝑧 for each layer, the stress-strain
relations in the fiber local coordinate system can be expressed
as

{{{{{
{{{{{
{

𝜎1
𝜎2
𝜏12
𝜏23
𝜏31

}}}}}
}}}}}
}

=

[
[
[
[
[

[

𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄33 0 0
0 0 0 𝑄44 0
0 0 0 0 𝑄55

]
]
]
]
]

]

{{{{{
{{{{{
{

𝜀1
𝜀2
𝛾12
𝛾23
𝛾31

}}}}}
}}}}}
}

, (15)

where subscripts 1 and 2 are, respectively, the fiber and the
normal to fiber in-plane directions, 3 is the direction normal
to the plate, and the reduced stiffness components, 𝑄𝑖𝑗, are
given by

𝑄11 =
𝐸1

1 − ]12]21
𝑄22 =

𝐸2
1 − ]12]21

𝑄12 = ]21𝑄11 𝑄33 = 𝐺12

𝑄44 = 𝐺23 𝑄55 = 𝐺31

]21 = ]12
𝐸2
𝐸1

,

(16)

in which 𝐸1, 𝐸2, ]12, 𝐺12, 𝐺23, and 𝐺31 are materials proper-
ties of the lamina.

By performing adequate coordinate transformation, the
stress-strain relations in the global 𝑥-𝑦-𝑧 coordinate system
can be obtained as

{{{{{
{{{{{
{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
𝜏𝑦𝑧
𝜏𝑧𝑥

}}}}}
}}}}}
}

=

[
[
[
[
[
[

[

𝑄11 𝑄12 𝑄16 0 0

𝑄12 𝑄22 𝑄26 0 0

𝑄16 𝑄26 𝑄66 0 0

0 0 0 𝑄44 𝑄45
0 0 0 𝑄45 𝑄55

]
]
]
]
]
]

]

{{{{{
{{{{{
{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑧𝑥

}}}}}
}}}}}
}

. (17)

The third-order theory of Hardy [15, 16] satisfies zero
transverse shear stresses on the bounding planes.
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The equations of motion of the third-order theory are
derived from the principle of virtual displacements:

𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 𝐼0

𝜕2𝑢0
𝜕𝑡2

+ 𝐽1
𝜕2𝜃𝑥
𝜕𝑡2

− 𝑐1𝐼3
𝜕2

𝜕𝑡2
(
𝜕𝑤0
𝜕𝑥

) ,

𝜕𝑁𝑥𝑦

𝜕𝑥
+

𝜕𝑁𝑦𝑦

𝜕𝑦
= 𝐼0

𝜕2V0
𝜕𝑡2

+ 𝐽1
𝜕2𝜃𝑦

𝜕𝑡2
− 𝑐1𝐼3

𝜕2

𝜕𝑡2
(
𝜕𝑤0
𝜕𝑦

) ,

𝜕𝑄𝑥
𝜕𝑥

+
𝜕𝑄𝑦

𝜕𝑦
+ 𝑐1(

𝜕2𝑃𝑥𝑥
𝜕𝑥2

+ 2
𝜕2𝑃𝑥𝑦

𝜕𝑥 𝜕𝑦
+

𝜕2𝑃𝑦𝑦

𝜕𝑦2
) + 𝑞

= 𝐼0
𝜕2𝑤0
𝜕𝑡2

− 𝑐1𝐼6
𝜕2

𝜕𝑡2
(
𝜕2𝑤0
𝜕𝑥2

+
𝜕2𝑤0
𝜕𝑦2

)

+ 𝑐1 [𝐼3
𝜕2

𝜕𝑡2
(
𝜕𝑢0
𝜕𝑥

+
𝜕V0
𝜕𝑦

) + 𝐽4
𝜕2

𝜕𝑡2
(
𝜕𝜃𝑥
𝜕𝑥

+
𝜕𝜃𝑦

𝜕𝑦
)] ,

𝜕𝑀𝑥𝑥
𝜕𝑥

+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 =

𝜕2

𝜕𝑡2
(𝐽1𝑢0 + 𝐾2𝜃𝑥 − 𝑐1𝐽4

𝜕𝑤0
𝜕𝑥

) ,

𝜕𝑀𝑥𝑦

𝜕𝑥
+

𝜕𝑀𝑦𝑦

𝜕𝑦
− 𝑄𝑦 =

𝜕2

𝜕𝑡2
(𝐽1V0 + 𝐾2𝜃𝑦 − 𝑐1𝐽4

𝜕𝑤0
𝜕𝑦

) ,

(18)

where 𝑞 is the external distributed load and with

𝑀𝛼𝛽 = 𝑀𝛼𝛽 − 𝑐1𝑃𝛼𝛽; 𝑄𝛼 = 𝑄𝛼 − 𝑐2𝑅𝛼,

𝐼𝑖 =
𝑁

∑
𝑘=1

∫
𝑘+1

𝑘

𝜌
(𝑘)

(𝑧)
𝑖
𝑑𝑧, (𝑖 = 0, 1, 2, . . . , 6) ,

𝐽𝑖 = 𝐼𝑖 − 𝑐1𝐼𝑖+2 (𝑖 = 1, 4) ,

𝐾2 = 𝐼2 − 2𝑐1𝐼4 + 𝑐
2
1 𝐼6, 𝑐1 =

4

3ℎ2
, 𝑐2 = 4ℎ

2
= 3𝑐1,

(19)

where 𝛼, 𝛽 take the symbols 𝑥, 𝑦. The resultants (𝑁𝑥𝑥, 𝑁𝑦𝑦,
𝑁𝑥𝑦) denote the in-plane force resultants, (𝑀𝑥𝑥,𝑀𝑦𝑦,𝑀𝑥𝑦)
themoment resultants, (𝑄𝑥, 𝑄𝑦) the shear resultants and (𝑃𝑥𝑥,
𝑃𝑦𝑦, 𝑃𝑥𝑦) and (𝑅𝑥, 𝑅𝑦) denote the higher-order stress resul-
tants:

{
{
{

𝑁𝛼𝛽
𝑀𝛼𝛽
𝑃𝛼𝛽

}
}
}

= ∫
ℎ/2

−ℎ/2

𝜎𝛼𝛽
{
{
{

1
𝑧

𝑧3

}
}
}

𝑑𝑧,

{
𝑄𝛼
𝑅𝛼

} = ∫
ℎ/2

−ℎ/2

𝜎𝛼𝑧 {
1

𝑧2
}𝑑𝑧,

(20)

where 𝛼, 𝛽 take the symbols 𝑥, 𝑦.
If needed, the first-order shear deformation theory equa-

tions are readily obtained from the third-order equations, just
by putting 𝑐1 = 0.

4. Numerical Examples

The eigenvalues presented in this problem are expressed in
terms of the nondimensional frequency parameter 𝜆 = (𝜔𝑏2/

Table 1: Convergence study of frequency parameters, 𝜆 = (𝜔𝑏2/𝜋2)

(𝜌𝑡/𝐷)1/2 for rectangular isotropic plates with SSSS boundaries,
ℎ/𝑎 = 0.001, 𝑏/𝑎 = 1.0.

Mode 𝑁 = 21 𝑁 = 25 𝑁 = 30 Liew et al. [3]
1 2.0146 2.0089 2.0087 2.0000
2 5.0630 5.0343 5.0218 5.0000
3 5.0644 5.0371 5.0255 5.0000
4 8.1648 8.0717 8.0508 7.9999
5 9.8773 9.9908 10.0138 9.9998
6 10.2520 10.2462 10.0472 9.9998
7 12.7965 12.9815 13.0339 12.9997
8 12.8308 13.1027 13.0579 12.9997

Table 2: Convergence study of frequency parameters, 𝜆 = (𝜔𝑏2/𝜋2)

(𝜌𝑡/𝐷)1/2 for rectangular isotropic plates with SSSS boundaries,
ℎ/𝑎 = 0.2, 𝑏/𝑎 = 1.0.

Mode 𝑁 = 11 𝑁 = 15 𝑁 = 21 Liew et al. [3]
1 1.7725 1.7700 1.7688 1.7659
2 3.8769 3.8717 3.8698 3.8576
3 3.8770 3.8717 3.8699 3.8576
4 5.6201 5.6063 5.6009 5.5729
5 6.5939 6.6093 6.6149 6.5809
6 6.6098 6.6127 6.6153 6.5809
7 8.0235 8.0092 8.0044 7.9470
8 8.0250 8.0099 8.0046 7.9470

Table 3: Convergence study of frequency parameters, 𝜆 = (𝜔𝑏2/𝜋2)

(𝜌𝑡/𝐷)1/2 for rectangular isotropic plates with SSSS boundaries,
ℎ/𝑎 = 0.001, 𝑏/𝑎 = 2.5.

Mode 𝑁 = 21 𝑁 = 25 𝑁 = 30 Liew et al. [3]
1 1.2528 1.1294 1.1511 1.1600
2 1.7969 1.5886 1.6694 1.6400
3 3.5791 2.4060 2.4977 2.4400
4 4.1586 2.8928 3.7214 3.5600
5 4.1586 4.5265 4.4835 4.1600
6 6.1938 5.4430 5.1762 4.6400
7 6.2026 5.7588 7.0559 5.0000
8 6.2026 6.4153 7.5293 5.4399

𝜋2)(𝜌𝑡/𝐷)1/2. Unlike first-order shear deformation theories
the present approach does not incorporate shear correction
factors in the constitutivematrix.ThePoisson ratio, ], is taken
to be 0.3 throughout the present problem. Figure 1 illustrates
the grid scheme for 11 × 11 points.

In Tables 1, 2, 3, 4, 5, and 6 we compare the present
results with those of Liew et al. [3]. We consider here simply
supported (SSSS) and clamped (CCCC) boundary conditions
in all edges, thin and thick plates and square and rectangular
plates. The results obtained in Tables 1 to 6 show that the
present method presents very close results to those proposed
by Liew et al. [3]. However, for thin plates we need more
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Figure 1: 11 × 11 regular grid for discretization of the square laminated plate.

Table 4: Convergence study of frequency parameters, 𝜆 = (𝜔𝑏2/𝜋2)

(𝜌𝑡/𝐷)1/2 for rectangular isotropic plates with SSSS boundaries,
ℎ/𝑎 = 0.2, 𝑏/𝑎 = 2.5.

Mode 𝑁 = 11 𝑁 = 15 𝑁 = 21 Liew et al. [3]
1 1.0699 1.0722 1.0732 1.0741
2 1.4836 1.4789 1.4702 1.4768
3 2.1267 2.1114 2.1041 2.1059
4 2.9901 2.9429 2.9328 2.9145
5 3.3120 3.3224 3.3288 3.3191
6 3.6449 3.6403 3.6375 3.6306
7 4.0418 3.9265 3.9239 3.8576
8 4.1796 4.1508 4.1451 4.1281

Table 5: Convergence study of frequency parameters, 𝜆 = (𝜔𝑏2/𝜋2)

(𝜌𝑡/𝐷)1/2 for rectangular isotropic plates with CCCC boundaries,
ℎ/𝑎 = 0.001, 𝑏/𝑎 = 1.0.

Mode 𝑁 = 15 𝑁 = 21 𝑁 = 25 Liew et al. [3]
1 3.9078 3.7202 3.6892 3.6460
2 8.5057 7.7031 7.5817 7.4362
3 8.5057 7.7032 7.5818 7.4362
4 14.7680 11.9358 11.4953 10.9643
5 15.8127 13.7424 13.5536 13.3315
6 17.1194 14.0909 13.7236 13.3947
7 25.6747 18.6394 17.7457 16.7173
8 25.6747 18.6396 17.7458 16.7173

points than in thick plates in order to get convergent and
accurate frequencies.The reason for this behaviour lies in the
worse conditioning of thin plates. In Liew et al. [3] thin plates
also showed slower convergence.

Table 6: Convergence study of frequency parameters, 𝜆 = (𝜔𝑏2/𝜋2)

(𝜌𝑡/𝐷)1/2 for rectangular isotropic plates with CCCC boundaries,
ℎ/𝑎 = 0.2, 𝑏/𝑎 = 1.0.

Mode 𝑁 = 11 𝑁 = 15 𝑁 = 21 Liew et al. [3]
1 2.5935 2.5956 2.5976 2.6803
2 4.5153 4.5295 4.5366 4.6744
3 4.5153 4.5295 4.5366 4.6744
4 6.0888 6.1042 6.1166 6.2748
5 6.9553 6.9909 7.0045 7.1481
6 7.0281 7.0730 7.0833 7.2466
7 8.2813 8.3096 8.3290 8.4803
8 8.2813 8.3096 8.3290 8.4803

In Tables 7 and 8 we analyse thin and thick plates for
SSSS and CCCC boundaries. Present results are compared
with classical theory of Leissa [4], first-order theory of Dawe
[5], and orthogonal polynomials of Liew et al. [3].The present
method shows very accurate results when compared to Liew
et al. [3] and FSDT of Dawe [5], for both SSSS and CCCC
boundary conditions.

5. Conclusions

Radial basis functions are increasingly popular in the analysis
of science and engineering problems.

In this paper, we use the third-order shear deforma-
tion theory and a collocation technique with polyharmonic
splines to predict natural frequencies of moderately thick
isotropic plates.The natural frequencies of vibration are com-
puted for various plates and compared with some available
published results. The formulation for higher-order plates
and their interpolation with polyharmonic splines has been
presented.
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Table 7: Comparison study of frequency parameters, 𝜆 = (𝜔𝑏2/𝜋2)(𝜌𝑡/𝐷)1/2 for square isotropic plates with SSSS boundaries.

𝑡/𝑏 Method of solution Mode
(1, 1) (1, 2) (2, 1) (2, 2) (1, 3) (3, 1)

0.01

Classical theory [4] 2.000 5.000 5.000 8.000 10.000 10.000
FSDT, Ritz method [5] 1.999 4.995 4.995 7.998 9.981 9.981

Orthogonal polynomials [3] 1.999 4.995 4.995 7.998 9.981 9.981
Present, grid = 11 × 11 1.9695 5.1285 5.1286 7.9350 10.4481 10.4689
Present, grid = 15 × 15 1.9950 5.0563 5.0563 8.0279 10.1396 10.1719
Present, grid = 21 × 21 1.9997 5.0189 5.0189 8.0180 10.0261 10.0464

0.1

Classical theory [4] 2.000 5.000 5.000 8.000 10.000 10.000
3D analysis [6] 1.934 4.662 4.622 7.103 8.662 8.662

FSDT, Ritz method [5] 1.931 4.605 4.605 7.064 8.605 8.605
Orthogonal polynomials [3] 1.931 4.605 4.605 7.064 8.605 8.605

Present, grid = 11 × 11 1.9387 4.6608 4.6608 7.1929 8.7181 8.7134
Present, grid = 15 × 15 1.9386 4.6448 4.6448 7.1589 8.7070 8.7134
Present, grid = 21 × 21 1.9376 4.6394 4.6394 7.1449 8.7091 8.7110

Table 8: Comparison study of frequency parameters, 𝜆 = (𝜔𝑏2/𝜋2)(𝜌𝑡/𝐷)1/2 for square isotropic plates with CCCC boundaries, ℎ/𝑎 = 0.1.

Mode 𝑁 = 7 𝑁 = 11 𝑁 = 15 CPT [4] FSDT (Ritz) [5] Liew et al. [3]
1, 1 3.2900 3.2478 3.2461 3.646 3.297 3.297 3.292
1, 2 6.2129 6.1577 6.1648 7.436 6.290 6.290 6.276
2, 1 6.2129 6.1577 6.1648 7.436 6.290 6.290 6.276
2, 2 8.8256 8.6192 8.6169 10.964 8.837 8.842 8.792
1, 3 9.8350 10.0951 10.1473 13.333 10.376 10.376 10.356
3, 1 9.9634 10.2240 10.2712 13.395 10.465 10.461 10.455

Through numerical experiments, the capability and effi-
ciency of the present method for eigenvalue problems are
demonstrated, and the numerical accuracy and convergence
are thoughtfully examined.

When compared to other RBFs, polyharmonic splines
show good stability and accuracy.However, propermodelling
of plates should consider both a good numerical technique
and an adequate shear deformation theory.

References

[1] R. L. Hardy, “Multiquadric equations of topography and other
irregular surfaces,” Journal of Geophysical Research, vol. 176, pp.
1905–1915, 1971.

[2] E. J. Kansa, “Multiquadrics—a scattered data approximation
scheme with applications to computational fluid-dynamics—
I. Surface approximations and partial derivative estimates,”
Computers &Mathematics with Applications, vol. 19, no. 8-9, pp.
127–145, 1990.

[3] K. M. Liew, K. C. Hung, and M. K. Lim, “Vibration of mindlin
plates using boundary characteristic orthogonal polynomials,”
Journal of Sound and Vibration, vol. 182, no. 1, pp. 77–90, 1995.

[4] A. W. Leissa, “The free vibration of rectangular plates,” Journal
of Sound and Vibration, vol. 31, pp. 257–293, 1973.

[5] D. J. Dawe, “Buckling and vibration of plate structures including
shear deformation and related effects,” inAspects of the Analysis
of Plate Structures, pp. 73–99, Clarendon Press, Oxford, UK,
1985.

[6] S. Srinivas, “A refined analysis of composite laminates,” Journal
of Sound and Vibration, vol. 30, no. 4, pp. 495–507, 1973.

[7] E. Reissner, “A consistment treatment of transverse shear
deformations in laminated anisotropic plates,” AIAA Journal,
vol. 10, no. 5, pp. 716–718, 1972.

[8] J. N. Reddy, Mechanics of Laminated Composite Plates: Theory
and Analysis, CRC Press, Boca Raton, Fla, USA, 1997.

[9] E. Reissner and Y. Stavsky, “Bending and stretching of certain
types of heterogeneous aeolotropic elastic plates,” Journal of
Applied Mechanics, vol. 28, pp. 402–408, 1961.

[10] Y. Stavsky, “Bending and stretching of laminated aelotropic
plates,” Journal of EngineeringMechanics, vol. 87, pp. 31–56, 1961.

[11] S. B. Dong, K. S. Pister, and R. L. Taylor, “On the theory of
laminated anisotropic plates and shells,” Journal of Aeronautical
Science, vol. 29, no. 8, pp. 969–975, 1962.

[12] P. C. Yang, C. H. Norris, and Y. Stavsky, “Elastic wave propaga-
tion in heterogeneous plates,” International Journal of Solids and
Structures, vol. 2, no. 4, pp. 665–684, 1966.

[13] S. A. Ambartsumyan, Theory of Anisotropic Plates, Technomic,
Stamford, Conn, USA, 1969.

[14] J. M. Whitney and A. W. Leissa, “Analysis of heterogeneous
anisotropic plates,” Journal of Applied Mechanics, vol. 36, no. 2,
pp. 261–266, 1969.

[15] J. N. Reddy, “A simple higher-order theory for laminated com-
posite plates,” Journal of AppliedMechanics, ASMETransactions,
vol. 51, no. 4, pp. 745–752, 1984.

[16] J. N. Reddy, “A refined nonlinear theory of plates with transverse
shear deformation,” International Journal of Solids and Struc-
tures, vol. 20, no. 9-10, pp. 881–896, 1984.



Journal of Applied Mathematics 7

[17] B. N. Pandya and T. Kant, “Higher-order shear deformable the-
ories for flexure of sandwich plates—finite element evaluations,”
International Journal of Solids and Structures, vol. 24, pp. 1267–
1286, 1988.

[18] G. Akhras, M. S. Cheung, and W. Li, “Finite strip analysis
of anisotropic laminated composite plates using higher-order
shear deformation theory,” Computers and Structures, vol. 52,
no. 3, pp. 471–477, 1994.

[19] E. Carrera, “C0 reissner-mindlin multilayered plate elements
including zig-zag and interlaminar stress continuity,” Interna-
tional Journal for Numerical Methods in Engineering, vol. 39, no.
11, pp. 1797–1820, 1996.

[20] Y. C. Hon, M. W. Lu, W. M. Xue, and Y. M. Zhu, “Multiquadric
method for the numerical solution of a biphasicmixturemodel,”
AppliedMathematics and Computation, vol. 88, no. 2-3, pp. 153–
175, 1997.

[21] Y.-C. Hon, K. F. Cheung, X.-Z. Mao, and E. J. Kansa, “Mul-
tiquadric solution for shallow water equations,” Journal of
Hydraulic Engineering, vol. 125, no. 5, pp. 524–533, 1999.

[22] J. G. Wang, G. R. Liu, and P. Lin, “Numerical analysis of Biot’s
consolidation process by radial point interpolation method,”
International Journal of Solids and Structures, vol. 39, no. 6, pp.
1557–1573, 2002.

[23] G. R. Liu and Y. T. Gu, “A local radial point interpolation
method (LRPIM) for free vibration analyses of 2-D solids,”
Journal of Sound and Vibration, vol. 246, no. 1, pp. 29–46, 2001.

[24] J. G. Wang and G. R. Liu, “A point interpolation meshless
method based on radial basis functions,” International Journal
for Numerical Methods in Engineering, vol. 54, no. 11, pp. 1623–
1648, 2002.

[25] J. G. Wang and G. R. Liu, “On the optimal shape parameters
of radial basis functions used for 2-D meshless methods,”
Computer Methods in Applied Mechanics and Engineering, vol.
191, no. 23-24, pp. 2611–2630, 2002.

[26] X. L. Chen, G. R. Liu, and S. P. Lim, “An element free Galerkin
method for the free vibration analysis of composite laminates
of complicated shape,” Composite Structures, vol. 59, no. 2, pp.
279–289, 2003.

[27] K. Y. Dai, G. R. Liu, K. M. Lim, and X. L. Chen, “A mesh-free
method for static and free vibration analysis of shear deformable
laminated composite plates,” Journal of Sound and Vibration,
vol. 269, no. 3–5, pp. 633–652, 2004.

[28] G. R. Liu and X. L. Chen, “Buckling of symmetrically laminated
composite plates using the element-free galerkin method,”
International Journal of Structural Stability and Dynamics, vol.
2, pp. 281–294, 2002.

[29] K. M. Liew, X. L. Chen, and J. N. Reddy, “Mesh-free radial basis
functionmethod for buckling analysis of non-uniformly loaded
arbitrarily shaped shear deformable plates,” Computer Methods
in AppliedMechanics and Engineering, vol. 193, no. 3–5, pp. 205–
224, 2004.

[30] Y. Q. Huang and Q. S. Li, “Bending and buckling analysis
of antisymmetric laminates using the moving least square
differential quadrature method,” Computer Methods in Applied
Mechanics and Engineering, vol. 193, no. 33-35, pp. 3471–3492,
2004.

[31] L. Liu, G. R. Liu, and V. B. C. Tan, “Element free method for
static and free vibration analysis of spatial thin shell structures,”
Computer Methods in Applied Mechanics and Engineering, vol.
191, no. 51-52, pp. 5923–5942, 2002.

[32] A. J. M. Ferreira, “A formulation of themultiquadric radial basis
functionmethod for the analysis of laminated composite plates,”
Composite Structures, vol. 59, no. 3, pp. 385–392, 2003.

[33] A. J. M. Ferreira, “Thick composite beam analysis using a
global meshless approximation based on radial basis functions,”
Mechanics of Advanced Materials and Structures, vol. 10, no. 3,
pp. 271–284, 2003.

[34] A. J. M. Ferreira, C. M. C. Roque, and P. A. L. S. Martins, “Anal-
ysis of composite plates using higher-order shear deformation
theory and a finite point formulation based on themultiquadric
radial basis function method,” Composites Part B, vol. 34, no. 7,
pp. 627–636, 2003.

[35] A. J. M. Ferreira, C. M. C. Roque, and R. M. N. Jorge, “Free
vibration analysis of symmetric laminated composite plates by
FSDT and radial basis functions,” Computer Methods in Applied
Mechanics and Engineering, vol. 194, no. 39–41, pp. 4265–4278,
2005.

[36] L. M. J. S. Dinis, R. M. Natal Jorge, and J. Belinha, “Analysis of
plates and laminates using the natural neighbour radial point
interpolation method,” Engineering Analysis with Boundary
Elements, vol. 32, no. 3, pp. 267–279, 2008.

[37] P. Xia, S. Y. Long, H. X. Cui, and G. Y. Li, “The static and free
vibration analysis of a nonhomogeneous moderately thick plate
using the meshless local radial point interpolation method,”
Engineering Analysis with Boundary Elements, vol. 33, no. 6, pp.
770–777, 2009.

[38] P. Zhu and K. M. Liew, “Free vibration analysis of moderately
thick functionally graded plates by local Kriging meshless
method,” Composite Structures, vol. 93, no. 11, pp. 2925–2944,
2011.

[39] L. M. J. S. Dinis, R. M. N. Jorge, and J. Belinha, “Static and
dynamic analysis of laminated plates based on an unconstrained
third order theory and using a radial point interpolator mesh-
less method,” Computers and Structures, vol. 89, no. 19-20, pp.
1771–1784, 2011.

[40] B. Chinnaboon, S. Chucheepsakul, and J. T. Katsikadelis,
“A BEM-based domain meshless method for the analysis of
Mindlin plates with general boundary conditions,” Computer
Methods in AppliedMechanics and Engineering, vol. 200, no. 13–
16, pp. 1379–1388, 2011.

[41] K. M. Liew, X. Zhao, and A. J. M. Ferreira, “A review of
meshless methods for laminated and functionally graded plates
and shells,” Composite Structures, vol. 93, no. 8, pp. 2031–2041,
2011.

[42] J. Belinha, L. M. J. S. Dinis, and R. M. Natal Jorge, “The natural
radial element method,” International Journal for Numerical
Methods in Engineering, vol. 93, no. 12, pp. 1286–1313, 2013.

[43] W. R.Madych and S. A. Nelson, “Multivariate interpolation and
conditionally positive definite functions—II,” Mathematics of
Computation, vol. 54, no. 189, pp. 211–230, 1990.

[44] J. Yoon, “Spectral approximation orders of radial basis function
interpolation on the Sobolev space,” SIAM Journal on Mathe-
matical Analysis, vol. 33, no. 4, pp. 946–958, 2001.

[45] H. Wendland, “Error estimates for interpolation by compactly
supported radial basis functions of minimal degree,” Journal of
Approximation Theory, vol. 93, no. 2, pp. 258–272, 1998.

[46] M. D. Buhmann, “Radial basis functions,” Acta Numerica, vol.
9, pp. 1–38, 2000.


