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Two strategies for estimating open boundary conditions (OBCs) with adjoint method are compared by carrying out semi-idealized
numerical experiments. In the first strategy, the OBC is assumed to be partly space varying and generated by linearly interpolating
the values at selected feature points. The advantage is that the values at feature points are taken as control variables so that the
variations of the curves can be reproduced by theminimumnumber of points. In the second strategy, theOBC is assumed to be fully
space varying and the values at every open boundary points are taken as control variables. A series of semi-idealized experiments
are carried out to compare the effectiveness of two inversion strategies.The results demonstrate that the inversion effect is in inverse
proportion to the number of feature points which characterize the spatial complexity of open boundary forcing. The effect of ill-
posedness of inverse problem will be amplified if the observations contain noises. The parameter estimation problems with more
control variables will be much more sensitive to data noises, and the negative effects of noises can be restricted by reducing the
number of control variables. This work provides a concrete evidence that ill-posedness of inverse problem can generate wrong
parameter inversion results and produce an unreal “good data fitting.”

1. Introduction

The tides and tidal currents are the basic motion forms of
ocean water and play an important role in the research on
other processes, such as the storm surge, the circulation
and the estuarine dynamics [1, 2]. For tidal models, open
boundary conditions (OBCs) are one of the most important
parameters, which are determined by the physics of tides
and tidal currents. Therefore, how to obtain reasonable and
accurate OBCs for regional tidal models has been a subject
of ongoing research. Data assimilation methods have been
commonly used to optimize the open boundary conditions
[3–7].

Data assimilation methods, especially the complex ones
like four-dimensional variational (4DVAR), are developed
on the base of rigorous mathematical theories, such as
inverse problem theory and optimal control theory. The

ultimate purpose of applying data assimilation method is to
reduce the data misfit between model results and various
observations, by either improving the models or dynamically
interpolating the observations. Among all the data assim-
ilation methods, the 4DVAR is one of the most effective
and powerful approaches. It is based on the optimal control
methods and perturbation theory [8, 9]. This technique
allows us to retrieve an optimal data for a given model from
heterogeneous observation fields [9]. It is an advanced data
assimilation method which involves the adjoint method and
has the advantage of directly assimilating various observa-
tions distributed in time and space into numerical models
while maintaining dynamical and physical consistency with
the model. The adjoint method is a powerful tool for
parameter estimation. Navon [10] presented an important
overview on the state of the art of parameter estimation
in meteorology and oceanography in view of application of
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4DVAR data assimilation techniques to inverse parameter
estimation problems. Zhang and Lu [7] studied the parameter
estimation problems with a three-dimensional tidal model
with 4DVAR and also summarized relative works. More
recently, Kazantsev [9] briefly revealed the history of data
assimilation starting from Lorenz’s pioneering work and then
deeply studied the sensitivity of a shallow-water model to
parameters by applying adjoint based technique.

For parameter estimation problems, it is of great impor-
tance to reasonably reduce the number of spatially varying
control variables because of the ill-posedness of inverse
problem. As noted by Yeh in the work of ground water
flow parameter estimation, the inverse or parameter esti-
mation problem is often ill-posed and beset by instability
and nonuniqueness, particularly if one seeks parameters dis-
tributed in space and time domain [11]. The same viewpoint
has been put forward by references [12–16]. Consequently,
how to reduce the number of parameters to be estimated
became an important aspect needing to draw attention to
[13–17]. In this work two strategies for inverting the open
boundary conditions with adjoint method are compared by
carrying out semi-idealized numerical experiments. In the
first strategy, the OBC is assumed to be partly space varying
and generated by linearly interpolating the values at selected
feature points. The feature points are selected by calculating
the second-order derivatives of discrete curves and the values
at selected feature points are taken as control variables to be
estimated. The advantage is that most of the variations of the
curves can be reproduced by theminimumnumber of points.
In the second strategy, the OBC is assumed to be fully space
varying and the values at every open boundary points are
taken as control variables.

This paper is organized as follows. The 2D tidal model
with adjoint is briefly described in Section 2. The two inver-
sion strategies are developed in Section 3. A series of semi-
idealized numerical experiments are carried out and the
results are analyzed and discussed in Section 4. Conclusions
in Section 5 complete the paper.

2. The Adjoint Tidal Model

2.1. The 2D Tidal Model. The governing equations for the
tides used in the present study are the vertically integrated
equations of continuity and momentum:
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where 𝑡 is time; 𝜆 and 𝜙 are the east longitude and north
latitude, respectively; 𝜁 is the sea surface elevation above
the undisturbed sea level; 𝑢 and V are the east and north
components of fluid velocity, respectively, 𝜁 is the adjusted

height of equilibrium tides; 𝑅 is the radius of the earth,
𝑎 = 𝑅 cos𝜙; 𝑓 = 2Ω sin𝜙, where Ω represents the angular
speed of earth rotation; 𝑔 is the acceleration due to gravity,
ℎ is the undisturbed water depth and 𝐻 = ℎ + 𝜁 denotes
the total water depth; 𝐴 is the coefficient of horizontal
eddy viscosity; Δ is the Laplace operator and Δ(𝑢, V) =

𝑎
−1
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and north components of bottom friction terms, respectively,
and their expressions are given in quadratic form:
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2.2. The Adjoint. The general idea of the adjoint method
is described as follows. First, a model is defined by an
algorithm and its independent variables such as initial con-
ditions, boundary conditions, and empirical parameters. The
cost function which measures the data misfit between the
modeling results andobservations is thenminimized through
optimizing the control variables. In detail, the cost function
decreases along the opposite direction of the gradients with
respect to the control variables, and this gradient is calculated
by what has become known as the adjoint model. In order to
construct the adjoint equations, the cost function is defined
as
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where 𝜁 is the observations of surface elevation; Ω𝑇,𝑆 stands
for the whole integration area of time and space; 𝜇, ], and 𝜏
are the adjoint variables (namely, Lagrangian multipliers) of
𝑢, V, and 𝜁, respectively. Based on the theory of Lagrangian
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Figure 1: Example of discrete curves and their feature points. GP stands for general points and FP indicates feature points.

multipliermethod, we have the following first-order derivates
of Lagrangian functionwith respect to all themodel variables:
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Equations (5b) give the original governing (1) and the adjoint
equations can be developed from (5a). In (5c), 𝑎 and 𝑏 are the
Fourier coefficients along the open boundary and𝐶𝑄 denotes
the bottom friction coefficients. From (5c) we can obtain the
optimization formulae of model parameters.

Based on (5a) the adjoint equations can be obtained as
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where Ψ(𝑖, 𝑗) (1 ≤ 𝑖 ≤ 3, 1 ≤ 𝑗 ≤ 2) is a matrix whose
components denote the adjoint terms of bottom friction.The
components of Ψ for the quadratic parameterizations are
given as
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Thenumerical schemes for the forwardmodel and the adjoint
model in this section are both based on Lu andZhang [17] and
Zhang et al. [18].

3. Methodology

3.1. Feature Points of a Curve. If the values of OBCs are
plotted versus the location or index of grid points along open
boundaries, they will form a discretized curve. Without loss
of generality, the curve can be presented by Figure 1. Assume
there are 𝑁 general (or, computational) points along open
boundaries with index of GP(𝑘), 𝑘 = 1, 2, . . . , 𝑁. This type
of curve can be approximately linearly expressed by a certain
series of points which are defined as feature points in this
paper. For the curve shown in Figure 1, one can easily obtain
the feature points as indicated by symbol “+.” Assume the
number of feature points is 𝑀 with index of FP(𝑗), 𝑗 =

1, 2, . . . ,𝑀. Further assuming the feature point with index
of 𝑗 is coincident with the general point with index of II(𝑗),
we can obtain the following relation: II(1) = 1, II(𝑀) = 𝑁,
II(𝑗) = 𝑘, 2 < 𝑘 < 𝑁 − 1.
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It is easy to conclude that any general point can be linearly
expressed by two adjacent feature points. For example, as
shown in Figure 1, an arbitrary general point GP(𝑘) locates
between two adjacent feature points FP(𝑗 − 1) and FP(𝑗),
where II(𝑗 − 1) ≤ 𝑘 ≤ II(𝑗). Through linear interpolation,
we can obtain the value of GP(𝑘) as

GP (𝑘)

=
II (𝑗) − 𝑘

II (𝑗) − II (𝑗 − 1)
FP (𝑗 − 1) +

𝑘 − II (𝑗 − 1)
II (𝑗) − II (𝑗 − 1)

FP (𝑗) .

(8)

For the whole curve (or the whole boundary), the relation
between general points and feature points can be similarly
expressed in matrix form as

VGP =WFG × VFP, (9)

whereVGP andVFP are both column vectors with dimensions
of𝑁 and𝑀, respectively, andWFG is the weighting matrix of
linear interpolation with dimensions of𝑁 ×𝑀. The detailed
forms of three matrixes are given as
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𝑀 columns, 𝑁 rows

, (12)

where the nonzero components are the linear interpolation
coefficients. Specifically, without loss of generality,

𝑤II(𝑗),𝑗 = 1.0, 𝑗 = 1, 2, . . . ,𝑀, (13a)

𝑤II(𝑗−1)+𝑚,𝑗−1 =
II (𝑗) − II (𝑗 − 1) − 𝑚
II (𝑗) − II (𝑗 − 1)

,

1 ≤ 𝑚 < II (𝑗) − II (𝑗 − 1) ,

(13b)

𝑤II(𝑗−1)+𝑚,𝑗 =
𝑚

II (𝑗) − II (𝑗 − 1)
,

1 ≤ 𝑚 < II (𝑗) − II (𝑗 − 1) .
(13c)

Using (9), any general points along open boundaries can
be highly approximated through the linear interpolation of

selected feature points. It indicates that the OBC identifica-
tion problem can be transformed to seek the values of a few
selected feature points, which reduces the number of control
variables.

3.2. Selection of Feature Points for Periodic Tidal Open Bound-
ary. Along a certain open boundary, we also assume that
there are 𝑁 general grid points. The height of water level 𝜁
at the 𝑛th time step is given by

𝜁
𝑛

GP(𝑘) = 𝑎0 + [𝑎GP(𝑘) cos (𝜔𝑛Δ𝑡) + 𝑏GP(𝑘) sin (𝜔𝑛Δ𝑡)] , (14)

whereGP(𝑘) stands for the general points of open boundaries
and 1 ⩽ 𝑘 ⩽ 𝑁, 𝜔 is the frequency of𝑀2 constituent, 𝑎GP(𝑘)
and 𝑏GP(𝑘) are the Fourier coefficients at GP(𝑘), Δ𝑡 is the time
step of computation.
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For regional tidal models the values of 𝑎GP(𝑘) and 𝑏GP(𝑘)
can be obtained from large scale numerical models. It should
be noted 𝑎GP(𝑘) and 𝑏GP(𝑘) are space dependent, and therefore
the variations of their values versus the grids along the open
boundary will constitute two curves (curve 𝑎 and curve 𝑏)
similar to the one shown in Figure 1. The feature points for
this type of curve can be selected by computing the second-
order differential of each general point.The detailed selection
procedures are given as follows.

(1) Suppose the absolute values of second-order differen-
tials of general points GP(𝑘) are SD 𝑎(𝑘) for curve 𝑎
and SD 𝑏(𝑘) for curve 𝑏, respectively. For the general
points locating in the middle of curve a and curve b,
that is, 2 ⩽ 𝑘 ⩽ 𝑁 − 1, SD 𝑎(𝑘) and SD 𝑏(𝑘) can be
computed as

SD 𝑎 (𝑘) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎GP(𝑘+1) − 2𝑎GP(𝑘) + 𝑎GP(𝑘−1)

2Δ𝑑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

SD 𝑏 (𝑘) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏GP(𝑘+1) − 2𝑏GP(𝑘) + 𝑏GP(𝑘−1)

2Δ𝑑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(15)

where Δ𝑑 is the size of computation grids and equals
Δ𝑥 or Δ𝑦 according to the direction of open bound-
aries (Δ𝑥 for west-east direction and Δ𝑦 for north-
south direction).

(2) Further define that the “maximum second-order dif-
ferential” for point GP(𝑘) is SD(𝑘).The value of SD(𝑘)
is calculated as

SD (𝑘) = max [SD 𝑎 (𝑘) , SD 𝑏 (𝑘)] . (16)

(3) Define a threshold value of SD(𝑘), 2 ⩽ 𝑘 ⩽ 𝑁 − 1,
to be 𝑇SD. The points with larger values of SD(𝑘)
than 𝑇SD are selected as feature points. The value of
𝑇SD is problem dependent and should be determined
according to the specific requirement on the number
of control variables.

(4) It is easy to understand that the first and the last
general points GP(1) and GP(𝑁) are automatically
selected as feature points indexed as FP(1) and
FP(𝑀).

3.3. Inversion Strategies and Gradients. In this work two
strategies for inverting the open boundary conditions with
adjoint method are compared by carrying out semi-idealized
numerical experiments. In the first strategy the open bound-
ary curves are assumed to be partly space varying and
are generated by linearly interpolating the values at feature
points. The feature points are selected by calculating the
second-order derivatives of discrete curves and the values at
selected feature points are taken as control variables to be
estimated. The advantage is that most of the variations of
the curves can be reproduced by the minimum number of
points. In the second strategy, the OBC is assumed to be fully
space varying and the values at every open boundary point
are taken as control variables.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) meth-
od, which is a quasi-Newton conjugate-gradient algorithm,
has been widely used in the unconstrained inverse prob-
lems and is famous for its efficiency [19, 20]. The limited-
memory BFGS (L-BFGS) algorithm is an adaptation of the
BFGS method to large problem. Zou et al. [20] concluded
that among the tested quasi-Newton methods, the L-BFGS
method had the best performance. In this work L-BFGS
method is employed to optimize the control variables,
namely, the OBCs. In order to perform inversion with L-
BFGS, the gradients of cost function with respect to the
control variables in two strategies have to be calculated.

3.3.1. Gradients for Partly Space Varying Inversion Strategy.
In the first inversion strategy (partly space varying OBC),
feature points for open boundary curves are selected and
the OBCs at general points can be linearly interpolated from
feature points. Consequently, the gradients of cost function
with respect to the Fourier coefficients at feature points
𝑎𝑎FP(𝑗) and 𝑏𝑏FP(𝑗) (𝑎𝑎𝑗 and 𝑏𝑏𝑗 for simplicity, 1 ⩽ 𝑗 ⩽ 𝑀)
have to be computed in order to optimize the OBCs with L-
BFGS. The gradients are deduced from

𝜕𝐿

𝜕𝑎𝑎𝑗

= 0,
𝜕𝐿

𝜕𝑏𝑏𝑗

= 0, 1 ≤ 𝑗 ≤ 𝑀, (17)

which yields
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Figure 2:The bathymetric map of the Bohai, Yellow, and East China Seas (contour) and the position of 𝑇/𝑃 satellite tracks (dot), tidal gauge
stations (plus), and open boundaries (open circle). The numbers are the water depth in meter.

where

𝑇
𝑛

𝑘
= −

𝑔𝜇
𝑛

𝑘

Δ𝑥

(for GP (𝑘) on the right of the area calculated) ,

𝑇
𝑛

𝑘
=

𝑔𝜇
𝑗

𝑘𝑙

Δ𝑥

(for GP (𝑘) on the left of the area calculated) ,

𝑇
𝑛

𝑘
= −

𝑔]𝑛
𝑘

Δ𝑦

(for GP (𝑘) under the area calculated) ,

𝑇
𝑛

𝑘
=
𝑔]𝑛
𝑘

Δ𝑦

(for GP (𝑘) above the area calculated) ,
(19)

where 𝜇 and ] are the adjoint variables of west-east velocity
component 𝑢 and north-south velocity component V, respec-
tively. The values of 𝜇 and ] are computed by running the
adjoint model.

3.3.2. Gradients for Fully Space Varying Inversion Strategy. In
the second strategy, the OBC is assumed to be fully space
varying and the values at every open boundary points (i.e.,
general points) are taken as control variables. Consequently,
the gradients of cost function with respect to the Fourier
coefficients at general points 𝑎𝑎GP(𝑘) and 𝑏𝑏GP(𝑘) (𝑎𝑎𝑘 and 𝑏𝑏𝑘

for simplicity, 1 ⩽ 𝑘 ⩽ 𝑁) have to be computed.The gradients
are deduced from

𝜕𝐿

𝜕𝑎𝑎𝑘

= 0,
𝜕𝐿

𝜕𝑏𝑏𝑘

= 0, 1 ≤ 𝑘 ≤ 𝑁, (20)

which yields

𝜕𝐽

𝜕𝑎𝑎𝑘

+ ∑

𝑛∈Ω𝑇

𝑇
𝑛

𝑘
cos (𝜔𝑛Δ𝑡) = 0, 1 ≤ 𝑘 ≤ 𝑁,

𝜕𝐽
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𝑇
𝑛

𝑘
cos (𝜔𝑛Δ𝑡) = 0, 1 ≤ 𝑘 ≤ 𝑁,

(21)

where 𝑇𝑛
𝑘
can also be computed by using (19).

4. Numerical Experiments and Results
Analysis

4.1. Model Settings. The computing area in the present study
is the Bohai Sea, the Yellow Sea, and the East China Sea
(BYECS), typical marginal shelf seas. The spatial resolution
for the model is 1/12∘ × 1/12

∘. 𝑇/𝑃 altimeter data and
tidal gauge data are assimilated into the tidal model. The
bathymetry map of the BYECS, the position of 𝑇/𝑃 satellite
tracks, tidal gauge stations, and the open boundaries are
shown in Figure 2. Since the purpose of this paper is to dis-
cuss the inversion of OBCs, the bottom friction coefficients
are fixed in all the experiments.

The numerical experiments in this work are semi-
idealized. Specifically, the coastline, the number, and location
of the observations are real. On the contrary, the values of
open boundary conditions and observations are artificial.The
prescribed open boundary curves are generated by different
number of feature points. Apparently, the complexity of open
boundary curves is in direct proportion to the number of
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feature points. For the semi-idealized experiments, only the
location of real observations (satellite altimetry and tidal
gauge stations) is used and the values of “observations”
are obtained by running the dynamic forward model with
prescribed open boundary conditions. The advantage of this
kind of experiments is that we can obtain a thorough under-
standing of the “observations.” The “observations” generated
by the model can be accurate and we can control the quality
of the “observations” by adding artificial error. In addition,
because the other factors are real, the conclusions based
on these semi-idealized experiments can be more useful for
referring.

The semi-idealized numerical experiments are run as
follows. First a distribution of artificial Fourier coefficients
is prescribed and taken as “true values” of open boundary
conditions. Then the forward tidal model is run using the
“true values” and the simulation results recorded at grid
points of𝑇/𝑃 satellite tracks and tidal gauge stations are taken
as the “observations.” Having obtained the “observations”, an
initial value (taken as zero in this work) of Fourier coefficients
is assigned to run the forwardmodel.Thedifferences between
simulated values and “observations” will function as the
external force to drive the adjoint model. The optimized
Fourier coefficients can be obtained through the backward
integration of the adjoint equations. The inverse integral
time of the adjoint equations is equal to a period of 𝑀2
tide. With the procedures repeated above, the parameters
will be optimized continuously and the difference between
simulated values and “observations” will be diminished.
Meanwhile, the difference between the prescribed and the
inverted parameters will also be decreased.

The iteration of optimization will terminate once the
following criterion is achieved [21]:

‖𝐺‖ < eps ×max (1, ‖𝑋‖) , (22)
where ‖𝐺‖ is the 𝐿2 norm of the gradients of cost func-
tion with respect to the control variables (i.e., the Fourier
coefficients at feature points), eps is a positive variable that
determines the accuracy with which the solution is to be
found, and ‖𝑋‖ is the 𝐿2 norm of control variables. Both the
values of ‖𝐺‖ and ‖𝑋‖ vary along the iterations. For a correct
adjoint model and a reasonable method, ‖𝐺‖ will gradually
decrease versus the iteration steps and the inverted values
of control variables must gradually approach the prescribed
“true values”.When using L-BFGS, the number of corrections
used in the BFGS update is taken as 5 (usually between 3 and
7, see Alekseev et al. [19]). In the minimization algorithm, the
control variables should be scaled to similar magnitudes on
the order of unity because within the optimization algorithm
convergence, tolerances, and other criteria are based on an
implicit definition of small and large [22]. Zou et al. [20]
also proved that the efficiency could be greatly improved by
a simple scaling. In twin experiments we use 10 to scale the
Fourier coefficients [4].

4.2. Modeling Results

4.2.1. Effects of Complexity of Open Boundary Curves. In
this section, the semi-idealized experiments (SE) are carried

out to calibrate the inversion ability of adjoint model and
compare the effectiveness of two strategies developed in
Section 3. The prescribed distributions of artificial Fourier
coefficients at 173 grid points along the eastern open bound-
ary are inverted. The prescribed distributions (PDs) are
designed to be characterized by different numbers of feature
points. PDs 1–7 are characterized by 2, 6, 10, 14, 18, 22,
and 26 feature points, respectively. The twin experiments are
correspondingly indexed with SEa 1–7 for inversion strategy
1 and SEb 1–7 for inversion strategy 2.

The prescribed and inverted distributions of open bound-
ary curves in SEa 1–4 and SEb 1–4 are shown in Figure 3.
The prescribed and inverted distributions of open boundary
curves in SEa 5-6 and SEb 5-6 are shown in Figure 4. The
feature points for prescribed distributions have also been
indicated in Figures 3 and 4. Table 1 gives the error statistics
for the experiments in this section. The 𝐿2 norm of the
gradients of cost functionwith respect to the control variables
versus the iteration steps for the experiments using inversion
strategies 1 and 2 are presented in Figures 4(c) and 4(d),
respectively. The decrease in data misfit (i.e., cost function)
calculated from (3) versus the iteration steps is shown in
Figure 5. Note that the values of data misfit and 𝐿2 norm of
gradients have been normalized by their values at the first
iteration step.

For strategy 1, the values of data misfit can sharply
decrease by about 4 orders for all the experiments in about
30 iteration steps. For strategy 2, the values of data misfit
can sharply decrease by about 5 orders for SEb 1–5 and by 4
orders for SEb 6-7 in about 60 iteration steps. The decrease
in data misfit provides another proof for the inversion
ability of the adjoint model and strategies in this work.
Correspondingly, the 𝐿2 norms of gradients also decrease by
at least 2 orders for inversion strategy 1 and by 3 orders for
inversion strategy 2, which demonstrates that the gradients
calculated in Section 3.3 can work well with L-BFGSmethod.

From the decrease in data misfit and gradient it seems
as if the effect of inversion strategy 2 is better than that
of strategy 1. However, the differences between prescribed
and inverted distributions shown in Table 1 indicate that the
inversion results of strategy 1 are much better than those of
strategy 2.This inconsistency will be explained in Section 4.3.
One can find that the adjoint model combined with inversion
strategy 1 can reproduce the prescribed distributions of
Fourier coefficients perfectly for SEa 1-2 or almost perfectly
for SEa 3-4. For SEa 5-6 the inversion is acceptable but
largely deviates from perfection. The major trend of the
inversion is quite obvious that the effect of inversion is in
inverse proportion to the number of feature points which
characterizes the complexity of open boundary curves. The
inverted open boundary curves shown in Figures 3 and 4 also
prove that the inversion using strategy 1 is better than that
using strategy 2.

4.2.2. Effects of Data Noises. As we know, the real obser-
vations either from satellite altimetry or from tidal gauge
stations contain errors (or noises). In this section the effects
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Figure 3: The prescribed and inverted distributions of open boundary curves in SEa 1–4 and SEb 1–4. The feature points are indicated by
open circles.

of the noises are studied. To do this, we replace each “obser-
vation” 𝜁𝑛

𝑖,𝑗
by (1 + 𝑝𝑟𝑛

𝑖,𝑗
)𝜁
𝑛

𝑖,𝑗
, where 𝑟𝑛

𝑖,𝑗
are uniform random

numbers lying in [−1, 1] and 𝑝 is a factor determining the
maximumpercentage error.Themaximumpercentage errors
for each prescribed distribution (PDs 1–7) are assigned to 5%,
10%, 15%, and 20%.The corresponding inversion experiments
are then indexed with SE𝑥 i.1, SE𝑥 i.2, SE𝑥 i.3, and SE𝑥 i.4,
respectively, where 1 ⩽ 𝑖 ⩽ 7 and 𝑥 = 𝑎 or 𝑏. The error
statistics for the experiments with 𝑃 values of 5%, 10%, 15%,
and 20% are exhibited in Tables 2, 3, 4, and 5, respectively.
The figures are omitted because they are similar to those in
Section 4.2.1.

One can find the noises in artificial observations will
significantly and negatively influence the inversion of open
boundary conditions. It is clear that the inversion using
strategy 2 is much more sensitive to the noise than that using
strategy 1. For example, when the simplest distribution PD 1
is inverted, the difference between prescribed and inverted
values will sharply increase from 0.0101 (Table 1) to 0.0238
(Table 2) for strategy 2 even with a small value of error 5%.

When 𝑃 was increased to 20%, the value of this difference
is also increased to 0.0562 (Table 5). However, for strategy
1 the values of this difference are just 0.0011, 0.0011, 0.0032
and 0.0043 under 𝑃 value of 5%, 10%, 15%, and 20%. Similar
results can be found from the inversion results of other
distributions. This phenomenon indicates that the effect of
ill-posedness of inverse problem will be amplified in the
conditions that observations contain noises. In addition, the
parameter estimation problems with more control variables
will be much more sensitive to data noise and the negative
effect of noises can be restricted by reducing the number of
control variables.

4.3. Discussions

4.3.1. Rationality of the Adjoint Method (Suggested by an
Anonymous Reviewer). The motivation of the present work
is to take the open boundary condition as an example to
investigate the performance of the adjoint method when
applied to ocean modeling and the ill-posedness of relevant
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Figure 4: (a), (b)The prescribed and inverted distributions of open boundary curves in SEa 5-6 and SEb 5-6.The feature points are indicated
by open circles. (c), (d) The 𝐿
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norm of the gradients of cost function with respect to the control variables versus the iteration steps for
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Figure 5: Data misfit versus the iteration steps for strategy 1 (a) and strategy 2 (b).
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Table 1: Error statistics for SEa 1–7 and SEb 1–7.

Exp. 𝐾
a
1

𝐾
a
2

𝐾
a
3

𝐾
a
4
(m)

Before After Before After
Inversion strategy 1

SEa 1 2 0.00 4979.7808 0.0000 0.3500 0.0000
SEa 2 6 0.00 4229.2929 0.0000 0.3332 0.0000
SEa 3 10 0.00 4549.4140 0.1565 0.3055 0.0059
SEa 4 14 0.00 3966.8884 0.1393 0.3121 0.0091
SEa 5 18 0.00 3546.1967 1.0772 0.3014 0.0334
SEa 6 22 0.00 3319.5297 0.7163 0.3066 0.0451
SEa 7 26 0.00 3776.7236 1.2877 0.3124 0.0737

Inversion strategy 2
SEb 1 2 0.00 4979.7808 0.0057 0.3500 0.0101
SEb 2 6 0.00 4229.2929 0.0054 0.3332 0.0125
SEb 3 10 0.00 4549.4140 0.0132 0.3055 0.0152
SEb 4 14 0.00 3966.8884 0.0111 0.3121 0.0194
SEb 5 18 0.00 3546.1967 0.0225 0.3014 0.0472
SEb 6 22 0.00 3319.5297 0.4051 0.3066 0.0662
SEb 7 26 0.00 3776.7236 1.0224 0.3124 0.0783
a
𝐾1 is the number of feature points for PDs 1–7 prescribed in semi-idealized experiments. 𝐾2 is the value of maximum percentage error. 𝐾3 is the data misfit
before and after assimilation.𝐾4 is the mean absolute difference between prescribed and inverted Fourier coefficients.

Table 2: Error statistics for SEa 1.1–7.1 and SEb 1.1–7.1.

Exp. 𝐾
a
1

𝐾
a
2

𝐾
a
3

𝐾
a
4
(m)

Before After Before After
Inversion strategy 1

SEa 1.1 2 0.05 5060.1284 4.3569 0.3500 0.0011
SEa 2.1 6 0.05 4306.6660 3.5968 0.3332 0.0007
SEa 3.1 10 0.05 4600.6445 3.9834 0.3055 0.0082
SEa 4.1 14 0.05 4019.1911 3.2996 0.3121 0.0093
SEa 5.1 18 0.05 3614.2876 4.0757 0.3014 0.0443
SEa 6.1 22 0.05 3370.5825 3.4881 0.3066 0.0491
SEa 7.1 26 0.05 3838.0024 4.3227 0.3124 0.0740

Inversion strategy 2
SEb 1.1 2 0.05 5060.1284 4.2224 0.3500 0.0238
SEb 2.1 6 0.05 4306.6660 3.4525 0.3332 0.0250
SEb 3.1 10 0.05 4600.6445 3.6353 0.3055 0.0332
SEb 4.1 14 0.05 4019.1911 3.0429 0.3121 0.0337
SEb 5.1 18 0.05 3614.2876 3.0501 0.3014 0.0482
SEb 6.1 22 0.05 3370.5825 2.7539 0.3066 0.0736
SEb 7.1 26 0.05 3838.0024 3.2047 0.3124 0.0833
a
𝐾1 is the number of feature points for PDs 1–7 prescribed in semi-idealized experiments. 𝐾2 is the value of maximum percentage error. 𝐾3 is the data misfit
before and after assimilation.𝐾4 is the mean absolute difference between prescribed and inverted Fourier coefficients.

inverse problem. The inverse problems in ocean models are
often quite complex. The ocean modeling is not just to solve
the partial differential equations which might also be solved
by some simple methods like the method of characteristics.
A reasonable ocean model should also be related to the
field observations (satellite altimetry and tidal gauges in this
work). In order to realize a more accurate simulation of
ocean dynamics, how to organically combine the numerical
ocean model with available observations has already become

a problem urgent to be solved. Data assimilation methods
have been used widely to solve this problem. Among all
data assimilation methods, the adjoint data assimilation
method is one of the most effective and powerful approaches
developed over the past three decades. It is an advanced
data assimilation method and has the advantage of directly
assimilating various observations distributed in time and
space into the numerical model whilemaintaining dynamical
and physical consistency with themodel.The adjoint method
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Table 3: Error statistics for SEa 1.2–7.2 and SEb 1.2–7.2.

Exp. 𝐾
a
1

𝐾
a
2

𝐾
a
3

𝐾
a
4
(m)

Before After Before After
Inversion strategy 1

SEa 1.2 2 0.10 5096.1191 17.4292 0.3500 0.0011
SEa 2.2 6 0.10 4329.9121 14.4080 0.3332 0.0013
SEa 3.2 10 0.10 4621.0439 15.3755 0.3055 0.0115
SEa 4.2 14 0.10 4041.4563 12.8185 0.3121 0.0132
SEa 5.2 18 0.10 3633.7822 13.0238 0.3014 0.0438
SEa 6.2 22 0.10 3388.0535 11.9751 0.3066 0.0540
SEa 7.2 26 0.10 3861.5273 13.5251 0.3124 0.0753

Inversion strategy 2
SEb 1.2 2 0.10 5096.1191 16.7203 0.3500 0.0343
SEb 2.2 6 0.10 4329.9121 13.8206 0.3332 0.0340
SEb 3.2 10 0.10 4621.0439 14.4797 0.3055 0.0456
SEb 4.2 14 0.10 4041.4563 12.1758 0.3121 0.0485
SEb 5.2 18 0.10 3633.7822 11.9745 0.3014 0.0645
SEb 6.2 22 0.10 3388.0535 11.4183 0.3066 0.0846
SEb 7.2 26 0.10 3861.5273 12.1905 0.3124 0.0902
a
𝐾1 is the number of feature points for PDs 1–7 prescribed in semi-idealized experiments. 𝐾2 is the value of maximum percentage error. 𝐾3 is the data misfit
before and after assimilation.𝐾4 is the mean absolute difference between prescribed and inverted Fourier coefficients.

Table 4: Error statistics for SEa 1.3–7.3 and SEb 1.3–7.3.

Exp. 𝐾
a
1

𝐾
a
2

𝐾
a
3

𝐾
a
4
(m)

Before After Before After
Inversion strategy 1

SEa 1.3 2 0.15 5140.9389 39.2166 0.3500 0.0032
SEa 2.3 6 0.15 4360.3886 32.3847 0.3332 0.0018
SEa 3.3 10 0.15 4649.1435 34.2411 0.3055 0.0135
SEa 4.3 14 0.15 4070.1625 28.6868 0.3121 0.0168
SEa 5.3 18 0.15 3659.3095 27.8828 0.3014 0.0446
SEa 6.3 22 0.15 3411.1008 26.0982 0.3066 0.0665
SEa 7.3 26 0.15 3891.3386 28.8848 0.3124 0.0771

Inversion strategy 2
SEb 1.3 2 0.15 5140.9389 37.8465 0.3500 0.0449
SEb 2.3 6 0.15 4360.3886 31.0404 0.3332 0.0430
SEb 3.3 10 0.15 4649.1435 32.1405 0.3055 0.0552
SEb 4.3 14 0.15 4070.1625 27.2928 0.3121 0.0569
SEb 5.3 18 0.15 3659.3095 26.6717 0.3014 0.0700
SEb 6.3 22 0.15 3411.1008 25.1515 0.3066 0.0913
SEb 7.3 26 0.15 3891.3386 27.4780 0.3124 0.0963
a
𝐾1 is the number of feature points for PDs 1–7 prescribed in semi-idealized experiments. 𝐾2 is the value of maximum percentage error. 𝐾3 is the data misfit
before and after assimilation.𝐾4 is the mean absolute difference between prescribed and inverted Fourier coefficients.

might be complicated and expensive for some simple prob-
lems. However, the inverse problems in ocean modeling are
often quite complex in contrast with those simple problems.
As is known, one advantage of the numerical method over
theoretical analysis lies in the disposal of nonlinear terms.
The ocean numerical models are usually strongly nonlinear,
increasing the complexity of the relevant inverse problem.
Therefore, the increased complexity of the inverse problem
makes the adjoint method effective. The adjoint method has
been proved to be effective and powerful in ocean and atmo-
sphere problems by many works (see the references listed

in Section 1). It has been widely applied to meteorological
and oceanographic data assimilation, sensitivity studies, and
parameter estimation.

4.3.2. Analysis on Ill-Posedness. From the statistics shown in
Tables 1–5, we can find an interesting phenomenon. Define
the data misfits after assimilation to be 𝑉1dm for inversion
strategy 1 and 𝑉2dm for inversion strategy 2. Further define
the differences between prescribed and inverted control
variables to be 𝑉1cv for inversion strategy 1 and 𝑉2cv for
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Table 5: Error statistics for SEa 1.4–7.4 and SEb 1.4–7.4.

Exp. 𝐾
a
1

𝐾
a
2

𝐾
a
3

𝐾
a
4
(m)

Before After Before After
Inversion strategy 1

SEa 1.4 2 0.20 5194.4404 69.7209 0.3500 0.0043
SEa 2.4 6 0.20 4398.0703 57.5559 0.3332 0.0025
SEa 3.4 10 0.20 4684.9663 61.7102 0.3055 0.0169
SEa 4.4 14 0.20 4105.4169 50.8808 0.3121 0.0207
SEa 5.4 18 0.20 3690.9194 48.2412 0.3014 0.0458
SEa 6.4 22 0.20 3439.8129 45.3626 0.3066 0.0711
SEa 7.4 26 0.20 3927.5261 50.4111 0.3124 0.0792

Inversion strategy 2
SEb 1.4 2 0.20 5194.4404 67.1112 0.3500 0.0562
SEb 2.4 6 0.20 4398.0703 55.1859 0.3332 0.0493
SEb 3.4 10 0.20 4684.9663 57.6774 0.3055 0.0637
SEb 4.4 14 0.20 4105.4169 48.3631 0.3121 0.0644
SEb 5.4 18 0.20 3690.9194 47.1181 0.3014 0.0755
SEb 6.4 22 0.20 3439.8129 43.9302 0.3066 0.0978
SEb 7.4 26 0.20 3927.5261 48.6330 0.3124 0.1011
a
𝐾1 is the number of feature points for PDs 1–7 prescribed in semi-idealized experiments. 𝐾2 is the value of maximum percentage error. 𝐾3 is the data misfit
before and after assimilation.𝐾4 is the mean absolute difference between prescribed and inverted Fourier coefficients.

inversion strategy 2.The values of𝑉𝑖cv (𝑖 = 1, 2) and𝑉𝑖dm(𝑖 =
1, 2) for all the experiments are plotted in Figure 6. We can
find 𝑉1dm are larger than or comparable with 𝑉2dm while
𝑉1cv are greatly smaller than 𝑉2cv. Consequently, for all the
experiments except SEa 1 and SEa 2, without loss of generality,
we can obtain

𝑉1cv < 𝑉2cv, 𝑉1dm > 𝑉2dm. (23)

It is easy to understand that small values of 𝑉𝑖cv (𝑖 = 1, 2)

indicate more accurate control variables, and small values of
𝑉𝑖dm (𝑖 = 1, 2)mean small differences between simulated and
observed results. In this work, the open boundary conditions
are the only parameters for estimation and other parameters
are fixed all the time. Instead of formula (23), we should have
expected

𝑉1cv < 𝑉2cv, so 𝑉1dm < 𝑉2dm, (24)

which means a better parameter estimation drives a more
accurate simulation. In other words, what we want are small
values of 𝑉dm and what we need are small values of 𝑉cv.
Formulas (23) and (24) exactly indicate an inconsistency
between the effects of parameter estimation and observation
restricted data reproduction.

For PDs 1–7 the numbers of feature points are 2, 6, 10,
14, 18, 22, and 26, respectively. It should be noted that at
each feature point the Fourier coefficients include 𝑎 and 𝑏.
Therefore the numbers of control variables for inversion are
doubled, that is, 4, 12, 20, 28, 36, 44, and 52, respectively.
There are a total of 35 semi-idealized experiments in this
work. Among these experiments, only SEa 1 and SEa 2 can
realize a perfect inversion of control variables. Here we define
perfect inversion as follows: the data misfit between observed
and simulated values can decrease to zero and the difference

between prescribed and inverted control variables can also
reach a value of zero. With more control variables and larger
data noises, the inversion results will not be exactly equal to
the prescribed distributions. In the work of Smedstad and
O’Brien [12] where the spatially distributed phase speed in
an equatorial Pacific Ocean model was estimated, they could
not produce the exact values either, even in the condition
that perfect observations were available at every grid of the
model. Zhang and Lu [4] put forward the similar viewpoint
and it also occurs in the parameter estimation of internal
tidal model [23–25]. With identical twin experiments, the
“observations” are perfect in the sense that they are produced
by the model and thus are consistent with the model physics.
From the results of this paper and previous works, we
can conclude that ill-posedness has happened in other 33
experiments and the effects of ill-posedness will be amplified
by increasing the number of control variables and data noises.
Formula (23) obtained in this work provides a concrete
evidence that ill-posedness of inverse problem can generate
poor parameter inversion results while producing an unreal
“good data fitting”. For a specific problem, it is necessary and
helpful to perform identical semi-idealized experiments in
order to find the optimal choices for the number of control
variables and inversion strategy.

5. Conclusions

In this work, two strategies for inverting the open boundary
conditionswith adjointmethod are compared by carrying out
semi-idealized numerical experiments. In the first strategy,
the open boundary curves are assumed to be partly space
varying and are generated by linearly interpolating the values
at feature points.The feature points are selected by calculating
the second-order derivatives of discrete curves and the values



Abstract and Applied Analysis 13

0
10
20
30
40
50
60
70

Va
lu

es

Index of experiments

SE
7

SE
1

SE
1.

1

SE
7.

1

SE
7.

2
SE

1.
3

SE
7.

3

SE
1.

2

SE
1.

4

SE
7.

4

V1dm for inversion strategy 1
V2dm for inversion strategy 2

(a)

Index of experiments

0
0.02
0.04
0.06
0.08

0.1
0.12

Va
lu

es

SE
7

SE
1

SE
1.

1

SE
7.

1

SE
7.

2
SE

1.
3

SE
7.

3

SE
1.

2

SE
1.

4

SE
7.

4

V1cv for inversion strategy 1
V2cv for inversion strategy 2

(b)

Figure 6: (a) The values of 𝑉𝑖dm (𝑖 = 1, 2) versus the index of experiments. (b) The values of 𝑉𝑖cv (𝑖 = 1, 2) versus the index of experiments.

at selected feature points are taken as control variables to be
estimated. The advantage is that most of the variations of the
curves can be reproduced by theminimumnumber of points.
In the second strategy, the OBC is assumed to be fully space
varying and the values at every open boundary points are
taken as control variables.

A series of semi-idealized experiments are carried out to
calibrate the inversion ability of adjoint model and compare
the effectiveness of two inversion strategies. The results
demonstrate that the effect of inversion is in inverse pro-
portion to the number of feature points which characterize
the complexity of open boundary curves. The effect of
ill-posedness of inverse problem will be amplified in the
conditions that observations contain noises. The parameter
estimation problems with more control variables will be
much more sensitive to data noises and the negative effects
of noises can be restricted by reducing the number of control
variables. This work provides a concrete evidence that ill-
posedness of inverse problem can generate wrong parameter
inversion results while producing an unreal “good data
fitting”. For a specific problem, it is necessary and helpful to
perform identical semi-idealized experiments in order to find
the optimal choices for the number of control variables and
inversion strategy.
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