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We study a generalized double sinh-Gordon equation, which has applications in various fields, such as fluid dynamics, integrable
quantum field theory, and kink dynamics. We employ the Exp-function method to obtain new exact solutions for this generalized
double sinh-Gordon equation. This method is important as it gives us new solutions of the generalized double sinh-Gordon
equation.

1. Introduction

It is well known that finding exact travelling wave solutions of
nonlinear partial differential equations (NLPDEs) is useful in
many scientific applications such as fluid mechanics, plasma
physics, and quantum field theory. Due to these applications
many researchers are investigating exact solutions ofNLPDEs
since they play a vital role in the study of nonlinear phys-
ical phenomena. Finding exact solutions of such NLPDEs
provides us with a better understanding of the physical
phenomena that these NLPDEs describe. Several techniques
have been presented in the literature to find exact solutions
of the NLPDEs. These include the homogeneous balance
method, the Weierstrass elliptic function expansion method,
the 𝐹-expansion method, the (𝐺󸀠/𝐺)-expansion method,
the Exp-function method, the tanh function method, the
extended tanh function method, and the Lie group method
[1–10].

In this work, we study one such NLPDE, namely, the
generalized double sinh-Gordon equation:

𝑢
𝑡𝑡
− 𝑘𝑢
𝑥𝑥
+ 2𝛼 sinh (𝑛𝑢) + 𝛽 sinh (2𝑛𝑢) = 0, 𝑛 ≥ 1,

(1)

which appears in many scientific applications [11–13]. It
should be noted that when 𝑘 = 𝑎, 𝛼 = (1/2)𝑏, and 𝛽 = 0,

(1) becomes the generalized sinh-Gordon equation [14, 15].
Furthermore, if 𝑛 = 𝑎 = 1 and 𝑏 = 2, (1) reduces to the sinh-
Gordon equation [16].

Many authors have studied the generalized double sinh-
Gordon equation (1). Travelling waves solutions of (1) were
obtained in [11] by using the tanh function method and the
variable separable method. In [12] the method of bifurcation
theory of dynamical system was used to prove the existence
of periodic wave, solitary wave, kink and antikink wave, and
unbounded wave solutions of (1). It should be noted that
solutions obtained in [12] were different the ones obtained
in [11]. Recently, solitary and periodic waves solutions of
(1) were found in [13] by employing (𝐺

󸀠
/𝐺)-expansion

method. It is further shown in [13] that solutions obtained by
using the (𝐺󸀠/𝐺)-expansion method are more general than
those given in [11], which were obtained by tanh function
method.

In this paper, we employ an entirely different method,
known as the Exp-function method, to obtain new exact
solutions of the generalized sinh-Gordon equation (1). The
paper is structured as follows. In Section 2, we obtain exact
solutions of the generalized double sinh-Gordon equation (1)
with the help of the Exp-function method. In Section 3 we
present concluding remarks.
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2. Exact Solutions of (1) Using
Exp-Function Method

In this section we employ the Exp-function method to
solve the generalized double sinh-Gordon equation (1). This
methodwas introduced byHe andWu [17].TheExp-function
method results in the travelling wave solution based on
the assumption that the solution can be expressed in the
following form:

𝐻(𝑧) =
∑
𝑑

𝑛=−𝑐
𝑎
𝑛
exp (𝑛𝑧)

∑
𝑞

𝑚=−𝑝
𝑏
𝑚
exp (𝑚𝑧)

, (2)

where 𝑐, 𝑑, 𝑝, and 𝑞 are positive integers that can be
determined and 𝑎

𝑛
and 𝑏
𝑚
are unknown constants. According

to Exp-function method, we introduce the travelling wave
substitution 𝑢(𝑥, 𝑡) = 𝑊(𝑧), where 𝑧 = 𝑥 − 𝑐𝑡. Then (1)
transforms to the nonlinear ordinary differential equation:

(𝑐
2
− 𝑘)𝑊

󸀠󸀠

(𝑧) + 2𝛼 sinh (𝑛𝑊 (𝑧)) + 𝛽 sinh (2𝑛𝑊 (𝑧)) = 0.

(3)

Further, using the transformation𝑊(𝑧) = (1/𝑛) ln(𝐻(𝑧)) on
(3), we obtain

2 (𝑐
2
− 𝑘)𝐻 (𝑧)𝐻

󸀠󸀠

(𝑧) − 2 (𝑐
2
− 𝑘)𝐻

󸀠

(𝑧)
2
+ 2𝛼𝑛𝐻(𝑧)

3

− 2𝛼𝑛𝐻 (𝑧) + 𝛽𝑛𝐻(𝑧)
4
− 𝛽𝑛 = 0.

(4)

We assume that the solution of (4) can be expressed as

𝐻(𝑧) =
𝑎
𝑐
exp (𝑐𝑧) + ⋅ ⋅ ⋅ + 𝑎

−𝑑
exp (−𝑑𝑧)

𝑏
𝑝
exp (𝑝𝑧) + ⋅ ⋅ ⋅ + 𝑏

−𝑞
exp (−𝑞𝑧)

. (5)

The values of 𝑐 and 𝑑,𝑝 and 𝑞 can be determined by balancing
the linear term of the highest order with the highest order
of nonlinear term in (4), that is, 𝐻𝐻󸀠󸀠 and 𝐻4. By straight
forward calculation, we have

𝐻𝐻
󸀠󸀠
=
𝑐
1
exp [(2𝑐 + 3𝑝) 𝑧] + ⋅ ⋅ ⋅
𝑐
2
exp [5𝑝𝑧] + ⋅ ⋅ ⋅

,

𝐻
4
=
𝑐
3
exp [4𝑐𝑧] + ⋅ ⋅ ⋅

𝑐
4
exp [4𝑝𝑧] + ⋅ ⋅ ⋅

=
𝑐
3
exp [(4𝑐 + 𝑝) 𝑧] + ⋅ ⋅ ⋅
𝑐
4
exp [5𝑝𝑧] + ⋅ ⋅ ⋅

,

(6)

where 𝑐
𝑖
are coefficients only for simplicity. Balancing the

highest order of Exp-function in (6), we have 2𝑐+3𝑝 = 4𝑐+𝑝,
which yields 𝑐 = 𝑝. Similarly, we balance the lowest order in
(4) to determine values of 𝑑 and 𝑞. We have

𝐻𝐻
󸀠󸀠
=
⋅ ⋅ ⋅ + 𝑠

1
exp [− (2𝑑 + 3𝑞) 𝑧]

⋅ ⋅ ⋅ + 𝑠
2
exp [−5𝑞𝑧]

,

𝐻
4
=
⋅ ⋅ ⋅ + 𝑠

3
exp [4𝑑𝑧]

⋅ ⋅ ⋅ + 𝑠
4
exp [−4𝑞𝑧]

=
⋅ ⋅ ⋅ + 𝑠

3
exp [− (4𝑑 + 𝑞) 𝑧]

⋅ ⋅ ⋅ + 𝑠
4
exp [−5𝑞𝑧]

,

(7)

where 𝑠
𝑖
are coefficients only for simplicity. Balancing the

lowest order of Exp-function in (7), we have 2𝑑+3𝑞 = 4𝑑+𝑞,
which yields 𝑑 = 𝑞. For simplicity, we first set 𝑐 = 𝑝 = 1 and
𝑑 = 𝑞 = 1. then (5) reduces to

𝐻(𝑧) =
𝑎
1
exp (𝑧) + 𝑎

0
+ 𝑎
−1
exp (−𝑧)

𝑏
1
exp (𝑧) + 𝑏

0
+ 𝑏
−1
exp (−𝑧)

. (8)

Inserting (8) into (4) and using Maple, we obtain

1

𝐵
[𝐶
4
exp (4𝑧) + 𝐶

3
exp (3𝑧) + 𝐶

2
exp (2𝑧)

+ 𝐶
1
exp (𝑧) + 𝐶

0
+ 𝐶
−1
exp (−𝑧)

+𝐶
−2
exp (−2𝑧) + 𝐶

−3
exp (−3𝑧) + 𝐶

−4
exp (−4𝑧)] = 0,

(9)

where

𝐵 = (𝑏
1
exp (𝑧) + 𝑏

0
+ 𝑏
−1
exp (−𝑧))4,

𝐶
4
= 2𝛼𝑎

3

1
𝑏
1
𝑛 − 𝛽𝑏

4

1
𝑛 + 𝛽𝑎

4

1
𝑛 − 2𝛼𝑎

1
𝑏
3

1
𝑛,

𝐶
3
= −2𝑎

2

1
𝑏
0
𝑏
1
𝑐
2
+ 2𝑎
1
𝑎
0
𝑏
2

1
𝑐
2
+ 6𝛼𝑎

0
𝑎
2

1
𝑏
1
𝑛

− 6𝛼𝑎
1
𝑏
0
𝑏
2

1
𝑛 + 2𝑎

2

1
𝑏
0
𝑏
1
𝑘 − 2𝑎

0
𝑎
1
𝑏
2

1
𝑘

+ 2𝛼𝑎
3

1
𝑏
0
𝑛 − 2𝑎

0
𝑎
1
𝑏
2

1
𝑘 + 2𝛼𝑎

3

1
𝑏
0
𝑛

+ 4𝛽𝑎
0
𝑎
3

1
𝑛 − 2𝛼𝑎

0
𝑏
3

1
𝑛 − 4𝛽𝑏

0
𝑏
3

1
𝑛,

𝐶
2
= 4𝛽𝑎

−1
𝑎
3

1
𝑛 − 8𝑎

2

1
𝑏
−1
𝑏
1
𝑐
2
+ 8𝑎
−1
𝑎
1
𝑏
2

1
𝑐
2

+ 8𝑎
2

1
𝑏
−1
𝑏
1
𝑘 − 8𝑎

−1
𝑎
1
𝑏
2

1
𝑘 + 2𝛼𝑎

3

1
𝑏
−1
𝑛

− 2𝛼𝑎
−1
𝑏
3

1
𝑛 − 4𝛽𝑏

−1
𝑏
3

1
𝑛 + 6𝛼𝑎

0
𝑎
2

1
𝑏
0
𝑛

+ 6𝛼𝑎
2

0
𝑎
1
𝑏
1
𝑛 − 6𝛼𝑎

1
𝑏
2

0
𝑏
1
𝑛 − 6𝛽𝑏

2

0
𝑏
2

1
𝑛

+ 6𝛼𝑎
−1
𝑎
2

1
𝑏
1
𝑛 − 6𝛼𝑎

1
𝑏
2

1
𝑏
−1
𝑛 + 6𝛽𝑎

2

0
𝑎
2

1
𝑛

− 6𝛼𝑎
0
𝑏
0
𝑏
2

1
𝑛,

𝐶
1
= −2𝑎

2

0
𝑏
0
𝑏
1
𝑐
2
+ 2𝑎
0
𝑎
1
𝑏
2

0
𝑐
2
+ 2𝑎
2

0
𝑏
0
𝑏
1
𝑘

− 2𝑎
0
𝑎
1
𝑏
2

0
𝑘 − 2𝑎

2

1
𝑏
0
𝑏
−1
𝑐
2
+ 2𝑎
−1
𝑎
0
𝑏
2

1
𝑐
2

− 2𝑎
0
𝑎
−1
𝑏
2

1
𝑘 + 2𝛼𝑎

3

0
𝑏
1
𝑛 + 4𝛽𝑎

3

0
𝑎
1
𝑛 − 2𝛼𝑎

1
𝑏
3

0
𝑛

− 4𝛽𝑏
3

0
𝑏
1
𝑛 + 12𝑎

−1
𝑎
1
𝑏
0
𝑏
1
𝑐
2
− 12𝑎
−1
𝑎
1
𝑏
0
𝑏
1
𝑘

+ 12𝑎
0
𝑎
1
𝑏
−1
𝑏
1
𝑘 + 6𝛼𝑎

2

0
𝑎
1
𝑏
0
𝑛 − 6𝛼𝑎

0
𝑏
2

0
𝑏
1
𝑛

+ 12𝛼𝑎
−1
𝑎
0
𝑎
1
𝑏
1
𝑛 − 12𝛼𝑎

1
𝑏
−1
𝑏
0
𝑏
1
𝑛

+ 6𝛼𝑎
−1
𝑎
2

1
𝑏
0
𝑛 − 6𝛼𝑎

0
𝑏
−1
𝑏
2

1
𝑛 − 6𝛼𝑎

−1
𝑏
0
𝑏
2

1
𝑛

+ 6𝛼𝑎
0
𝑎
2

1
𝑏
−1
𝑛 + 12𝛽𝑎

−1
𝑎
0
𝑎
2

1
𝑛 − 12𝛽𝑏

−1
𝑏
0
𝑏
2

1
𝑛

+ 2𝑎
2

1
𝑏
0
𝑏
−1
𝑘 − 12𝑎

0
𝑎
1
𝑏
−1
𝑏
1
𝑐
2
,
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𝐶
0
= 2𝛼𝑎

3

0
𝑏
0
𝑛 − 2𝛼𝑎

0
𝑏
3

0
𝑛 + 𝛽𝑎

4

0
𝑛

+ 6𝛼𝑎
−1
𝑎
2

1
𝑏
−1
𝑛 + 6𝛼𝑎

2

0
𝑎
1
𝑏
−1
𝑛 + 6𝛼𝑎

2

−1
𝑎
1
𝑏
1
𝑛

+ 6𝛼𝑎
−1
𝑎
2

0
𝑏
1
𝑛 + 12𝛽𝑎

−1
𝑎
2

0
𝑎
1
𝑛 − 6𝛼𝑎

1
𝑏
2

−1
𝑏
1
𝑛

− 6𝛼𝑎
1
𝑏
−1
𝑏
2

0
𝑛 − 6𝛼𝑎

−1
𝑏
−1
𝑏
2

1
𝑛 − 𝛽𝑏

4

0
𝑛

− 6𝛼𝑎
−1
𝑏
2

0
𝑏
1
𝑛 − 12𝛽𝑏

−1
𝑏
2

0
𝑏
1
𝑛 + 8𝑎

−1
𝑎
1
𝑏
2

0
𝑐
2

− 8𝑎
2

0
𝑏
−1
𝑏
1
𝑐
2
− 8𝑎
−1
𝑎
1
𝑏
2

0
𝑘 + 8𝑎

2

0
𝑏
−1
𝑏
1
𝑘

+ 6𝛽𝑎
2

−1
𝑎
2

1
𝑛 − 6𝛽𝑏

2

−1
𝑏
2

1
𝑛 + 12𝛼𝑎

−1
𝑎
0
𝑎
1
𝑏
0
𝑛

− 12𝛼𝑎
0
𝑏
−1
𝑏
0
𝑏
1
𝑛,

𝐶
−1
= 12𝛼𝑎

−1
𝑎
0
𝑎
1
𝑏
−1
𝑛 − 12𝛼𝑎

−1
𝑏
−1
𝑏
0
𝑏
1
𝑛

+ 2𝑎
−1
𝑎
0
𝑏
2

0
𝑐
2
− 2𝑎
2

0
𝑏
−1
𝑏
0
𝑐
2
+ 2𝑎
2

0
𝑏
−1
𝑏
0
𝑘

− 2𝑎
−1
𝑎
0
𝑏
2

0
𝑘 + 2𝑎

0
𝑎
1
𝑏
2

−1
𝑐
2
− 2𝑎
2

−1
𝑏
0
𝑏
1
𝑐
2

− 2𝑎
0
𝑎
1
𝑏
2

−1
𝑘 + 2𝑎

2

−1
𝑏
0
𝑏
1
𝑘 + 2𝛼𝑎

3

0
𝑏
−1
𝑛

+ 4𝛽𝑎
−1
𝑎
3

0
𝑛 − 2𝛼𝑎

−1
𝑏
3

0
𝑛 − 4𝛽𝑏

−1
𝑏
3

0
𝑛

+ 12𝑎
−1
𝑎
1
𝑏
−1
𝑏
0
𝑐
2
− 12𝑎
−1
𝑎
0
𝑏
−1
𝑏
1
𝑐
2

− 12𝑎
−1
𝑎
1
𝑏
−1
𝑏
0
𝑘 + 12𝑎

−1
𝑎
0
𝑏
−1
𝑏
1
𝑘

+ 6𝛼𝑎
−1
𝑎
2

0
𝑏
0
𝑛 − 6𝛼𝑎

0
𝑏
−1
𝑏
2

0
𝑛 + 6𝛼𝑎

2

−1
𝑎
1
𝑏
0
𝑛

+ 6𝛼𝑎
2

−1
𝑎
0
𝑏
1
𝑛 + 12𝛽𝑎

2

−1
𝑎
0
𝑎
1
𝑛 − 6𝛼𝑎

1
𝑏
2

−1
𝑏
0
𝑛

− 6𝛼𝑎
0
𝑏
2

−1
𝑏
1
𝑛 − 12𝛽𝑏

2

−1
𝑏
0
𝑏
1
𝑛,

𝐶
−2
= 2𝛼𝑎

3

−1
𝑏
1
𝑛 + 8𝑎

−1
𝑎
1
𝑏
2

−1
𝑐
2
+ 8𝑎
2

−1
𝑏
−1
𝑏
1
𝑘

− 8𝑎
−1
𝑎
1
𝑏
2

−1
𝑘 + 4𝛽𝑎

3

−1
𝑎
1
𝑛 − 4𝛽𝑏

3

−1
𝑏
1
𝑛

− 2𝛼𝑎
1
𝑏
3

−1
𝑛 − 8𝑎

2

−1
𝑏
−1
𝑏
1
𝑐
2
+ 6𝛼𝑎

−1
𝑎
2

0
𝑏
−1
𝑛

+ 6𝛼𝑎
2

−1
𝑎
0
𝑏
0
𝑛 − 6𝛼𝑎

0
𝑏
2

−1
𝑏
0
𝑛 + 6𝛼𝑎

2

−1
𝑎
1
𝑏
−1
𝑛

− 6𝛼𝑎
−1
𝑏
2

−1
𝑏
1
𝑛 + 6𝛽𝑎

2

−1
𝑎
2

0
𝑛 − 6𝛽𝑏

2

−1
𝑏
2

0
𝑛

− 6𝛼𝑎
−1
𝑏
−1
𝑏
2

0
𝑛,

𝐶
−3
= 6𝛼𝑎

0
𝑎
2

−1
𝑏
−1
𝑛 − 6𝛼𝑎

−1
𝑏
2

−1
𝑏
0
𝑛

− 2𝑎
2

−1
𝑏
−1
𝑏
0
𝑐
2
+ 2𝑎
−1
𝑎
0
𝑏
2

−1
𝑐
2

+ 2𝑎
2

−1
𝑏
0
𝑏
−1
𝑘 − 2𝑎

−1
𝑎
0
𝑏
2

−1
𝑘

+ 2𝛼𝑎
3

−1
𝑏
0
𝑛 + 4𝛽𝑎

0
𝑎
3

−1
𝑛

− 2𝛼𝑎
0
𝑏
3

−1
𝑛 − 4𝛽𝑏

0
𝑏
3

−1
𝑛,

𝐶
−4
= 𝛽𝑎
4

−1
𝑛 − 𝛽𝑏

4

−1
𝑛 + 2𝛼𝑎

3

−1
𝑏
−1
𝑛 − 2𝛼𝑎

−1
𝑏
3

−1
𝑛.

(10)

Equating the coefficients of exp(𝑧) in (9) to zero, we obtain a
set of algebraic equations:

𝐶
4
= 0, 𝐶

3
= 0, 𝐶

2
= 0, 𝐶

1
= 0, 𝐶

0
= 0,

𝐶
−1
= 0, 𝐶

−2
= 0, 𝐶

−3
= 0, 𝐶

−4
= 0.

(11)

Solving the system (11) with the help of Maple, we obtain the
following three cases.

Case 1. We have the following:

𝑎
−1
=𝑏
−1
, 𝑎

0
=−𝑏
0
, 𝑎

1
=𝑏
1
, 𝛽=

𝛼𝑏
2

0
− 4𝛼𝑏

1
𝑏
−1

4𝑏
1
𝑏
−1

,

𝑘 =
𝛼𝑏
2

0
𝑛 + 2𝑏

−1
𝑏
1
𝑐
2

2𝑏
−1
𝑏
1

.

(12)

Case 2. We have the following:

𝑎
−1
=
𝑏
−1
𝑏
1

𝑎
1

, 𝑎
0
= 0, 𝑏

0
= 0, 𝛼 =

−𝛽 (𝑎
2

1
+ 𝑏
2

1
)

2𝑎
1
𝑏
1

,

𝑘 =
−2𝛽𝑎
2

1
𝑏
2

1
𝑛 + 𝛽𝑎

4

1
𝑛 + 𝛽𝑏

4

1
𝑛 + 8𝑎

2

1
𝑏
2

1
𝑐
2

8𝑎
2

1
𝑏
2

1

.

(13)

Case 3. We have the following:

𝑎
−1
= −𝜙𝑏

1
, 𝑏

−1
= −𝜙𝑎

1
, 𝛼 =

−𝛽 (𝑎
2

1
+ 𝑏
2

1
)

2𝑎
1
𝑏
1

,

𝑘 =
−2𝛽𝑎
2

1
𝑏
2

1
𝑛 + 𝛽𝑎

4

1
𝑛 + 𝛽𝑏

4

1
𝑛 + 2𝑎

2

1
𝑏
2

1
𝑐
2

2𝑎
2

1
𝑏
2

1

,

(14)

where 𝜙 = (−𝑎
0
𝑎
2

1
𝑏
0
+𝑎
2

0
𝑎
1
𝑏
1
+𝑎
1
𝑏
2

0
𝑏
1
−𝑎
0
𝑏
0
𝑏
2

1
)/(𝑎
1
−𝑏
1
)
2
(𝑎
1
+

𝑏
1
)
2.

Substituting values from (12) into (8), we obtain

𝐻(𝑧) =
𝑏
1
exp (𝑧) − 𝑏

0
+ 𝑏
−1
exp (−𝑧)

𝑏
1
exp (𝑧) + 𝑏

0
+ 𝑏
−1
exp (−𝑧)

. (15)

As a result one of the solutions of (1) is given by

𝑢
1
(𝑥, 𝑡) =

1

𝑛
ln(

𝑏
1
exp (𝑧) − 𝑏

0
+ 𝑏
−1
exp (−𝑧)

𝑏
1
exp (𝑧) + 𝑏

0
+ 𝑏
−1
exp (−𝑧)

) , (16)

where 𝑧 = 𝑥−𝑐𝑡, 𝛽 = (𝛼𝑏2
0
−4𝛼𝑏
1
𝑏
−1
)/4𝑏
1
𝑏
−1
, and 𝑘 = (𝛼𝑏2

0
𝑛+

2𝑏
−1
𝑏
1
𝑐
2
)/2𝑏
−1
𝑏
1
.

As a special case, if we choose 𝑏
0
= 2 and 𝑏

−1
= 𝑏
1
= 1 in

(16), then we get 𝛽 = 0, 𝑘 = 2𝛼𝑛 + 𝑐2 and obtain the solution
of the generalized sinh-Gordon equation as

𝑢
1
(𝑥, 𝑡) =

1

𝑛
ln(tanh2 [(1

2
) (𝑥 − 𝑐𝑡)]) , (17)

which is the solution obtained in [14, 15].
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Now substituting the values from (13) (Case 2) into (8)
results in the second solution of (1) as

𝑢
2
(𝑥, 𝑡) =

1

𝑛
ln(

𝑎
1
exp (𝑧) + (𝑏

−1
𝑏
1
/𝑎
1
) exp (−𝑧)

𝑏
1
exp (𝑧) + 𝑏

−1
exp (−𝑧)

) , (18)

with 𝑧 = 𝑥 − 𝑐𝑡, 𝛼 = −𝛽(𝑎2
1
+ 𝑏
2

1
)/2𝑎
1
𝑏
1
, and 𝑘 = (−2𝛽𝑎2

1
𝑏
2

1
𝑛 +

𝛽𝑎
4

1
𝑛 + 𝛽𝑏

4

1
𝑛 + 8𝑎

2

1
𝑏
2

1
𝑐
2
)/8𝑎
2

1
𝑏
2

1
.

The third solution of (1) is obtained by using the values
from (14) (Case 3) and substituting them into (8). Conse-
quently, it is given by

𝑢
3
(𝑥, 𝑡) =

1

𝑛
ln(

𝑎
1
exp (𝑧) + 𝑎

0
− 𝑏
1
𝜙 exp (−𝑧)

𝑏
1
exp (𝑧) + 𝑏

0
− 𝑎
−1
𝜙 exp (−𝑧)

) , (19)

where 𝑧 = 𝑥−𝑐𝑡,𝜙 = (−𝑎
0
𝑎
2

1
𝑏
0
+𝑎
2

0
𝑎
1
𝑏
1
+𝑎
1
𝑏
2

0
𝑏
1
−𝑎
0
𝑏
0
𝑏
2

1
)/(𝑎
1
−

𝑏
1
)
2
(𝑎
1
+ 𝑏
1
)
2, 𝛼 = −𝛽(𝑎2

1
+ 𝑏
2

1
)/2𝑎
1
𝑏
1
, and 𝑘 = (−2𝛽𝑎2

1
𝑏
2

1
𝑛 +

𝛽𝑎
4

1
𝑛 + 𝛽𝑏

4

1
𝑛 + 2𝑎

2

1
𝑏
2

1
𝑐
2
)/2𝑎
2

1
𝑏
2

1
.

To construct more solutions of (1), we now set 𝑐 = 𝑝 = 2
and 𝑑 = 𝑞 = 2. Then (5) reduces to

𝐻(𝑧) = (𝑎
2
exp (2𝑧) + 𝑎

1
exp (𝑧) + 𝑎

0
+ 𝑎
−1
exp (−𝑧)

+ 𝑎
−2
exp (−2𝑧))

× (𝑏
2
exp (𝑧) + 𝑏

1
exp (𝑧) + 𝑏

0

+ 𝑏
−1
exp (−𝑧) + 𝑏

−2
exp (−2𝑧))−1.

(20)

Proceeding as above, we obtain the following three solutions
of (1):

𝑢
4
(𝑥, 𝑡) =

1

𝑛
ln(𝑎
2
exp (2𝑧) + (

𝑎
−1
𝑏
1

𝑏
−1

) exp (𝑧)

+ (
𝑎
−1
𝑏
0

𝑏
−1

) + 𝑎
−1
exp (−𝑧))

× (
𝑎
2
𝑏
−1

𝑎
−1

exp (𝑧) + 𝑏
1
exp (𝑧)

+ 𝑏
0
+ 𝑏
−1
exp (−𝑧))

−1

,

(21)

where 𝑧 = 𝑥 − 𝑐𝑡, 𝛼 = −𝛽(𝑎2
−1
+ 𝑏
2

−1
)/2𝑎
−1
𝑏
−1
,

𝑢
5
(𝑥, 𝑡) =

1

𝑛
ln(

𝑎
2
exp (2𝑧) + 𝑎

1
exp (𝑧) + 𝑏

0

−𝑎
2
exp (𝑧) + 𝑏

1
exp (𝑧) + 𝑏

0

) , (22)

with 𝑧 = 𝑥 − 𝑐𝑡, 𝛽 = 𝛼(𝑏2
1
+ 4𝑎
2
𝑏
0
)/4𝑎
2
𝑏
0
, and 𝑘 = (𝛼𝑛𝑏2

1
+

2𝑎
2
𝑏
0
𝑐
2
)/2𝑎
2
𝑏
0
, and

𝑢
6
(𝑥, 𝑡) =

1

𝑛
ln(

𝑎
2
exp (2𝑧) − 𝑏

0
+ 𝑏
−2
exp (−2𝑧)

𝑎
2
exp (2𝑧) + 𝑏

0
+ 𝑏
−2
exp (−2𝑧)

) , (23)

where 𝑧 = 𝑥 − 𝑐𝑡, 𝛼 = −(8𝑎
2
𝑏
−2
(𝑐
2
− 𝑘)/𝑏

2

0
𝑛), and 𝛽 =

2(4𝑎
2
𝑏
−2
𝑐
2
− 4𝑎
2
𝑏
−2
𝑘 − 𝑏
2

0
𝑐
2
+ 𝑏
2

0
𝑘)/𝑏
2

0
𝑛.
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Figure 1: Profile of solution (16).
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Figure 2: Profile of solution (23).

By taking 𝑛 = 2, 𝑏
−1
= −1, 𝑏

0
= 2, 𝑐 = 1, and 𝑏

1
= −1 in

the solution (16), we have its profile given in Figure 1.
By taking 𝑛 = 3, 𝑏

−2
= 1, 𝑏

0
= 2, 𝑐 = 1, and 𝑎

1
= 1 in the

solution (23), we have its profile given in Figure 2.

3. Concluding Remarks

In this paper we obtained new exact solutions of the gen-
eralized double sinh-Gordon equation (1) using the Exp-
function method. We presented six different solutions of (1).
Earlier, the tanh function, the bifurcation, and the (𝐺󸀠/𝐺)-
expansion methods [11–13] were employed to obtain exact
solutions of (1). The solutions obtained in this paper were
new and were different from the ones obtained in [11–13]. By
taking special values of the constants, we also retrieved the
solution of the generalized sinh-Gordon equation, which was
obtained in [14, 15]. The Exp-function method is very simple
and straightforward method for solving nonlinear partial
differential equations. Indeed this has some pronounced
merit as compared to the other methods. The correctness of
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the solutions obtained here has been verified by substituting
them back into (1).
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