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A new approach of real-time path planning based on belief space is proposed, which solves the problems of modeling the real-time
detecting environment and optimizing in local path planning with the fusing factors. Initially, a double-safe-edges free space is
defined for describing the sensor detecting characters, so as to transform the complex environment into some free areas, which can
help the robots to reach any positions effectively and safely. Then, based on the uncertainty functions and the transferable belief
model (TBM), the basic belief assignment (BBA) spaces of each factor are presented and fused in the path optimizing process. So
an innovative approach for getting the optimized path has been realized with the fusing the BBA and the decision making by the
probability distributing. Simulation results indicate that the new method is beneficial in terms of real-time local path planning.

1. Introduction

Recently, the development and application of autonomous
robots are with growing interest in industrial and military
fields. As we all know, navigation is one of the key technical
problems for autonomous robots, and the most important
factor of navigation is map building based on the sensor
system, especially when the autonomous robots are work-
ing in an entire unknown environment. The environment
is reconstructed bymerging the information transferred from
the sensor system during the motion. To build a practical
map, one of the most difficult problems is due to the poor
environment information of the sensor system which has
inherent wide radiation cone and the phenomenon of multi-
ple reflections. Thus, how to describe these uncertainties and
filter out inaccurate and conflicting information and how to
construct the environment view are the hot issues.

In these few years, there are about three types of
approaches of constructing the environment view that
appeared in exoteric literatures. The first type is the occu-
pancy grid mapping method [1], which represents maps
with fine-grained grids that model the occupied and free
space of the environment.The second type is the geometrical
information mapping method [2], which uses some sets of

line, angles and polygons to describe the geometry of the
environment. The third way is the topological method [3, 4],
which models the environment by a series of landmarks that
are connected via arcs.

In order to describe the uncertainties, or filter out the
conflicting information detected by sensors, the probabilistic
algorithms [5] was proposed by a definitive formulation
through the Bayesian technique originally. Then a family
of algorithms [6] based on fuzzy theory [7] established the
uncertainty information model in each cell. In a similar way,
another way based on Dempster-Shafer theory described the
uncertainty model by using the belief functions. In these
years, the neural network technique have been introduced
with using the learning ability of the neural cell [8].

There is no doubt that the optimization problem is quite
important for autonomous robots path planning. So many
evolutionary optimizing techniques like genetic algorithm
[9–11], neural network [12], and ant colony optimization
[13] are extensively used in solving the global path planning
problems, on condition that the environment has been
detected. But these algorithms do not work in a real-time
local path planning environment, because, besides the path
length, some other factors such as the underwater robot’s
self-characters and the influence of the special environment
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(ocean current, wind speed) also influence the selection of the
local target point in real-time local detecting path planning.
As far as we know, few researchers consider these factors in
solving real-time path planning problems.

In this paper, a novel real-time path planning approach
based on the belief space is introduced. As the transferable
belief model (TBM), which is popular in these years, can
be used to describe a highly flexible model to manage
the uncertainty information in the multisensor data fusion
problems. In particular, many applications of TBMhave been
presented in mobile vehicles and other areas [14–17].

The rest of the paper is organized as follows. In Section 2,
the uncertainty model of the sensor detection is shortly
described, and the main idea of the transferable belief model
is written in Section 3. In Section 4, the complex environment
information is expressed by the double-safe-edges free space,
which can simplify the real-time detecting environment
information and prepare for the real-time path planning.
In Section 5, the belief space is established according to the
belief functions of the factors that affect the selection of the
local target points, so the optimization local target point
can be found at each step. The connection line of these
optimization local target points is the optimization path of the
task. Section 6 shows the experimental results of the newpath
planning approach and Section 7 comprises of conclusion.

2. Uncertainty Model of the Sensor Detection

Sonar is far from being an ideal sensor, mainly due to the
width of the radiation cone and to the multiple reflections
phenomenon. The former does not allow determining the
exact angular position of the obstacle on the fixed angle 𝜃
arc of the circle corresponding to the detected distance. The
latter needs a more thorough explanation. The sonar waves
are reflected in two different ways depending on the surface
irregularities. If their sizes are much smaller than the wave-
length of the signal, we have a diffused reflection; that is, the
incident energy is scattered in all directions; otherwise, the
reflection is mainly specula and the beam may either reach
the receiver after multiple reflections or even get lost [18].

The uncertainty model has been set up by fuzzy measure
approach. A single reading 𝑟 provides the information that
one or more obstacles are located somewhere along the 𝜃
arc of circumference of radius 𝑟. Hence, there is evidence
that points located in the proximity of this arc “occupied.”
On the other hand, points well inside the circular sector of
radius 𝑟 are likely to be “empty.” Tomodel this knowledge, we
introduce the two functions [19]:
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That describe, respectively, how the degree of certainty
of the assertions “empty” and “occupied” varies with 𝜌 for a
given range reading 𝑟. Here, 𝜌 is the distance from the sensor
𝑘
𝑒
and 𝑘

𝑜
are two constants corresponding to the maximum

values attained by the functions, and 2×Δ𝑟 is the width of the
area considered “proximal” to the arc of radius 𝑟 [20].

Since the intensity of the waves decreases to zero at the
borders of the radiation cone, the degree of certainty of each
assertion is assumed to be higher for points close to the
beam axis.This is realized by defining an angular modulation
function [19]:

𝑓
𝑎
(𝜗) = {

𝐷 (𝜗) 0 ≤ |𝜗| ≤ 𝛾

0 |𝜗| > 𝛾,
(3)

𝑔
𝑑
(𝜌) = 1 −

1 + tanh (2 (𝜌 − 𝜌
𝜐
))

2
. (4)

In order to weaken the confidence of each assertion as the
distance from the sensor increases, the parameter 𝜌V plays
the role of a “visibility radiuses,” where a smooth transition
occurs from certainty to uncertainty. The motivation for
introducing this function is twofold. Firstly, as the possibility
ofmultiple reflections increases as the beammakes a loner fly.
Besides, narrow passages appear to be obstructed if seen from
a large distance, due to the sensor wide radiation angle. By
varying the visibility radius according to the characteristics
of the environment, it is possible to obtain a more correct
detection behavior [20].

3. The Transferable Belief Model (TBM)

TBM is a model for describing quantified beliefs based
on belief function. Beliefs can be held at two levels: (1) a
“credal” level where beliefs are entertained and quantified
by belief functions; (2) a “pignistic” level where beliefs can
be used to make decisions and are quantified by probability
functions. The relation between the belief function and the
probability function when decisions must be made is derived
and justified [21].

In TBM, the actual value 𝜔
0
of the variable whose finite

domain is a given set Ω has been considered. A basic
belief mass (BBM) denoted by 𝑚Ω is used to represent the
uncertainty about the value of 𝜔

0
. 𝑚Ω

(𝐴), which is the basic
belief assignment (BBA), is given to 𝐴 ⊆ Ω.𝑚Ω maps 2Ω, the
power set ofΩ on [0, 1], and satisfies [22]:

∑

𝐴⊆Ω

𝑚
Ω

(𝐴) = 1. (5)

The mass 𝑚Ω

(𝐴) represents the part of belief that sup-
ports that the actual valueΩ

0
belongs to𝐴 and without more

specific several useful functions [23].
Belief function is defined as

belΩ (𝐴) = ∑

𝐵:0 ̸= 𝐵⊆𝐴

𝑚
Ω

(𝐵) . (6)

The value belΩ(𝐴) represents the total amount of belief
supporting that 𝜔

0
is in 𝐴 or without supporting that it is in

𝐴 where 𝐴 is the complement of 𝐴 relative toΩ.
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Figure 1: The sketch map of the sensor detection simulation.

Plausibility function is defined as

plΩ (𝐴) = ∑

𝐵:0∩𝐵 ̸= 0

𝑚
Ω

(𝐵) . (7)

The value plΩ(𝐴) represents the total amount of belief
supporting that 𝜔

0
might be in 𝐴 without supporting that it

might be in 𝐴.
Combination rules: in general Bayesian theorem, the

sensor detection 𝑥 is the vector of plausibility pl𝑋[ℎ
𝑖
](𝑥)

for all ℎ
𝑖
∈ 𝐻. The conditional belief can be written by
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𝑖
](𝑥) = 𝑃
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Decision making function is defined as

Bet𝑃Ω

(𝐴) = ∑

𝐵⊆Ω

|𝐴 ∩ 𝐵|

|𝐵|

𝑚
Ω(𝐵)

1 − 𝑚Ω(0)

∀𝐴 ⊆ Ω. (9)

In the TBM, when a decision has to be made, a proba-
bility functions Bet𝑃Ω

(𝐴) on Ω must be adopted. Bet𝑃Ω is
a probability measure.

4. The Simulation of the Process of
the Sensor Detection

4.1. The Process of Detecting of the Sensor. We will build a
simulation environment about the detection process of the
robot sensor for testing the new approach of the real-time
path planning process.The robot sensor is an initiative sensor,
the angle of the detecting is 180∘, and the distance of detecting
is 𝑅, so this paper will make 180 lines which starts from the
particle of the robot and the length are𝑅 and the angle of each
line is 1∘.

In Figure 1, point 𝑜 is the particle of the sensor, the
sector 𝑝𝑜𝑞 is the detecting area of the sensor, the distance

𝑅 is the max distance of detecting, the lines 𝑜𝑟
𝑛
= (𝑛 ∈

[0, 180]) are the sound wave of the sensor, and the diameter
of the sector and the 𝑦-axis of the robot is vertical. Thus,
with this enactment, after each detecting of the environment,
the environment information is the 181-distance, information
in the sector 𝑝𝑜𝑞; they are the position information of the
obstacles.

Figure 2 shows the four-detail process of the simulation of
the detecting process of the sensor; in Figure 2(a) is the state
of the no obstacle at time 𝑡

0
; it gives the particle of the sensor,

the 181 lines of𝑅 distance, and the sector area of the detecting;
in Figure 2(b) is obstacles which the sensor needs to detect
at time 𝑡

𝑠
; in Figure 2(c) is the detection state of the sensor

has detected the obstacles in Figure 2(b); it shows that some
of these 181 lines have been cut in this state, so the process
of detecting has been built; Figure 2(d) shows the result of
the detection; the position information of the obstacles can
be noted by the set 𝑄

𝑡
(𝑡 = 0, 1, . . . , 𝑛).

4.2. The Transformation of the Detecting Space Coordinates of
the Sensor. In the process of the path planning, the position
information of the obstacle, and the robot, the information
of the whole target point and the local target points must be
described at each time, so it needs a uniform reference frame.
There are two reference frames in the process of path planning
of this paper: the reference frame of the robot movement and
the reference frame of the sensor detection, so it needs the
transition of the reference frame. In this paper, the reference
frame of the robotmovement is a vertical coordinate; the start
point 𝑆, the whole target point 𝐺, and the position of robot𝑂
can be denoted; the reference frame of the sensor detection
is a pole that coordinates the obstacle information 𝑄 and the
local target point can be denoted, and the transition of these
two coordinates is in Figure 3.

In Figure 3, the origin of the vertical coordinate is𝑂
𝑔
, the

position of the robot and thewhole target point is 𝑜 and𝐺, the
origin of pole coordinate is 𝑜, vector 𝑜𝑝 is the pole axes, and
the angle between the pole axes and the 𝑥-axis of the vertical
coordinate is 𝛽 so the coordinate of the obstacles or the local
target point is (𝜌

𝑛
, 𝜃). The vertical coordinate in the reference

frame of the sensor detection is (𝑥
𝑝
, 𝑦

𝑝
):

𝑥
𝑝
= 𝜌 cos 𝜃,

𝑦
𝑝
= 𝜌 sin 𝜃.

(10)

So the vertical coordinate in the reference frame of the robot
movement is the position vector which is [𝑥

0
, 𝑦

0
, 𝑧

0
]
𝑇:

𝑥 = 𝑥
𝑝
cos𝛽

0
− 𝑦

𝑝
sin𝛽

0
+ 𝑥

0
,

𝑦 = 𝑥
𝑝
cos𝛽

0
+ 𝑦

𝑝
sin𝛽

0
+ 𝑦

0
.

(11)

5. The Procedure of Confirming the Double
Safe Edges Free Space

5.1. The Description of the Environment Information in Real-
Time. In an uncertainty and dynamic environment, the
environment information for path planning is obtained from
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(a) The simulation of the sensor detecting at
time 𝑡

(b) The obstacles environment

(c) The state of detecting the obstacles at time 𝑡 (d) The storage information of the detected obstacle
at time 𝑡

Figure 2: Simulation results of the sensor detection at time 𝑡.
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Figure 3: The transformation of the detecting space coordinates of
the sensor.

the sensor on the robot only, so the algorithm should have
well real-time ability and it is also the first step of generating
the robot’s motion. According to the sensor detecting model,
we propose a method for searching the important informa-
tion from the detecting information in this paper, which is
called the double-safe-edges (DSE) information.

5.1.1. Searching for the Sensor Edges. Obviously, the sensor
edges can be searched directly from the sensor detecting
information, and its distance and direction can be ensured
according to the position of the obstacles.

In Figure 4, point 𝑜 is the particle of the robot (the sensor
and robot at the same particle) and the self-safe area of the
robot is a circle whose radius is the particle of the robot,
and the radius is 𝑟, the range of the angle is 𝜋/2, the biggest
detection radius is 𝑅max, the obstacles are 𝑜𝑏

1
and 𝑜𝑏

2
, and

the safe distance between he robot and obstacle is 𝑑
𝑖
. Because

b

a

c

o

d

ob2

ob1

rs R
max

Figure 4: The sketch map of searching the sensor edges at time 𝑡.

the robot detection area is a hemicycle in front of the robot,
so we use the lines to simulate the detecting process and the
lines’ length is 𝑅max, the number is 180, and the angle of them
is 1∘. So it can find the sensor edges set {𝑎, 𝑏, 𝑐, 𝑑} quickly
according to the decision parameter 𝐸

𝑖
, 𝐸

𝑖
= 𝑅max − 𝑑

𝑖
,

𝑖 ∈ [0, 180]. The rule of detecting sensor edges is as follows:
if 𝐸

𝑖
≥ 2𝑟

𝑠
, so the sensor edges are appearance. The rule of

detecting the direction of sensor-edges is as follows: suppose
the searching direction of the sensor-edges from the left of
the robot, if min {𝐸

𝑖−1
, 𝐸

𝑖+1
} = 𝐸

𝑖−1
, so the direction of 𝑃

𝑖
is

left, denoted by 𝐿, if min {𝐸
𝑖−1
, 𝐸

𝑖+1
} = 𝐸

𝑖+1
, so the direction

of 𝑃
𝑖
is right, denoted by 𝑅.

In Figure 5, it is the state curve of 𝐸 at certain time,
the sensor edges set is {𝑎, 𝑏, 𝑐, 𝑑}, and the direction set is
{𝑅, 𝐿, 𝑅, 𝐿}.

5.1.2. Searching for the Double-Safe-Edges. The edges are
based on the sensor as mentioned above. But the robot has
its own safe area because of its special shape and kinematics,
if it considers the sensor edges only, and the path planning
must be failing. So it is necessary to consider the environment
information and the robot’s safe area together.
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Figure 5: The result of the simulation of searching the sensor edges
at time 𝑡.
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Figure 6:The sketch map of searching the double-safe-edges points
at time 𝑡.

In this paper the definition of the double-safe-edges has
consider the environment information and robot’s safe area.

Definition 1 (double-safe-edges (DSE)). When the sensor
edges been found, the algorithm will search some points
which considering the environment information and robot’s
safe area, searching start from the sensor-edges according to
its directions, the tangent lines which from these points to the
robot’s safe circle are tangent to the edges of the obstacles at
the same time.The robot and obstacle are at the different sides
of the tangent line.These points are the set of the double-safe-
edges points and these lines are the set of the double-safe-
edges.

In Figure 6, point 𝑜 is the particle of the robot, the set
of sensor-edges {𝑎, 𝑏, 𝑐, 𝑑}, and the set direction {𝑅, 𝐿, 𝑅, 𝐿};
the radius of the safe circle of the robot is 𝑟

𝑠
. Figure 7 shows

that the state curve of 𝐸 at certain time, the set of double-
safe-edges {𝑎󸀠, 𝑏󸀠, 𝑐󸀠, 𝑑󸀠}, and the set of direction {𝑅, 𝐿, 𝑅, 𝐿}

can be found according to the definition of the double-safe-
edges. This double-safe-edges information is very important
to generate the motion commands in this paper.
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Figure 7: The result of the simulation of searching the double-safe-
edges points at time 𝑡.

p

m

g

o

k

ob

rs

R
max

b󳰀

Figure 8: The sketch map of S-DSE at time 𝑡: DSE points set is {𝑏󸀠},
safe distance set is {𝑚𝑏󸀠}, and safe distance set is 𝑜𝑝.

The success of finding the double-safe-edges means that
the environment detected by the sensor in real-time has
been analyzed and interpreted efficiently, the environment
information has been simplified, the real-time has been
increased, and the robot’s safe area and the kinematics have
been considered, so it will be efficient in generating the
motion commands at the next step.

5.2.The Types of the Double-Safe-Edges. There are three types
of the double-safe-edges: S-DSE, M-DSE, and Z-DSE.

(1) S-DSE.There is only single DSE point after analyzing and
interpreting the environment information. In Figure 8, line
𝑚𝑔 connects the goal 𝑔 and point 𝑚; if 𝑘 is the interaction
point of𝑚𝑔 and obstacle, the robot must escape the obstacle.
So the robot’s safe moving direction is ∠

𝑠
= ∠

𝑜𝑝
, and the safe
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Figure 9: The sketch map of S-DSE at time 𝑡: DSE points set
is {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, safe distance set is {𝑚
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𝑏, 𝑛

1
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2
𝑑, 𝑛

2
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Figure 10:The sketchmap of S-DSE at time 𝑡: DSE points set is𝑅max,
and safe distance set is {0}, and safe distance set is {𝑜𝑎󸀠, 𝑜𝑏󸀠}.

moving distance is 𝑑
𝑒−𝑒

= 𝑚𝑏
󸀠 according to the DSE point 𝑏󸀠

and line𝑚𝑏󸀠, 𝑜𝑝//𝑚𝑏󸀠.

(2) M-DSE.There is more than oneDSE point after analyzing
and interpreting the environment information. In Figure 9,
lines𝑚

2
𝑔 and 𝑛

1
𝑔 connect target point 𝑔 and the interaction

points 𝑚
2
𝑔 and 𝑛

1
𝑔 which are on the safe circle; if 𝑘

1
and

𝑘
2
are the interaction points of 𝑚

2
𝑔, 𝑛

1
𝑔, and obstacle, the

robot must escape the obstacle. So the possible path set is
{𝑜𝑝

1
, 𝑜𝑞

1
, 𝑜𝑝

2
, 𝑜𝑞

2
} according to the DSE points set {𝑎, 𝑏, 𝑐, 𝑑}

and DSE lines set {𝑚
1
𝑏, 𝑛

1
𝑐, 𝑚

2
𝑑, 𝑛

2
𝑒} and 𝛼

1
and 𝛼

2
are the

angle vector 𝑜𝑝
1
and 𝑜𝑞

1
, 𝑜𝑝

2
and 𝑜𝑞

2
.

(3) Z-DSE. There is zero DSE point after analyzing and
interpreting the environment information.The first situation
is that there is no obstacle around the robot, so the robot can
move to the target directly; the second situation is that the
part or whole of detection area that has been enveloped by
the obstacle. For example, In Figure 10, there is part detection
area has been enveloped by the obstacle. In this situation,
there is zero DSE, so the robot enters the state of cruising
in order to find the DSE. The rule of cruising is that if part
of detection area 𝑐𝑑 has been enveloped, so the directions
set {𝑜𝑎󸀠, 𝑜𝑏󸀠} will be found according to the points set {𝑎, 𝑏}
and the moving direction 𝑜𝑐 will be found according to
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Figure 11: The sketch map of the safe distance and direction of the
double safe edge points at time 𝑡.

the heuristic algorithm. So the robot can move according to
this rule and find the DSE at the same time until the DSE
appear.

5.3. The Description of the Double-Safe-Edges Free Space.
After searching the double-safe-edges, the algorithm has
transformed the focus from the environment information to
some double-safe-edges points, and these points can be used
to generate the robot’s motion. We will describe the double-
safe-edges free space in this part.

In Figure 11, 𝑏󸀠 and 𝑐
󸀠 are the double-safe-edges points.

Lines 𝑜𝑏󸀠 and 𝑜𝑐
󸀠 are the distances from the particle to the

double-safe-edges point, and points𝑚 and 𝑛 are on the circle
of the safe area of the robot, 𝑜𝑚 = 𝑜𝑛 = 𝑟

𝑠
. Lines𝑚𝑏󸀠 and 𝑛𝑐󸀠

are the distances of the tangent lines, 𝑚𝑏󸀠 = √𝑜𝑏󸀠2 − 𝑜𝑚2,
𝑛𝑐

󸀠

= √𝑜𝑐󸀠2 − 𝑜𝑛2, and 𝑜𝑝//𝑚𝑏
󸀠, 𝑜𝑞//𝑛𝑐󸀠, 𝑜𝑝, and 𝑜𝑞 are

the possible planning distances of navigation. So the double-
safe-edges free space can be defined by the sector area 𝑝𝑜𝑞.
This area is a free moving space and the robot can select the
local target point according to some rule to finish the motion
command on time.

6. The Optimization of the Real-Time Local
Path Planning Based on the Belief Space

6.1. The Description of the Path Optimization in Real-Time
Path Planning. Although the environment information can
be detected by the sensor in real-time, the robot did not know
the whole environment information; thus, optimizing the
whole path in real-time path planning cannot come true. But
there are still some important factors to affect the selection of
the path in local environment, and we consider the six local
planning factors in this paper, the avoidance collision factor
𝑅 between the robot and the obstacles, the kinematics factor
𝑀, the self-safe area factor 𝑆, the path length factor 𝐿, moving
obstacle factor 𝐵, and other factors (ocean current, wind
speed, and so on) 𝐶, and this part will analyse the influence
of the 𝑅, 𝐵, and 𝐶 in real-time local detection planning.

In Figure 12, the robot’s position is 𝑜
𝑡
at time 𝑡, the

real-time detection space is 𝑊
𝑡
, the local target set is 𝐺

𝑡
,

𝐺
𝑡
⊆ 𝑊

𝑡
, and the target is 𝑔. It is the sketch mapping

of analyzing the optimization in local detection space 𝑊
𝑡
.
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Figure 12:The sketchmap of the analysis of the optimization in local
path planning at time 𝑡.
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Figure 13:The sketchmap of the base idea of the belief space at time
𝑡.

Firstly, it can find the edge area (the broken line area) 𝐵
𝑡
,

𝐵
𝑡
⊆ 𝑊

𝑡
, according to the factor 𝑅, and 𝐵

𝑡
is the selected

area of 𝐺
𝑡
; secondly, supposing that the robot’s kinematics is

the gyration movement, so the reachable area (the undertone
area) 𝑀

𝑡
, 𝑀

𝑡
⊆ 𝑊

𝑡
according to the factor 𝑀, and finally,

these two factors can makes the local goal selection area
smaller. Supporting the other factor 𝐶 can make the robot
have the speed V

𝑓
, and this speed can make the displacement

𝑠, 𝑠 = V
𝑓
. So it can find the reachable area (the real line area)

𝐹
𝑡
, 𝐹

𝑡
⊂ (𝐵

𝑡
∩𝑀

𝑡
) ⊂ 𝑊

𝑡
, at time according to the factors. This

area will be smaller when the consideration factors increase,
so the analysis treating and fusing these factors is a necessary
method to optimize the path in real-time local detection path
planning.

6.2. The Original Idea of the Belief Space in Local Target
Selection. In Figure 13, it is the selection local target point
situation in which the robot 𝑂 must reach the target point
𝐴 according to some selection rules and the local target point
set is 𝑍 = {𝑧

1
, 𝑧

2
, . . . , 𝑧

7
} and the selection rules set is 𝑄 =

{𝑞
1
, 𝑞

2
, . . . , 𝑞

𝑗
}, so it needs to fuse these selection rules in

order to find the optimization local target point.
We note that the selection state space is𝐻 = {𝑛𝑢𝑙𝑙, 𝑠𝑒𝑙𝑒𝑐𝑡,

𝑑𝑒𝑙𝑒𝑐𝑡, 𝑢𝑛𝑘𝑛𝑜𝑤}, described by 𝐻 = {0, 𝑆, 𝑅, 𝑈}, 𝑈 ̸= 0. For
each 𝑧

𝑖
∈ 𝑍, the selection state space 𝑐

𝑖
∈ 𝐻 is known and

a

b
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ki

Δr

zi

ri𝛽

𝜃

Figure 14: The sketch map of the belief function distribution of the
sensor detection at time 𝑡.

the influence from 𝑞
𝑗
to 𝑧

𝑖
can be defined by the BBA in

the selection state space 𝐻, denoted by 𝑚𝐻

𝑞1

(𝑧
𝑖
), so the BBA

set in 𝐻 is 𝑀 = {𝑚
𝐻

𝑞1

(𝑧
1
), 𝑚

𝐻

𝑞1

(𝑧
2
), . . . , 𝑚

𝐻

𝑞1

(𝑧
1
)}. Three gray

areas are the area of the BBA set {𝑚𝐻

𝑞1

, 𝑚
𝐻

𝑞2

, 𝑚
𝐻

𝑞3

}, denoted by
{𝑋

𝐻

𝑚𝑞1

, 𝑋
𝐻

𝑚𝑞2

, 𝑋
𝐻

𝑚𝑞3

}, and these are also the descriptions of the
obstacle information, kinematics, and the path length factors,
so the belief space can be defined, denoted by 𝑋𝐻

𝑚
= 𝑋

𝐻

𝑚𝑞1

∪

𝑋
𝐻

𝑚𝑞2

∪ 𝑋
𝐻

𝑚𝑞3

, the local target points’ belief can be defined
by the belief functions, and the belief functions can be fused
according to the TBM rules. The definition of the fusing is

(12)

The selection of the local target point must satisfy every
belief function distribution at the same time, so some local
target points can be deleted and the set has been changed
to {𝑚𝐻

(𝑧
3
), 𝑚

𝐻

(𝑧
4
)}, and the optimization local target point

𝑍
3
can be found if the fusing belief distribution is 𝑚𝐻

(𝑧
3
) >

𝑚
𝐻

(𝑧
4
); thereby the selection of local target point at certain

time in belief space has been finished and the aim of
optimization came true.

6.3. The Method of Making the Belief Function

6.3.1. The Belief Function Distribution of the Sensor Detection.
As the uncertainty model has been described, we further
discuss the belief function distribution in Figure 14.The angle
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of detection is 90∘, the direction of 𝑜𝑎 is the coordinate
axes, and the right is positive. The coordinate of position is
(𝑟

𝑖
, 𝜐), and from (1)–(4), the detection distance is 𝑟

𝑖
, the angle

between 𝑏 and 𝑜𝑎 is 𝜃, the uncertainty area because of the
detecting of 𝑏 is defined by the 𝛾

𝑏
= 12.5

∘ sector and the
2⋅Δ𝑟 = 𝑅/4width approach to the detection distance, and this
area is the gray area in Figure 14. The point 𝑧

𝑖
is in this area

and the angle between 𝑧
𝑖
and 𝑜𝑎 is 𝛽, so the angle between

𝑧
𝑖
and 𝑏 is 𝛼 = |𝜃 − 𝛽|, and the detection area uncertainty

function is

𝑓
𝑎
(𝜃) = {

𝐷 (𝜃) 0 ≤ |𝜃| ≤ 45
∘

0 |𝜃| > 45
∘

,

𝑔
𝑎
(𝜌) = 1 −

1 + tanh (2 󵄨󵄨󵄨󵄨𝜌 − 𝜌V
󵄨󵄨󵄨󵄨)

2
,

(0 ≤ 𝜌 ≤ 𝑅, 𝜌V =
𝑅

2
) .

(13)

The detection position uncertainty function is

𝑓
𝑏
(𝛼) = {

𝐷 (𝛼) 0 ≤ |𝛼| ≤ 45
∘

0 |𝛼| > 45
∘

,

𝑔
𝑏
(𝜌) = 1 −

1 + tanh (2 󵄨󵄨󵄨󵄨𝜌 − 𝜌V
󵄨󵄨󵄨󵄨)

2
,

(−Δ𝑟 ≤ 𝜌 ≤ Δ𝑟, 𝜌V = ±
Δ𝑟

2
) .

(14)

According to the analysis mentioned above, the detection
area uncertainty distribution is from the coordinate axes to
the opposition side, and the detection position uncertainty
distribution is from ±12.5

∘ sector to the ±Δ𝑟 distance area.
So the point 𝑘

𝑖
in the detection area plausibility function is

defined as

pl𝐻
𝑜
[𝑥

𝑘
] (𝑇) = 𝑓

𝑎𝑘
(𝜃) 𝑔

𝑎𝑘
(𝜌) . (15)

The point 𝑧
𝑖
in detection position plausibility function is

defined as

pl𝐻
𝑜𝑏
[𝑥

𝑧
] (𝑇) = 𝑓

𝑎𝑠
(𝜃) 𝑔

𝑎𝑠
(𝜌) 𝑓

𝑏𝑧
(𝛼) 𝑔

𝑏𝑧
(𝛼) . (16)

So the position 𝑧
𝑖
“occupy” and “empty” plausibility func-

tion can be defined as

pl𝐻
𝑜𝑏
[𝑥

𝑧
] (𝑇, 𝑜) = 𝑓

𝑎𝑧
(𝜃) 𝑓

𝑎𝑧
(𝛼) 𝑔

𝑏𝑧
(𝛼) 𝑓

𝑜
(𝜌, 𝑟

𝑖
) ,

pl𝐻
𝑜𝑏
[𝑥

𝑧
] (𝑇, 𝑒) = 𝑓

𝑎𝑧
(𝜃) 𝑓

𝑎𝑧
(𝛼) 𝑔

𝑏𝑧
(𝛼) 𝑓

𝑒
(𝜌, 𝑟

𝑖
) ,

pl𝐻
𝑜𝑏
[𝑥

𝑧
] (𝑇, (𝑜, 𝑒)) = 1 − ∏

ℎ𝑖∈(𝑜,𝑒)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑧
)) .

(17)

oc a b

lslm

𝜃

Figure 15: The sketch map of the belief function distribution of the
safe distance at time 𝑡.

Thus, the BBA of the “occupy” and “empty” in TBM can
be defined as

𝑚
𝐻

𝑜𝑏
(𝑜) = ∏

ℎ𝑖∈𝑜

𝑙 (ℎ
𝑖
| 𝑥

𝑧
)∏

ℎ𝑖∈𝑜

𝑙 (ℎ
𝑖
| 𝑥

𝑧
) ,

𝑚
𝐻

𝑜𝑏
(𝑒) = ∏

ℎ𝑖∈𝑒

𝑙 (ℎ
𝑖
| 𝑥

𝑧
)∏

ℎ𝑖∈𝑒

𝑙 (ℎ
𝑖
| 𝑥

𝑧
) ,

𝑚
𝐻

𝑜𝑏
(𝑜, 𝑒) = ∏

ℎ𝑖∈(𝑜,𝑒)

𝑙 (ℎ
𝑖
| 𝑥

𝑧
) ∏

ℎ𝑖∈(0,𝑒)

𝑙 (ℎ
𝑖
| 𝑥

𝑧
) .

(18)

This BBA space is defined in the belief space.They are the
belief functions distribution according to the base idea of the
belief space, denoted by {𝑋

𝑜𝑏
(𝑖)}.

6.3.2. The Belief Function Distribution of the Safe Distance to
the Obstacle. Figure 15 shows the belief function distribution
of the safe distance to the obstacle, and point 𝑜 is the particle
of the robot, point 𝑏 is on the edge of the obstacle, the shortest
safe distance is 𝑙

𝑠
, and it is the radius of the self-safe area. In

a real environment, when the robot enters into a specified
distance (alertness distance) 𝑙

𝑚
, it needs to calculate the

dangerous degree of collision. So the safe distance function
can be given as

𝑓
𝑡
(𝜌) =

𝜌 − 𝑙
𝑠

𝑙
𝑚

(𝑙
𝑠
< 𝜌 < 𝑙

𝑚
) . (19)

Then the “safe” and “dangerous” plausibility function can
be defined as

pl𝐻
𝑎𝑚

[𝑥
𝑡
] (𝑇, 𝑠) = pl𝐻

𝑜
[𝑥

𝑏
] (𝑇) 𝑓

𝑡
(𝜌) ,

pl𝐻
𝑎𝑚

[𝑥
𝑡
] (𝑇, 𝑑) = pl𝐻

𝑜
[𝑥

𝑏
] (𝑇) (1 − 𝑓

𝑡
(𝜌)) ,

pl𝐻
𝑎𝑚

[𝑥
𝑡
] (𝑇, (𝑠, 𝑑)) = 1 − ∏

ℎ𝑖∈(𝑠,𝑑)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) .

(20)
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Figure 16: The sketch map of the belief function distribution of the
optimization the path at time 𝑡.

Finally, the BBA of the “safe” and “dangerous” can be
defined as

𝑚
𝐻

𝑎𝑚
[𝑥

𝑡
] (𝑠) = ∏

ℎ𝑖∈𝑠

𝑙 (ℎ
𝑖
| 𝑥

𝑡
)∏

ℎ𝑖∈𝑠

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) ,

𝑚
𝐻

𝑎𝑚
[𝑥

𝑡
] (𝑑) = ∏

ℎ𝑖∈𝑑

𝑙 (ℎ
𝑖
| 𝑥

𝑡
) ∏

ℎ𝑖∈𝑑

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) ,

𝑚
𝐻

𝑎𝑚
[𝑥

𝑡
] (𝑠, 𝑑) = ∏

ℎ𝑖∈(𝑠,𝑑)

𝑙 (ℎ
𝑖
| 𝑥

𝑡
) ∏

ℎ𝑖∈(𝑠,𝑑)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) .

(21)

All these BBA spaces are defined in the belief space. They
are the belief functions distribution according to the base idea
of the belief space, denoted by {𝑋

𝑎𝑚
(𝑖)}.

So other factors can be defined and described in the belief
space, it is the base step of fusing these factors to find the
optimization local target point.

6.3.3. The Belief Function Distribution of the Optimization the
Path. In Figure 16, we give the distribution of the path belief
function at one movement space. Point 𝑜 is the particle of the
robot, the detection distance is 𝑅, and the angle of the free
space is 𝛼; thus there are two definitions of the selection of
the local goal 𝑒 and 𝑐 for optimizing the path.

(1) As the global target 𝑔
1
is in a free space at this time,

𝑙
𝑔
= 𝑜𝑔

1
, 𝑙
𝑔
> 𝑅, 𝑙

𝑔
= 𝑜𝑒+𝑒𝑔

1
𝑙
𝑑
= 𝑅+𝑑𝑔

1
𝑙
𝑓
= 𝑜𝑓+𝑓𝑔

1
,

so the path proportion function in two ways is

𝑓
𝑙1
(𝑙
𝑒
) =

𝑙
𝑓
− 𝑙

𝑒

𝑙
𝑓
− 𝑙

𝑔

. (22)

The direction of the distribution 𝑒𝑓 is

𝑓
𝑙1
(𝑙
𝑒
) = {

1 𝑙
𝑒
= 𝑙

𝑔

0 𝑙
𝑒
= 𝑙

𝑓
,

𝑓
𝑙2
(𝑙
𝑒
) =

𝑙
𝑑
− 𝑙

𝑒

𝑙
𝑑
− 𝑙

𝑔

.

(23)

The direction is 𝑜𝑒:

𝑓
𝑙2
(𝑙
𝑒
) = {

1 𝑙
𝑒
= 𝑙

𝑔

0 𝑙
𝑒
= 𝑙

𝑑
.

(24)

So the path proportion function is

𝑓
𝑙
(𝑙
𝑒
) = 𝑓

𝑙1
(𝑙
𝑒
) 𝑓

𝑙2
(𝑙
𝑒
) . (25)

(2) As the global target 𝑔
1
is out of a free space at this

time,

𝑙
𝑎
= 𝑜𝑎 + 𝑜𝑔

2
,

𝑙
𝑐
= {

𝑜𝑐 + 𝑐𝑎 + 𝑎𝑔
2

in 𝑎

𝑜ℎ + ℎ𝑔
2

out 𝑎,

𝑙
𝑏
= 𝑜𝑏 + 𝑏𝑔

2
,

𝑙
ℎ
= {

𝑜ℎ + ℎ𝑎 + 𝑎𝑔
2

in 𝑎

𝑜𝑐 + 𝑐𝑔
2

out 𝑎,

(26)

so the path proportion function in two ways is

𝑓
𝑙1
(𝑙
𝑐
) =

𝑙
ℎ
− 𝑙

𝑐

𝑙
ℎ
− 𝑙

𝑎

. (27)

The direction of the distribution is 𝑐ℎ; then

𝑓
𝑙1
(𝑙
𝑐
) = {

1 𝑙
𝑐
= 𝑙

𝑎

0 𝑙
𝑐
= 𝑙

ℎ
,

𝑓
𝑙2
(𝑙
𝑐
) =

𝑙
𝑏
− 𝑙

𝑐

𝑙
𝑏
− 𝑙

𝑎

.

(28)

The direction is 𝑜𝑏, so

𝑓
𝑙2
(𝑙
𝑐
) = {

1 𝑙
𝑐
= 𝑙

𝑎

0 𝑙
𝑐
= 𝑙

𝑏.

(29)

So the path proportion function is

𝑓
𝑙
(𝑙
𝑐
) = 𝑓

𝑙1
(𝑙
𝑐
) 𝑓

𝑙2
(𝑙
𝑐
) . (30)

So the path “optimization” and “nonoptimization” plausi-
bility function can be defined as

pl𝐻dis [𝑥𝑒,𝑐] (𝑇, 𝜔) = pl𝐻
𝑜
[𝑥

𝑒,𝑐
] (𝑇) 𝑓

𝑙
(𝑙
𝑒,𝑐
) ,

pl𝐻dis [𝑥𝑒,𝑐] (𝑇, 𝑓) = pl𝐻
𝑜
[𝑥

𝑒,𝑐
] (𝑇) (1 − 𝑓

𝑙
(𝑙
𝑒,𝑐
)) ,

pl𝐻dis [𝑥𝑒,𝑐] (𝑇, (𝜔, 𝑓)) = 1 − ∏

ℎ𝑖∈(𝜔,𝑓)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
)) .

(31)
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Figure 17: The sketch map of the belief function distribution of the
dynamics of the robot at time 𝑡.

As the same way, the BBA of the “optimization” and
“nonoptimization” in TBM can be defined as

𝑚
𝐻

dis [𝑥𝑒,𝑐] (𝜔) = ∏

ℎ𝑖∈𝜔

𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
) ∏

ℎ𝑖∈𝜔

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
)) ,

𝑚
𝐻

dis [𝑥𝑒,𝑐] (𝑓) = ∏

ℎ𝑖∈𝑓

𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
) ∏

ℎ𝑖∈𝑓

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
)) ,

𝑚
𝐻

dis [𝑥𝑒,𝑐] (𝜔, 𝑓)

= ∏

ℎ𝑖∈(𝜔,𝑓)

𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
) ∏

ℎ𝑖∈(𝜔,𝑓)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
)) .

(32)

All these BBA spaces are defined in the belief space. They
are the belief functions distribution according to the base idea
of the belief space, denoted by {𝑋dis(𝑖)}.

6.3.4. The Belief Function Distribution of the Dynamics of the
Robot. Figure 17 shows the distribution of the dynamics of
the robot at one movement space, point 𝑜 is the particle of
the robot, and the speed of the robot is V; supposing the
movement character is the nonglide movement, so the track
of the movement is one part of the circle, the position of the
local target point is 𝑑, the radius of the track is 𝑟

𝑏
= 𝑜

𝑏
𝑏,

the position 𝑏 is the max distance that the robot can reach
at certain time, and the min movement radius is 𝑟

𝑎
= 𝑜

𝑎
𝑏, so

the reached proportion function has two directions.

(1) Consider the reached proportion functions in the
same track radius:

𝑓
𝑡−𝑑𝑔

(𝑙
𝑜𝑑
) =

𝑙
𝑜𝑏
− 𝑙

𝑜𝑑

𝑙
𝑜𝑏

(0 ≤ 𝑙
𝑜𝑑
≤ 𝑙

𝑜𝑏
) . (33)

(2) Consider the reached proportion functions in the
same detection area:

𝑓
𝑡−𝑑𝑔

(𝛼
𝑑
) =

𝛼
𝑎
− 𝛼

𝑑

𝛼
𝑎

(0 ≤ 𝛼
𝑑
≤ 𝛼

𝑎
) . (34)

So the reached proportion function at certain detection
time at local target point 𝑑 is

𝑓
𝑑𝑔
(𝑙
𝑜𝑑
, 𝛼

𝑑
) = 𝑓

𝑡−𝑑𝑔
(𝑙
𝑜𝑑
) 𝑓

𝑡−𝑑𝑔
(𝛼

𝑑
) . (35)
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Figure 18: The sketch map of the belief function distribution of the
escaping the movement obstacle at time 𝑡.

So the path “reach” and “unreach” plausibility function
can be defined as

pl𝐻
𝑑𝑔
[𝑥

𝑑
] (𝑇, 𝑠) = pl𝐻

𝑜
[𝑥

𝑑
] (𝑇) 𝑓

𝑑𝑔
(𝑙
𝑜𝑑
, 𝛼

𝑑
) ,

pl𝐻
𝑑𝑔
[𝑥

𝑑
] (𝑇, 𝑠) = pl𝐻

𝑜
[𝑥

𝑑
] (𝑇) (1 − 𝑓

𝑑𝑔
(𝑙
𝑜𝑑
, 𝛼

𝑑
)) ,

pl𝐻
𝑑𝑔
[𝑥

𝑑
] (𝑇, (𝑠, ℎ)) = 1 − ∏

ℎ𝑖∈(𝑠,ℎ)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑑
)) .

(36)

Then the BBA of the “reach” and “unreach” in TBM can
be defined as

𝑚
𝐻

𝑑𝑔
[𝑥

𝑑
] (𝑠) = ∏

ℎ𝑖∈𝑠

𝑙 (ℎ
𝑖
| 𝑥

𝑑
)∏

ℎ𝑖∈𝑠

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑑
)) ,

𝑚
𝐻

𝑑𝑔
[𝑥

𝑑
] (ℎ) = ∏

ℎ𝑖∈ℎ

𝑙 (ℎ
𝑖
| 𝑥

𝑑
)∏

ℎ𝑖∈ℎ

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑑
)) ,

𝑚
𝐻

𝑑𝑔
[𝑥

𝑑
] (𝑠, ℎ)

= ∏

ℎ𝑖∈(𝑠,ℎ)

𝑙 (ℎ
𝑖
| 𝑥

𝑑
) ∏

ℎ𝑖∈(𝑠,ℎ)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑑
)) .

(37)

All these BBA spaces are defined in the belief space. They
are the belief functions distribution according to the base idea
of the belief space, denoted by {𝑋

𝑑𝑔
(𝑖)}.

6.3.5. The Belief Function Distribution of the Escaping the
Movement Obstacle. Figure 18 gives the distribution of the
path belief function at one movement space, point 𝑜 is the
particle of the robot, the detection distance is 𝑅, the angle
of the free space is 𝛼, the one side speed of the movement
obstacle is V, and the belief function distribution of the
movement obstacle in the free movement space can be
defined.

The one side edge point of the obstacle ob is 𝑒, and this
point can reach the position 𝑓

𝑡
after time 𝑇, so the double-

safe-edges free space will be changed from 𝑐𝑜𝑎 to 𝑐𝑜𝑏, and
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the position of the robot can reach the position ℎ
𝑡
after time

𝑇. If the position of the robot is ℎ
𝑡
after time 𝑇, the angle is

𝛽
𝑡
of the 𝑒𝑜ℎ

𝑡
and the angle is 𝛾

𝑡
𝑡 of the 𝑒𝑜ℎ

𝑡
, so the it can

describe the belief function distribution of the escaping the
movement obstacle.

The collisions function of the robotwhichmoves from the
position 𝑜 to the position 𝑓 is

𝑓mov (𝛾𝑡) =
𝛽
𝑡
− 𝛾

𝑡

𝛽
𝑡

(0 < 𝛾
𝑡
< 𝛽

𝑡
) . (38)

So the path “safe” and “collisions” plausibility function
can be defined as

pl𝐻mov [𝑥𝑡] (𝑇, 𝑠) = pl𝐻
𝑜
[𝑥

𝑡
] (𝑇) 𝑓mov (𝛾𝑡) ,

pl𝐻mov [𝑥𝑡] (𝑇, ℎ) = pl𝐻
𝑜
[𝑥

𝑑
] (𝑇) (1 − 𝑓mov (𝛾𝑡)) ,

pl𝐻mov [𝑥𝑡] (𝑇, (𝑠, ℎ)) = 1 − ∏

ℎ𝑖∈(𝑠,ℎ)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) .

(39)

Then, the BBA of the “safe” and “collisions” in TBM can
be defined as

𝑚
𝐻

mov [𝑥𝑡] (𝑠) = ∏

ℎ𝑖∈𝑠

𝑙 (ℎ
𝑖
| 𝑥

𝑡
)∏

ℎ𝑖∈𝑠

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) ,

𝑚
𝐻

mov [𝑥𝑡] (ℎ) = ∏

ℎ𝑖∈ℎ

𝑙 (ℎ
𝑖
| 𝑥

𝑡
)∏

ℎ𝑖∈ℎ

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) ,

𝑚
𝐻

mov [𝑥𝑡] (𝑠, ℎ) = ∏

ℎ𝑖∈(𝑠,ℎ)

𝑙 (ℎ
𝑖
| 𝑥

𝑡
) ∏

ℎ𝑖∈(𝑠,ℎ)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) .

(40)

All these BBA spaces are defined in the belief space. They
are the belief functions distribution according to the base idea
of the belief space, denoted by {𝑋mov(𝑖)}.

6.4.TheModel of Fusing the Correlation Factors in Belief Space.
Suppose that, at any given time, the local target points set is
𝑍 = {𝑧

1
, 𝑧

2
, . . . , 𝑧

7
}, the correlation factors set is 𝑄 = {𝑞

1
,

𝑞
2
, . . . , 𝑞

6
}, and the selection state space is 𝐻 = {𝜙, 𝑆, 𝑅, 𝑈},

𝑈 ̸= 𝜙. For each 𝑧
𝑖
∈ 𝑍, the BBA set in the selection state space

𝐻 is𝑀 = {𝑚
𝐻

𝑞1
(𝑧

𝑖
), 𝑚

𝐻

𝑞2
(𝑧

𝑖
), . . . , 𝑚

𝐻

𝑞𝑗
(𝑧

𝑖
)}, so the belief space is

𝑋 = {𝑋
𝑚𝑞1

, 𝑋
𝑚𝑞2

, 𝑋
𝑚𝑞3

}, and this partwill combine the BBA in
the belief space𝑋 to optimize the selection of the local target
point.

6.4.1. The Structure of the Local Target Point Belief Space.
Figure 19 shows three proposition spaces (Ω, 𝑍)(Ω,𝑄)(Ω,𝐻)

and a decision-making function; supposing that Λ
1
is a

multimapping from 𝑄 to 𝑍, Λ
2
is a multimapping from 𝐻

to𝑄;Λ
1
andΛ

2
compose the “credal” level and the decision-

making function composes the “pignistic” level in TBM.
In “credal” level each local target point has its own factors,

so it has to filter the fusing local target point belief space to
make sure of the whole factors at the same time. Each factor
has its own belief space, the whole factors BBA depend on the
selection state space of the factors, and this chain structure of
the local target point belief space can transform the influence
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Figure 19: The structure of selecting the local target point belief
space at time 𝑡.

of the factors to the BBA function in the belief space. In the
“pignistic” level it denotes the influence degrees of the factors
using the probability functions; it is the final form of selecting
the local target point.

6.4.2. The Fusing Process of the Belief Space. It needs to fuse
the belief space when the factors have been described to the
BBA functions in the belief space; the details of the process at
certain times are as follows.

Step 1. The local target points set is selected according to
the double-safe-edges free space, denoted as 𝑍, and the
correlation influence factors are ascertained at certain time,
denoted as 𝑄.

Step 2. The BBA of the correlation influence factors set can
be calculated, denoted as 𝑀, and the belief space 𝑋 can be
made according to the base idea of the belief space in local
goal selection.

Step 3. In belief space 𝑋, the BBA set 𝑀 can be combined
according to the elements of the selection state space 𝐻, so
the belief space𝑋𝐻 including𝑀𝐻 in the same state space can
be made.

Step 4. The𝑀𝐻 in𝑋𝐻 can be transformed to the probability
distribution Bet𝑃𝐻

(𝐴). For all 𝐴 ⊆ 𝐻, so the optimization
local target point can be selected according to the Bet𝑃𝐻

(𝐴).

7. The Simulation of the Local Target
Point in Belief Space

In a real-time path planning process, the environment infor-
mation requires to be detected at each time, so the simulation
of the local target point in belief space should satisfy this
character. In this paper, the maps of simulation have been
made by the .bmp pictures beforehand, and the algorithm
of the local target point in belief space has been written
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Figure 20: The simulation of the path planning in special environ-
ment which has lots of edges and corners.

Figure 21:The simulation of the path planning in U-shape environ-
ment which is always called dead area.

in the software by the program, so in the process of the
simulation it shows the start point and the target point, the
obstacles on the map, the particle and the self-safe area, the
lines of detecting, the position of the robot, and the path.

There are about two different types of simulation that will
be shown in this paper to prove the feasibility of the double-
safe-edges space and the idea of selecting the local target point
in belief space. Simulation I is the simulation of double-safe-
edges space in two conditions; it will show the special map
which can show the characters of the double-safe-edges space
and the death area (U shape) which can show its flexible
ability. Simulation II is the simulation of efficiencies of the
selecting the local target point in belief space, and it will
show the changes of belief in the process of the detecting path
planning.

Simulation I. The following two special maps show the
simulation results of testing the double-safe-edges space.
Figure 20 shows the special environment which has lots of
edges and corners. In this environment, the sensorwill be able
to easily detect the edges points of the obstacles, so it is easy to
transform these sensor edges points to the double-safe-edges
points, and the double-safe-edges free space can be built each
time, so the local target point will be found in real-time, and
the robot will move to this position. From the simulation
we can see that the method of double-safe-edges space
has found the target point successfully and also keeps the
path smoothness. Figure 21 shows the special environment
which is called death area (U shape). Because of this special
environment, when a robot enters this environment, there are
zero obstacle edges that can be found, so it is hard to find
the right local target point to escape from the obstacle. In the
double-safe-edges space, this situation is the Z-DSE type, the
robot can move along with one side of the obstacle until it
finds the new edges of the obstacle. From the simulation we

x: 132
y: 384
d: 650

Figure 22: The simulation of the path in situation A for distance
detecting.
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Figure 23: The BBA state in the process of situation A.

can see that this method can escape the death area and reach
the goal successfully.

So this simulation has proved that the method of double-
safe-edges space is a feasiblemethod to describe the real-time
detecting environment.

Simulation II.This simulation results are shown in the Figures
22 and 23. Different detection areas will make the decision
belief different in belief space. Figure 22 is the situation of
special A. In this saturation well the maximum detection
distance is shorter than the length of the right-angle line. So
in this environment the delectation ability of the sensor is low,
and from the simulation we can see that the robot can reach
the target point after 115 steps. Figure 23 shows the belief of
7 correlation factors of each point of these 115 points at each
step, and we can see that the belief is higher the line of 0.7
belief; it means the selection of each local target point in each
step shows the well belief degree.

Figure 24 is the situation of special B. In this saturation
the maximum detection distance is longer than the length of
the right-angle line. So in this environment the delectation
ability of the sensor is high, and from the simulation we can
see that the robot can reach the target point after 126 steps.
Figure 25 shows the belief 7 correlation factors of each point
of these 126 points at each step, and we can see that the belief
is higher than the line of 0.7 belief; it means that the selection
of each local target point in each step shows the well belief
degree. So these simulations have proved that this belief space
algorithm has the well effect.

8. Conclusions

As can be seen from literature works that there are a lot
of methods for robot path planning, but most of them do
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Figure 24: The simulation of the path in situation B for distance
detecting.
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Figure 25: The BBA state in the process of situation B.

not work well in a complex real-time environment. In this
paper, we are making some efforts for solving two problems
in real-time detecting path planning: one is the expression
the environment, and the second is how to optimize the path
in local path planning. The double-safe-edges space has been
presented to express the environment, and the simulation has
proved the feasibility of this approach. Then, the belief space
has fused the factors and the uncertainty of detection in real-
time detecting path planning successfully, the simulation of
the belief space is well running. So these achievements will
help the researching of the real-time path planning effectively.
Certainly, there are a lot of tough jobs such as the details of the
system structure, or how to control the robot accurately. All
these considerations should be further extended in our future
work.
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