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This paper considers a completion problem of a nonsingular 2 × 2 block matrix over the real quaternion algebra H: Let
𝑚
1
, 𝑚
2
, 𝑛
1
, 𝑛
2
be nonnegative integers,𝑚

1
+ 𝑚
2
= 𝑛
1
+ 𝑛
2
= 𝑛 > 0, and 𝐴

12
∈ H𝑚1×𝑛2 , 𝐴

21
∈ H𝑚2×𝑛1 , 𝐴

22
∈ H𝑚2×𝑛2 , 𝐵

11
∈ H𝑛1×𝑚1

be given. We determine necessary and sufficient conditions so that there exists a variant block entry matrix𝐴
11
∈ H𝑚1×𝑛1 such that

𝐴 = (
𝐴11 𝐴12

𝐴21 𝐴22
) ∈ H𝑛×𝑛 is nonsingular, and 𝐵

11
is the upper left block of a partitioning of 𝐴−1. The general expression for 𝐴

11
is also

obtained. Finally, a numerical example is presented to verify the theoretical findings.

1. Introduction

The problem of completing a block-partitioned matrix of a
specified type with some of its blocks given has been studied
by many authors. Fiedler and Markham [1] considered the
following completion problem over the real number field R.
Suppose𝑚

1
, 𝑚
2
, 𝑛
1
, 𝑛
2
are nonnegative integers,𝑚

1
+𝑚
2
=

𝑛
1
+𝑛
2
= 𝑛 > 0, 𝐴

11
∈ R𝑚1×𝑛1 , 𝐴

12
∈ R𝑚1×𝑛2 , 𝐴

21
∈ R𝑚2×𝑛1 ,

and 𝐵
22
∈ R𝑛2×𝑚2 . Determine a matrix 𝐴

22
∈ R𝑚2×𝑛2 such

that

𝐴 = (
𝐴
11

𝐴
12

𝐴
21

𝐴
22

) (1)

is nonsingular and 𝐵
22
is the lower right block of a partition-

ing of 𝐴−1. This problem has the form of

(
𝐴
11

𝐴
12

𝐴
21

?
)

−1

= (
? ?

? 𝐵
22

) , (2)

and the solution and the expression for 𝐴
22
were obtained in

[1]. Dai [2] considered this form of completion problemswith
symmetric and symmetric positive definite matrices over R.

Some other particular forms for 2×2 block matrices over
R have also been examined (see, e.g., [3]), such as

(
𝐴
11

𝐴
12

𝐴
21

?
)

−1

= (
𝐵
11

?

? ?
) ,

(
𝐴
11

?

? ?
)

−1

= (
? ?

? 𝐵
22

) ,

(
𝐴
11

?

? 𝐴
22

)

−1

= (
? 𝐵
12

𝐵
21

?
) .

(3)

The real quaternion matrices play a role in computer
science, quantum physics, and so on (e.g., [4–6]). Quaternion
matrices are receiving much attention as witnessed recently
(e.g., [7–9]). Motivated by the work of [1, 10] and keeping
such applications of quaternionmatrices in view, in this paper
we consider the following completion problem over the real
quaternion algebra:

H = {𝑎
0
+ 𝑎
1
𝑖 + 𝑎
2
𝑗 + 𝑎
3
𝑘 |

𝑖
2
= 𝑗
2
= 𝑘
2
= 𝑖𝑗𝑘 = −1 and 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑎
3
∈ R} .

(4)

Problem 1. Suppose 𝑚
1
, 𝑚
2
, 𝑛
1
, 𝑛
2
are nonnegative inte-

gers, 𝑚
1
+ 𝑚
2
= 𝑛
1
+ 𝑛
2
= 𝑛 > 0, and 𝐴

12
∈ H𝑚1×𝑛2 ,
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𝐴
21
∈ H𝑚2×𝑛1 , 𝐴

22
∈ 𝑅
𝑚
2
×𝑛
2 , 𝐵
11
∈ H𝑛1×𝑚1 . Find a matrix

𝐴
11
∈ H𝑚1×𝑛1 such that

𝐴 = (
𝐴
11

𝐴
12

𝐴
21

𝐴
22

) ∈ H
𝑛×𝑛 (5)

is nonsingular, and𝐵
11
is the upper left block of a partitioning

of 𝐴−1. That is

(
? 𝐴

12

𝐴
21

𝐴
22

)

−1

= (
𝐵
11

?

? ?
) , (6)

where H𝑚×𝑛 denotes the set of all 𝑚 × 𝑛matrices over H and
𝐴
−1 denotes the inverse matrix of 𝐴.

Throughout, over the real quaternion algebra H, we
denote the identity matrix with the appropriate size by 𝐼, the
transpose of 𝐴 by 𝐴𝑇, the rank of 𝐴 by 𝑟(𝐴), the conjugate
transpose of𝐴 by𝐴∗ = (𝐴)𝑇, a reflexive inverse of a matrix𝐴
over H by 𝐴+ which satisfies simultaneously 𝐴𝐴+𝐴 = 𝐴 and
𝐴
+
𝐴𝐴
+
= 𝐴
+.Moreover,𝐿

𝐴
= 𝐼−𝐴

+
𝐴, 𝑅
𝐴
= 𝐼−𝐴𝐴

+, where
𝐴
+ is an arbitrary but fixed reflexive inverse of 𝐴. Clearly, 𝐿

𝐴

and𝑅
𝐴
are idempotent, and each is a reflexive inverse of itself.

R(𝐴) denotes the right column space of the matrix 𝐴.
The rest of this paper is organized as follows. In Section 2,

we establish some necessary and sufficient conditions to solve
Problem 1 over H, and the general expression for 𝐴

11
is also

obtained. In Section 3, we present a numerical example to
illustrate the developed theory.

2. Main Results

In this section, we begin with the following lemmas.

Lemma 1 (singular-value decomposition [9]). Let 𝐴 ∈ H𝑚×𝑛

be of rank 𝑟. Then there exist unitary quaternion matrices 𝑈 ∈

H𝑚×𝑚 and 𝑉 ∈ H𝑛×𝑛 such that

𝑈𝐴𝑉 = (
𝐷
𝑟
0

0 0
) , (7)

where 𝐷
𝑟
= diag(𝑑

1
, . . . , 𝑑

𝑟
) and the 𝑑

𝑗
’s are the positive

singular values of 𝐴.

Let H𝑛
𝑐
denote the collection of column vectors with 𝑛

components of quaternions and 𝐴 be an 𝑚 × 𝑛 quaternion
matrix. Then the solutions of 𝐴𝑥 = 0 form a subspace of H𝑛

𝑐

of dimension 𝑛(𝐴). We have the following lemma.

Lemma 2. Let

(
𝐴
11

𝐴
12

𝐴
21

𝐴
22

) (8)

be a partitioning of a nonsingular matrix 𝐴 ∈ H𝑛×𝑛, and let

(
𝐵
11

𝐵
12

𝐵
21

𝐵
22

) (9)

be the corresponding (i.e., transpose) partitioning of 𝐴−1. Then
𝑛(𝐴
11
) = 𝑛(𝐵

22
).

Proof. It is readily seen that

(
𝐵
22

𝐵
21

𝐵
12

𝐵
11

) ,

(
𝐴
22

𝐴
21

𝐴
12

𝐴
11

)

(10)

are inverse to each other, so we may suppose that 𝑛(𝐴
11
) <

𝑛(𝐵
22
).

If 𝑛(𝐵
22
) = 0, necessarily 𝑛(𝐴

11
) = 0 and we are finished.

Let 𝑛(𝐵
22
) = 𝑐 > 0, then there exists a matrix 𝐹 with 𝑐 right

linearly independent columns, such that 𝐵
22
𝐹 = 0. Then,

using

𝐴
11
𝐵
12
+ 𝐴
12
𝐵
22
= 0, (11)

we have

𝐴
11
𝐵
12
𝐹 = 0. (12)

From

𝐴
21
𝐵
12
+ 𝐴
22
𝐵
22
= 𝐼, (13)

we have

𝐴
21
𝐵
12
𝐹 = 𝐹. (14)

It follows that the rank 𝑟(𝐵
12
𝐹) ≥ 𝑐. In view of (12), this

implies

𝑛 (𝐴
11
) ≥ 𝑟 (𝐵

12
𝐹) ≥ 𝑐 = 𝑛 (𝐵

22
) . (15)

Thus

𝑛 (𝐴
11
) = 𝑛 (𝐵

22
) . (16)

Lemma 3 (see [10]). Let 𝐴 ∈ H𝑚×𝑛, 𝐵 ∈ H𝑝×𝑞, 𝐷 ∈ H𝑚×𝑞 be
known and 𝑋 ∈ H𝑛×𝑝 unknown. Then the matrix equation

𝐴𝑋𝐵 = 𝐷 (17)

is consistent if and only if

𝐴𝐴
+
𝐷𝐵
+
𝐵 = 𝐷. (18)

In that case, the general solution is

𝑋 = 𝐴
+
𝐷𝐵
+
+ 𝐿
𝐴
𝑌
1
+ 𝑌
2
𝑅
𝐵
, (19)

where𝑌
1
,𝑌
2
are any matrices with compatible dimensions over

H.

By Lemma 1, let the singular value decomposition of the
matrix 𝐴

22
and 𝐵

11
in Problem 1 be

𝐴
22
= 𝑄(

Λ 0

0 0
)𝑅
∗
, (20)

𝐵
11
= 𝑈(

Σ 0

0 0
)𝑉
∗
, (21)
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where Λ = diag(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑠
) is a positive diagonal matrix,

𝜆
𝑖
̸= 0 (𝑖 = 1, . . . , 𝑠) are the singular values of 𝐴

22
, 𝑠 =

𝑟(𝐴
22
), Σ = diag(𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑟
) is a positive diagonal matrix,

𝜎
𝑖
̸= 0 (𝑖 = 1, . . . , 𝑟) are the singular values of 𝐵

11
and 𝑟 =

𝑟(𝐵
11
).
𝑄 = (𝑄

1
𝑄
2
) ∈ H𝑚2×𝑚2 , 𝑅 = (𝑅

1
𝑅
2
) ∈ H𝑛2×𝑛2 ,

𝑈 = (𝑈
1
𝑈
2
) ∈ H𝑛1×𝑛1 , 𝑉 = (𝑉

1
𝑉
2
) ∈ H𝑚1×𝑚1 are unitary

quaternion matrices, where 𝑄
1
∈ H𝑚2×𝑠, 𝑅

1
∈ H𝑛2×𝑠, 𝑈

1
∈

H𝑛1×𝑟, and 𝑉
1
∈ H𝑚1×𝑟.

Theorem 4. Problem 1 has a solution if and only if the
following conditions are satisfied:

(a) 𝑟 ( 𝐴12
𝐴
22

) = 𝑛
2
,

(b) 𝑛
2
− 𝑟(𝐴

22
) = 𝑚

1
− 𝑟(𝐵
11
), that is 𝑛

2
− 𝑠 = 𝑚

1
− 𝑟,

(c) R(𝐴
21
𝐵
11
) ⊂R(𝐴

22
),

(d) R(𝐴
∗

12
𝐵
∗

11
) ⊂R(𝐴

∗

22
).

In that case, the general solution has the form of

𝐴
11
= 𝐵
+

11
+ 𝐴
12
𝑅(

Λ
−1
𝑄
∗

1
𝐴
21
𝑈
1
Σ 0

𝐻 −(𝑉
∗

2
𝐴
12
𝑅
2
)
−1)

× 𝑉
∗
𝐵
+

11
+ 𝑌 − 𝑌𝐵

11
𝐵
+

11
,

(22)

where 𝐻 is an arbitrary matrix in H(𝑛2−𝑠)×𝑟 and 𝑌 is an
arbitrary matrix in H𝑚1×𝑛1 .

Proof. If there exists an 𝑚
1
× 𝑛
1
matrix 𝐴

11
such that 𝐴 is

nonsingular and 𝐵
11
is the corresponding block of 𝐴−1, then

(a) is satisfied. From 𝐴𝐵 = 𝐵𝐴 = 𝐼, we have that

𝐴
21
𝐵
11
+ 𝐴
22
𝐵
21
= 0,

𝐵
11
𝐴
12
+ 𝐵
12
𝐴
22
= 0,

(23)

so that (c) and (d) are satisfied.
By (11), we have

𝑟 (𝐴
22
) + 𝑛 (𝐴

22
) = 𝑛
2
, 𝑟 (𝐵

11
) + 𝑛 (𝐵

11
) = 𝑚

1
. (24)

From Lemma 2, Notice that ( 𝐴11 𝐴12
𝐴
21
𝐴
22

) is the corresponding
partitioning of 𝐵−1, we have

𝑛 (𝐵
11
) = 𝑛 (𝐴

22
) , (25)

implying that (b) is satisfied.
Conversely, from (c), we know that there exists a matrix

𝐾 ∈ H𝑛2×𝑚1 such that

𝐴
21
𝐵
11
= 𝐴
22
𝐾. (26)

Let

𝐵
21
= −𝐾. (27)

From (20), (21), and (26), we have

𝐴
21
𝑈(

Σ 0

0 0
)𝑉
∗
= 𝑄(

Λ 0

0 0
)𝑅
∗
𝐾. (28)

It follows that

𝑄
∗
𝐴
21
𝑈(

Σ 0

0 0
)𝑉
∗
𝑉 = 𝑄

∗
𝑄(

Λ 0

0 0
)𝑅
∗
𝐾𝑉. (29)

This implies that

(

𝑄
∗

1
𝐴
21
𝑈
1
𝑄
∗

1
𝐴
21
𝑈
2

𝑄
∗

2
𝐴
21
𝑈
1
𝑄
∗

2
𝐴
21
𝑈
2

)(
Σ 0

0 0
)

= (
Λ 0

0 0
)(

𝑅
∗

1
𝐾𝑉
1
𝑅
∗

1
𝐾𝑉
2

𝑅
∗

2
𝐾𝑉
1
𝑅
∗

2
𝐾𝑉
2

) .

(30)

Comparing corresponding blocks in (30), we obtain

𝑄
∗

2
𝐴
21
𝑈
1
= 0. (31)

Let 𝑅∗𝐾𝑉 = 𝐾̂. From (29), (30), we have

𝐾̂ = (
Λ
−1
𝑄
∗

1
𝐴
21
𝑈
1
Σ 0

𝐻 𝐾
22

) ,

𝐻 ∈ H
(𝑛
2
−𝑠)×𝑟

, 𝐾
22
∈ H
(𝑛
2
−𝑠)×(𝑚

1
−𝑟)
.

(32)

In the same way, from (d), we can obtain

𝑉
∗

1
𝐴
12
𝑅
2
= 0. (33)

Notice that ( 𝐴12
𝐴
22

) in (a) is a full column rank matrix. By (20),
(21), and (33), we have

(
0 𝑄
∗

𝑉
∗

0
)(

𝐴
12

𝐴
22

)𝑅 = (

Λ 0

0 0

𝑉
∗

1
𝐴
12
𝑅
1
𝑉
∗

1
𝐴
12
𝑅
2

𝑉
∗

2
𝐴
12
𝑅
1
𝑉
∗

2
𝐴
12
𝑅
2

), (34)

so that

𝑛
2
= 𝑟(

𝐴
12

𝐴
22

) = 𝑟((
0 𝑄
∗

𝑉
∗

0
)(

𝐴
12

𝐴
22

)𝑅)

= 𝑟(

Λ 0

0 0

𝑉
∗

1
𝐴
12
𝑅
1
𝑉
∗

1
𝐴
12
𝑅
2

𝑉
∗

2
𝐴
12
𝑅
1
𝑉
∗

2
𝐴
12
𝑅
2

)

= 𝑟 (Λ) + 𝑟 (𝑉
∗

2
𝐴
12
𝑅
2
)

= 𝑠 + 𝑟 (𝑉
∗

2
𝐴
12
𝑅
2
) .

(35)

It follows from (b) and (35) that 𝑉𝑇
2
𝐴
12
𝑅
2
is a full column

rank matrix, so it is nonsingular.
From 𝐴𝐵 = 𝐼, we have the following matrix equation:

𝐴
11
𝐵
11
+ 𝐴
12
𝐵
21
= 𝐼, (36)

that is

𝐴
11
𝐵
11
= 𝐼 − 𝐴

12
𝐵
21
, 𝐼 ∈ H

𝑚
1
×𝑚
1
, (37)
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where 𝐵
11
, 𝐴
12

were given, 𝐵
21

= −𝐾 (from (27)). By
Lemma 3, the matrix equation (37) has a solution if and only
if

(𝐼 − 𝐴
12
𝐵
21
) 𝐵
+

11
𝐵
11
= 𝐼 − 𝐴

12
𝐵
21
. (38)

By (21), (27), (32), and (33), we have that (38) is equivalent to:

(𝐼 + 𝐴
12
𝐾)𝑉(

Σ
−1

0

0 0
)𝑈
∗
𝑈(

Σ 0

0 0
)𝑉
∗
= 𝐼 + 𝐴

12
𝐾. (39)

We simplify the equation above.The left hand side reduces to
(𝐼 + 𝐴

12
𝐾)𝑉
1
𝑉
∗

1
and so we have

𝐴
12
𝐾𝑉
1
𝑉
∗

1
− 𝐴
12
𝐾 = 𝐼 − 𝑉

1
𝑉
∗

1
. (40)

So,

𝐴
12
𝑅𝐾̂𝑉
∗
𝑉
1
𝑉
∗

1
− 𝐴
12
𝑅𝐾̂𝑉
∗
= (𝑉1 𝑉2) (

𝑉
∗

1

𝑉
∗

2

) − 𝑉
1
𝑉
∗

1
.

(41)

This implies that

𝐴
12
𝑅𝐾̂(

𝑉
∗

1
𝑉
1

𝑉
∗

2
𝑉
1

)𝑉
∗

1
− 𝐴
12
𝑅𝐾̂(

𝑉
∗

1

𝑉
∗

2

) = 𝑉
2
𝑉
∗

2
, (42)

so that

𝐴
12
𝑅𝐾̂(

𝐼

0
)𝑉
∗

1
− 𝐴
12
𝑅𝐾̂(

𝑉
∗

1

𝑉
∗

2

) = 𝑉
2
𝑉
∗

2
. (43)

So,

−𝐴
12
𝑅𝐾̂(

0

𝑉
∗

2

) = 𝑉
2
𝑉
∗

2
, (44)

and hence,

− (𝐴12𝑅1 𝐴12𝑅2) (
Λ
−1
𝑄
∗

1
𝐴
21
𝑈
1
Σ 0

𝐻 𝐾
22

)(
0

𝑉
∗

2

) = 𝑉
2
𝑉
∗

2
.

(45)

Finally, we obtain

𝐴
12
𝑅
2
𝐾
22
𝑉
∗

2
= −𝑉
2
𝑉
∗

2
. (46)

Multiplying both sides of (46) by 𝑉∗ from the left, consider-
ing (33) and the fact that 𝑉∗

2
𝐴
12
𝑅
2
is nonsingular, we have

𝐾
22
= −(𝑉

∗

2
𝐴
12
𝑅
2
)
−1

. (47)

From Lemma 3, (38), (47), Problem 1 has a solution and the
general solution is

𝐴
11
= 𝐵
+

11
+ 𝐴
12
𝑅(

Λ
−1
𝑄
∗

1
𝐴
21
𝑈
1
Σ 0

𝐻 −(𝑉
∗

2
𝐴
12
𝑅
2
)
−1
)

× 𝑉
∗
𝐵
+

11
+ 𝑌 − 𝑌𝐵

11
𝐵
+

11
,

(48)

where 𝐻 is an arbitrary matrix in H(𝑛2−𝑠)×𝑟 and 𝑌 is an
arbitrary matrix in H𝑚1×𝑛1 .

3. An Example

In this section, we give a numerical example to illustrate the
theoretical results.

Example 5. Consider Problem 1 with the parameter matrices
as follows:

𝐴
12
= (

2 + 𝑗
1

2
𝑘

−𝑘 1 +
1

2
𝑗

) ,

𝐴
21
= (

3

2
+
1

2
𝑖 −

1

2
𝑗 −

1

2
𝑘

1

2
𝑗 +

1

2
𝑘

3

2
+
1

2
𝑖

) ,

𝐴
22
= (

2 𝑖

2𝑗 𝑘
) , 𝐵

11
= (

1 𝑖

𝑗 𝑘
) .

(49)

It is easy to show that (c), (d) are satisfied, and that

𝑛
2
= 𝑟(

𝐴
12

𝐴
22

) = 2,

𝑛
2
− 𝑟 (𝐴

22
) = 𝑚

1
− 𝑟 (𝐵11) = 0,

(50)

so (a), (b) are satisfied too. Therefore, we have

𝐵
+

11
= (

1

2
−
1

2
𝑗

−
1

2
𝑖 −

1

2
𝑘

) ,

𝐴
22
= 𝑄(

Λ 0

0 0
)𝑅
∗
, 𝐵

11
= 𝑈(

Σ 0

0 0
)𝑉
∗
,

(51)

where

𝑄 =
1

√2

(
1 𝑖

𝑗 𝑘
) , Λ = (

2√2 0

0 √2
) ,

𝑅 = (
1 0

0 1
) , 𝑈 =

1

√2

(
1 𝑖

𝑗 𝑘
) ,

Σ = (
√2 0

0 √2
) , 𝑉 = (

1 0

0 1
) .

(52)

We also have

𝑄
1
=

1

√2

(
1 𝑖

𝑗 𝑘
) , 𝑅

1
= (

1 0

0 1
) ,

𝑈
1
=

1

√2

(
1 𝑖

𝑗 𝑘
) , 𝑉

1
= (

1 0

0 1
) .

(53)



Journal of Applied Mathematics 5

By Theorem 4, for an arbitrary matrices 𝑌 ∈ H2×2, we
have

𝐴
11
= 𝐵
+

11
+ 𝐴
12
𝑅 (Λ
−1
𝑄
∗

1
𝐴
21
𝑈
1
Σ)𝑉
∗
𝐵
+

11
+ 𝑌 − 𝑌𝐵

11
𝐵
+

11

= (

3

2
+
1

4
𝑗 +

1

4
𝑘

3

4
+
1

4
𝑖 −

3

2
𝑗

1

2
− 𝑖 +

1

4
𝑗 −

1

4
𝑘
1

4
−
3

4
𝑖 −

1

2
𝑗 − 𝑘

) ,

(54)

it follows that

𝐴 =
(
(

(

3

2
+
1

4
𝑗 +
1

4
𝑘
3

4
+
1

4
𝑖 −
3

2
𝑗 2 + 𝑗

1

2
𝑘

1

2
− 𝑖 +
1

4
𝑗 −
1

4
𝑘
1

4
−
3

4
𝑖 −
1

2
𝑗 − 𝑘 −𝑘 1 +

1

2
𝑗

3

2
+
1

2
𝑖 −

1

2
𝑗 −
1

2
𝑘 2 𝑖

1

2
𝑗 +
1

2
𝑘

3

2
+
1

2
𝑖 2𝑗 𝑘

)
)

)

,

𝐴
−1
=(

1 𝑖 −1 −1

𝑗 𝑘 0 −1

−1 0
3

4

1

2
−
3

4
𝑗

−1 −1
1

2
− 𝑖

1

2
−
1

2
𝑖 −

1

2
𝑗 − 𝑘

).

(55)

The results verify the theoretical findings of Theorem 4.
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