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Most robust control charts in the literature are for monitoring process location parameters, such as mean or median, rather than
process dispersion parameters.This paper develops a new robust control chart by integrating a two-sample nonparametric test into
the effective change-point model. Our proposed chart is easy in computation, convenient to use, and very powerful in detecting
process dispersion shifts.

1. Introduction

Statistical process control (SPC) has been widely used in
various industrial processes. Most SPC applications assume
that the quality of a process can be adequately represented by
the distribution of a quality characteristic, and the in-control
(IC) and out-of-control (OC) distributions are the same with
only differing parameters.

While parametric methods are only useful in certain
applications, there is often a lack of enough knowledge about
the process distribution. For example, univariate process data
are often assumed to have normal distributions, although
it is well recognized that, in many applications, particularly
in start-up situations, the underlying process distribution is
unknown and not normal, so that statistical properties of
commonly used charts, designed to perform best under the
normal distribution, could potentially be (highly) affected. So
robust charts are needed in such situations. A chart is called
robust or distribution-free if its IC run-length distribution is
nearly the same for every continuous distribution [1].

In the last several years, robust control charts have
attracted much attention. For example, Bakir and Reynolds
[2] proposed a cumulative sum (CUSUM) chart for group
observations based on the Wilcoxon signed-rank statistic.
McDonald [3] considered a CUSUM procedure for individ-
ual observations based on the statistics called “sequential
ranks.” An exponentially weighted moving average (EWMA)

chart for individual observations proposed by Hackl and
Ledolter [4] is constructed by the “standardized ranks” of
observations, which are determined by IC distributions. If
the distribution is not available, they recommended using
the ranks in collected reference data instead. The robust
charts considered by Chakraborti et al. [5, 6] are based on
the precedence test. Recently, a Shewhart-type chart and a
scheme using change-point formulation based on the Mann-
Whitney test statistic were investigated by Chakraborti and
van de Wiel [7], Zhou et al. [8], and Hawkins and Deng [9].
Jones-Farmer et al. [10] developed a rank-based robust Phase
I control scheme for subgroup location. Other developments
include Albers and Kallenberg [11] and Bakir [12, 13]. A nice
overview on the topic of univariate robust control charts was
presented by Chakraborti et al. [1]. In addition, robust control
charts in multivariate cases have been discussed by Liu [14],
Qiu and Hawkins [15], and Qiu [16].

Most of the robust charts mentioned above focus on
monitoring process median, but monitoring the process
dispersion is also highly desirable. However, there are far
fewer robust control charts which can monitor process
dispersion. Zou and Tsung [17] proposed a chart which
incorporates a powerful goodness-of-fit (GOF) test [18] using
the nonparametric likelihood ratio into an EWMA chart. It
can detect more general changes than location shifts and is
also very easy in computation but leaves a tuning parameter
𝜆 to choose.
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This paper develops a new robust control chart by
integrating a two-sample nonparametric test [19] into the
effective change-point model. Simulation studies show that
the proposed method is superior to other robust schemes in
monitoring dispersion. As it avoids the need for a lengthy
data-gathering step before charting (although it is generally
necessary and advisable to have about at least 20 warm-up
samples) and it does not require knowledge of the underlying
distribution, the proposed chart is particularly useful in start-
up or short-run situations.

The rest of this paper is organized as follows. The control
chart for Phase I is given in Section 2. The control chart for
Phase II is derived in Section 3. The performance compar-
isons with two other robust control charts are discussed in
Section 4. The conclusion is given in Section 5.

2. The Control Chart for Phase I

We begin by considering the Phase I problem of detecting
a change point in a fixed-size sequence of observations. We
denote the observations by {𝑋

1
, . . . , 𝑋

𝑡
}, and the goal is to test

whether they have all been generated by the same probability
distribution. We assume that no prior knowledge is available
regarding this distribution other than that it is continuous.
Using the language of statistical hypothesis testing, the null
hypothesis is that there is no change point, and all the
observations come from the same distribution, while the
alternative hypothesis is that there exists a single change-
point 𝜏 in the sequence which partitions them into two
sets, with𝑋

1
, . . . , 𝑋

𝜏
coming from the prechange distribution

𝐹
0
and 𝑋

𝜏+1
, . . . , 𝑋
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coming from a different postchange

distribution 𝐹
1
:
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(1)

We can test for a change point immediately following any
observation 𝑋

𝑘
by partitioning the observations into two

samples 𝑆
1
= {𝑋
1
, . . . , 𝑋

𝑘
} and 𝑆

2
= {𝑋
𝑘+1
, . . . , 𝑋

𝑡
} of sizes

𝑛
1
= 𝑘 and 𝑛

2
= 𝑡 − 𝑘, respectively, and then performing

an appropriate two sample hypothesis test. For example,
to detect a change in location parameter without making
assumptions about the distribution, Mann-Whitney statistic
would be a proper test statistic [9]. In order to monitor the
process dispersion, we will consider the Mood test.

The Mood test uses a statistic like the following:
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where 𝑅
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respectively.
In fact, we use the absolute value of the standardized

Mood test statistic
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We reject the null hypothesis that no change occurs at 𝑘 if
𝑀
𝑘,𝑡
> ℎ
𝑘,𝑡

for some appropriately chosen value of ℎ
𝑘,𝑡
.

The statistic can be integrated into the change-point
model and is easy to compute. Now, since we do not know in
advance where the change point is located, we do not know
which value of 𝑘 to use for partitioning. We therefore specify
a more general null hypothesis that there is no change at any
point in the sequence. The alternative hypothesis is then that
there exists a change point for some unspecified value of 𝑘.
We can perform this test by computing 𝑀

𝑘,𝑡
at every value

0 < 𝑘 < 𝑡 and taking the maximum value. This leads to the
maximized test statistic:

𝑀
𝑡
= max
𝑘

𝑀
𝑘,𝑡
, 0 < 𝑘 < 𝑡. (5)

If 𝑀
𝑡
> ℎ
𝑡
for some suitably chosen threshold ℎ

𝑡
, then the

null hypothesis is rejected, and we conclude that a change
occurred at some point in the data. In this case, the best
estimate 𝜏 of the location of the change point is at the value
of 𝑘 which maximized𝑀

𝑡
. If𝑀

𝑡
≤ ℎ
𝑡
, then we do not reject

the null hypothesis and hence we conclude that no change
has occurred. The choice of this threshold will be discussed
further in the following section.

3. The Control Chart for Phase II

Having considered the problem of detecting changes in a
fixed-size sample, we now turn to the task of sequentially
Phase II monitoring where new observations are being
received over time. Let 𝑋

𝑡
denote the 𝑡th observation where

𝑡 is increasing over time.
First, there are only a finite number of ways to assign

ranks to a set of 𝑡 points; the 𝑀
𝑡
statistic can only take a

discrete set of values. This creates a problem for threshold
choice when 𝑡 is small, since it may not be possible to
find a value for ℎ

𝑡
which gives the exact ARL

0
required,

which is a general problem when dealing with discrete
valued test statistics. Therefore, we recommend that Phase II
monitoring only begins after the first 20 observations have
been received, which gives sufficient possibilities for rank
assignments to make most ARL

0
s achievable. This seems a

reasonable compromise, since in practice it would be very
difficult to detect a change that occurred during the first 20
observations.
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Then; we make some modifications to the 𝑀
𝑡
statistic.

Suppose there are𝑚
0
warm-up data. Because it is impossible

to have a change point in these warm-up data, we set the𝑀
𝑡

statistic as follows:
𝑀
𝑡
= max
𝑘

𝑀
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, 𝑚
0
− 1 < 𝑘 < 𝑡. (6)

Once a new observation 𝑋
𝑡
is received, we then regard

{𝑋
1
, . . . , 𝑋

𝑡
} to be a fixed-size sample and employ our pro-

posedmethod based on the abovemodified𝑀
𝑡
statistic to test

if a change point has occurred. The problem of sequentially
monitoring is then reduced to performing a sequence of
fixed-size tests. Suppose it is desired to have an IC average
run length (ARL

0
) of 𝛾. This can be achieved if we choose the

ℎ
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values so that the probability of incurring a false alarm at

the 𝑡th observation equals to 1/𝛾. We hence require that for
all 𝑡
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It is not trivial to find a sequence of ℎ
𝑡
values which satisfy

this property. The approach in Hawkins and Deng [9] is to
use Monte-Carlo simulation. We will follow in the same way.
Onemillion realizations of the sequence {𝑋

1
, . . . , 𝑋

1000
}were

generated. Because the distribution of𝑀
𝑡
is independent of

the distribution of the𝑋
𝑖
observations, these𝑋

𝑖
values can be

sampled from any continuous distribution so long as they are
independent and identically distributed.Then, for each value
of 𝑡,𝑀

𝑡
is computed for each of the million realizations. The

values for ℎ
𝑡
corresponding to the desired ARL

0
can then be

read off from them. Table 1 shows the values of ℎ
𝑡
which gives

various commonly used values for the ARL
0
. Note that these

values appear to have converged by the 1000 observation,
so if the stream contains more than 1000 observations it is
reasonable to let ℎ

𝑡
= ℎ
1000

for 𝑡 > 1000. Now we denote
our chart by ROBUSTD, implying Robust Control Chart for
monitoring process dispersion.

To be used in practice, our approach requires a computa-
tionally efficientmethod for computing the ROBUSTD statis-
tic𝑀
𝑡
. First, we denote𝑅𝑡+1

1𝑗
as the rank of the 𝑗th observation

𝑋
𝑗
in all (𝑡 + 1) observations. Although computing these 𝑅𝑡+1

1𝑗

values seems like it may be computational expensive, this
can be greatly reduced by noting that the arrival of a new
observation 𝑋

𝑡+1
only has a small effect on the values of the

𝑅
𝑡+1

1𝑗
values. It can easily be shown that

𝑅
𝑡+1

1𝑗
= 𝑅
𝑡

1𝑗
+ 𝐼 (𝑋

𝑡+1
≤ 𝑋
𝑗
) , 1 ≤ 𝑗 ≤ 𝑘, (8)

where 𝑘 denotes the possible change point.Therefore, we can
compute𝑀

𝑘,𝑡+1
based on these 𝑅𝑡+1

1𝑗
values and get the𝑀

𝑡+1

value ultimately.

4. Performance Comparisons

Wenow evaluate the performance of our chart. As is standard
in the quality control literature, we measure performance

Table 1: Values of the threshold sequence ℎ
𝑡
corresponding to ARL

0

of 200, 500, and 1000.

𝑡 200 500 1000
21 1.920 1.922 1.924
22 2.389 2.390 2.392
23 2.571 2.825 2.827
24 2.840 2.916 2.947
25 2.853 2.982 3.173
26 2.864 3.015 3.288
27 2.875 3.057 3.309
28 2.885 3.086 3.329
29 2.895 3.114 3.348
30 2.903 3.146 3.365
40 2.972 3.255 3.474
50 3.006 3.299 3.500
60 3.020 3.322 3.521
70 3.046 3.331 3.519
80 3.042 3.339 3.535
90 3.033 3.349 3.548
100 3.036 3.350 3.543
200 3.051 3.369 3.577
300 3.074 3.384 3.579
400 3.071 3.379 3.600
500 3.089 3.357 3.588
600 3.057 3.372 3.605
700 3.052 3.373 3.578
800 3.063 3.355 3.582
900 3.080 3.361 3.599
1000 3.083 3.369 3.593

as the average time taken to detect a change of magnitude
𝛿, which we denote by ARL

1
(𝛿). We consider changes

which affect the process dispersion. Three different process
distributions are considered: the standard normal distribu-
tion 𝑁(0, 1), the Student t distribution with 3 degrees of
freedom 𝑡(3), and the chi-square distribution with 3 degrees
of freedom 𝜒2

3
. The latter two correspond to the heavy tailed

and skewed distributions, respectively.
Because our chart can be treated as a self-starting chart,

the number of observations available before the change may
have a large impact on its performance. We will consider
changes which occur after both 50 and 100 observations,
that is, 𝜏 ∈ [50, 100]. We compare our ROBUSTD chart
to two other change-point detection algorithms. The first
is the method described in Hawkins and Deng [9] for
location shifts, which we will denote by MWCPM. It uses a
similar change-point model to ours, but there test statistic
is the Mann-Whitney statistic. Second, we compare our
ROBUSTD chart to Zou and Tsung [17], which integrates
the nonparametric likelihood ratio test framework into the
EWMA chart. We notice that their chart contains a tuning
parameter 𝜆 used in the EWMA scheme. Large values of 𝜆
produce a chart which ismore efficient to large changes, while
small values of 𝜆 produce a chart which is sensitive to small
changes.We choose to use𝜆 = 0.1which is a value considered
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Table 2: ARL
1
(𝛿) for dispersion shifts in the 𝑁(0, 1) distributions,

for several values of the change time 𝜏.

𝜏 𝛿
𝑁(0, 𝛿

2
)

MWCPM ROBUSTD NLREWMA

50

2.0 228 18.3 25.8
3.0 141 7.9 12.6
0.5 707 38.8 408.9
0.33 769 17.1 223.7

300

2.0 73.0 10.1 10.6
3.0 37.3 5.0 5.4
0.5 1285 22.8 213.8
0.33 728 15.2 36.9

Table 3: ARL
1
(𝛿) for dispersion shifts in the heavy tailed distribu-

tion 𝑡(3), for several values of the change time 𝜏.

𝜏 𝛿
𝑡(3)/√3 × 𝛿

MWCPM ROBUSTD NLREWMA

50

2.0 278 50.7 80.2
3.0 179 12.5 25.0
0.5 707 79.8 386.8
0.33 769 22.6 312.8

300

2.0 104 18.6 25.3
3.0 52.3 8.4 10.5
0.5 1144 32.1 307.9
0.33 728 19.0 72.7

Table 4: ARL
1
(𝛿) for dispersion shifts in the skewed distribution𝜒2

3
,

for several values of the change time 𝜏.

𝜏 𝛿
(𝜒
2

3
− 3)/√6 × 𝛿

MWCPM ROBUSTD NLREWMA

50

2.0 149 14.4 19.7
3.0 78.7 6.9 11.6
0.5 624 29.1 303.2
0.33 595 14.6 110.0

300

2.0 43.3 8.3 7.6
3.0 24.8 5.1 5.0
0.5 476 21.0 63.7
0.33 229 14.3 30.0

in their paper, and we denote their chart by NLREWMA. To
allow fair comparisons, we set the ARL

0
of every chart at 500.

Similar results hold for other values of ARL
0
, but we omit

them for space reasons.
For each of the three distributions, 10000 sequences were

generated, and the change consists of multiplying 𝛿 to all
postchange observations, respectively.The average time taken
to detect the change is then recorded for each chart.

Tables 2, 3, and 4 show the average time required to detect
shifts in dispersion, from which we can get the following
conclusions.

(i) Our chart is much better than the MWCPM at all
cases of dispersion shifts.

(ii) Our chart is much better than the NLREWMA at
most cases of dispersion shifts.

So we can conclude that whenwewant tomonitor disper-
sion shifts, our chart is the best choice since it gives excellent
performance across all magnitudes of shifts considered based
on comparisons previously mentioned.

5. Conclusions

We proposed a new robust and self-starting control chart to
detect dispersion shifts by integrating a two-sample nonpara-
metric test [19] into the effective change-point model.

Our chart is much better than some other nonparametric
methods at most cases for shifts in dispersion. As it avoids
the need for a lengthy data-gathering step before charting
(although it is generally necessary and advisable to have
several warm-up samples) and it does not require knowledge
of the underlying distribution so the proposed chart is
particularly useful in start-up or short-run situations.
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