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A generalized metric in space of set of fuzzy sets is introduced. We prove some common fixed point for contractive iterate at the
point and orbitally contractive at the point fuzzy mappings and subfixed point results for family of mappings satisfying generalized
contractive conditions in generalized metric fuzzy spaces.

1. Introduction

Uncertainty regarding some experiments may essentially
have two origins. It may arise from randomness due to the
natural variability of observation or it may be caused by
imprecisions due to partial information, for example, expert
opinions or sparse data sets. An incomplete data set delivers
an imprecise assessment of the information which should be
expressed by a [0, 1]-fuzzy set instead of a number. In other
words, the system is complemented with extra dimension of
uncertainty provided by fuzzy set theory. Fuzzy logic is the
principal component of an array ofmethodologies for dealing
with problems in which uncertainty and imprecision play
important roles.

Fixed point theory in uncertain systems can be treated in
different ways and one of them is by using the fuzzy logic.
Depending on which segment of the problem is plagued with
some sort of uncertainty the appropriate structure of the basic
space in which the problem is considered could be used. If the
distance between elements is imprecise, then the fuzziness is
included in metric, as it was done in the definition of fuzzy
metric spaces by Kaleva and Seikkala [1]. This model has a
lot of similarities with probabilistic metric spaces (Menger
spaces). Fixed point techniques, methods, and results are
closely related in these two structures. Some of fixed point
results in fuzzy metric space could be found in [2–7].

If affiliations of elements are imprecise, then the system
could be treated as a fuzzy system. Appropriate structure is
introduced depending on the related problem.The treatment
of the problem involving fixed point theory has to be placed
in spaces with adequate topological structure.

We denote byK(𝑋) the set of compact subsets of 𝑋 and
by F(𝑋) the set of fuzzy sets with compact 𝛼-levels defined
over𝑋, where𝑋 has somemetric structure.Mustafa and Sims
[8] introduced the definition of a generalized metric space,
briefly, 𝐺-metric spaces. In [9] the 𝐺-metric is introduced
in K(𝑋) and, in [10], the similar construction is made to
establish the 𝐺-metric in the set F(𝑋). In both cases the
structure of the basic 𝐺-metric space [3–5] is used to define
the Hausdorff 𝐺-metric by the metric 𝑑

𝐺
derived from 𝐺-

metric 𝐺. In our paper the basic space is the metric space
(instead of 𝐺-metric space) and, using the same idea as in
[9, 10], the Hausdorff 𝐺-metric G is introduced, but metric
𝑑 of the original metric space (𝑋, 𝑑) is used instead of the
derived 𝑑

𝐺
metric. In spite of the fact that the relation of

the basic and the derived spaces is simpler than in [10]
the structure of generalized metric space (F(𝑋),G) is not
reduced. Further, we analyse the existence and uniqueness of
a common fixed point for the family {𝑓

𝑖
} of self-mappings in

the set of fuzzy sets F(𝑋) endowed with generalized metric
G. The different type of generalized contractive condition is
considered using a nondecreasing, right continuous function
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Φ : [0,∞) → [0,∞). Putting different additional conditions
on Φ, we can follow how Φ influences the other conditions,
related technique of proving, and the final fixed point result.

For more fixed point results for mappings defined in 𝐺-
metric spaces of fuzzy sets, we refer the reader to [10–12].

2. Preliminaries

Definition 1 (see [8]). Let 𝑋 be a nonempty set, and let 𝐺 :

𝑋 × 𝑋 × 𝑋 → R+ be a function satisfying the following
properties:

(𝐺1) 𝐺(𝑥, 𝑦, 𝑧) = 0 if 𝑥 = 𝑦 = 𝑧;
(𝐺2) 0 < 𝐺(𝑥, 𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋, with 𝑥 ̸= 𝑦;
(𝐺3) 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧), for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, with 𝑧 ̸= 𝑦;
(𝐺4) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) = ⋅ ⋅ ⋅ , (symmetry

in all three variables);
(𝐺5) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧), for all 𝑥, 𝑦, 𝑧, 𝑎 ∈

𝑋.

Then function𝐺 is called a generalizedmetric, abbreviated𝐺-
metric, on 𝑋 and the pair (𝑋, 𝐺) is called a 𝐺-metric space.
If 𝐺(𝑥, 𝑦, 𝑦) = 𝐺(𝑦, 𝑥, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋, then (𝑋, 𝐺) is
symmetric.

Clearly, these properties are satisfied when 𝐺(𝑥, 𝑦, 𝑧) is
the perimeter of the triangle with vertices at 𝑥, 𝑦, and 𝑧 ∈ R2;
moreover taking 𝑎 in the interior of the triangle shows that
(𝐺5) is the best possible.

Example 2 (see [8]). Let (𝑋, 𝑑) be an ordinary metric space;
then (𝑋, 𝑑) defines 𝐺-metrics on𝑋 by

𝐺𝑠 (𝑥, 𝑦, 𝑧) = 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) + 𝑑 (𝑥, 𝑧) ,

𝐺
𝑚
(𝑥, 𝑦, 𝑧) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑦, 𝑧) , 𝑑 (𝑥, 𝑧)} .

(1)

The following useful properties of a 𝐺-metric are readily
derived from the axioms.

Proposition 3 (see [8]). Let (𝑋, 𝐺) be a 𝐺-metric space; then
for any 𝑥, 𝑦, 𝑧, and 𝑎 from𝑋 it follows that

(1) if 𝐺(𝑥, 𝑦, 𝑧) = 0, then 𝑥 = 𝑦 = 𝑧,
(2) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑥, 𝑦) + 𝐺(𝑥, 𝑥, 𝑧),
(3) 𝐺(𝑥, 𝑦, 𝑦) ≤ 2𝐺(𝑦, 𝑥, 𝑥),
(4) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑧) + 𝐺(𝑎, 𝑦, 𝑧),
(5) 𝐺(𝑥, 𝑦, 𝑧) ≤ (2/3)(𝐺(𝑥, 𝑦, 𝑎) +𝐺(𝑥, 𝑎, 𝑧) + 𝐺(𝑎, 𝑦, 𝑧)),
(6) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑦, 𝑎, 𝑎) + 𝐺(𝑧, 𝑎, 𝑎).

Definition 4 (see [8]). Let (𝑋, 𝐺) be a 𝐺-metric space; and let
{𝑥
𝑛
} be a sequence of points of𝑋. A point 𝑥 ∈ 𝑋 is said to be

the limit of the sequence {𝑥
𝑛
} if lim

𝑛,𝑚→∞
𝐺(𝑥, 𝑥

𝑛
, 𝑥
𝑚
) = 0,

and one says that the sequence {𝑥
𝑛
} is 𝐺-convergent to 𝑥.

Proposition 5 (see [8]). Let (𝑋, 𝐺) be a 𝐺-metric space, then
for a sequence {𝑥

𝑛
} ⊆ 𝑋 and a point 𝑥 ∈ 𝑋 the following are

equivalent:

(1) {𝑥
𝑛
} is 𝐺-convergent to 𝑥,

(2) 𝐺(𝑥
𝑛
, 𝑥
𝑛
, 𝑥) → 0 as 𝑛 → ∞,

(3) 𝐺(𝑥
𝑛
, 𝑥, 𝑥) → 0 as 𝑛 → ∞.

Definition 6 (see [8]). Let (𝑋, 𝐺) be a 𝐺-metric space; a
sequence {𝑥

𝑛
} is called 𝐺-Cauchy if, for every 𝜖 > 0, there

is𝑁 ∈ N such that 𝐺(𝑥
𝑛
, 𝑥
𝑚
, 𝑥
𝑙
) < 𝜖, for all 𝑛,𝑚, 𝑙 ≥ 𝑁, that

is, if 𝐺(𝑥
𝑛
, 𝑥
𝑚
, 𝑥
𝑙
) → 0 as 𝑛,𝑚, 𝑙 → ∞.

Proposition7 (see [8]). In a𝐺-metric space (𝑋, 𝐺), the follow-
ing are equivalent:

(1) the sequence {𝑥
𝑛
} is 𝐺-Cauchy,

(2) for every 𝜀 > 0, there exists an 𝑛
0
∈ N such that 𝐺(𝑥

𝑛
,

𝑥
𝑚
, 𝑥
𝑚
) < 𝜀, for all 𝑛,𝑚 ≥ 𝑛

0
.

A 𝐺-metric space (𝑋, 𝐺) is 𝐺-complete (or complete 𝐺-
metric) if every𝐺-Cauchy sequence in (𝑋, 𝐺) is𝐺-convergent
in (𝑋, 𝐺).

Proposition 8 (see [8]). Every 𝐺-metric space (𝑋, 𝐺) defines
a metric space (𝑋, 𝑑

𝐺
) by

𝑑
𝐺
(𝑥, 𝑦) = 𝐺 (𝑥, 𝑦, 𝑦) + 𝐺 (𝑦, 𝑥, 𝑥) , ∀𝑥, 𝑦 ∈ 𝑋. (2)

Note that if (𝑋, 𝐺) is a symmetric 𝐺-metric space, then

𝑑
𝐺
(𝑥, 𝑦) = 2𝐺 (𝑥, 𝑦, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (3)

However, if (𝑋, 𝐺) is nonsymmetric, then by 𝐺-metric
properties

3

2
𝐺 (𝑥, 𝑦, 𝑦) ≤ 𝑑

𝐺 (𝑥, 𝑦) ≤ 3𝐺 (𝑥, 𝑦, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋, (4)

and in general these inequalities cannot be improved.

Proposition 9 (see [8]). Let (𝑋, 𝐺) be a 𝐺-metric space; then
the function 𝐺(𝑥, 𝑦, 𝑧) is jointly continuous in all three of its
variables.

In [13] it was shown that if (𝑋, 𝐺) is a 𝐺-metric space,
putting (𝑥, 𝑦) = 𝐺(𝑥, 𝑦, 𝑦), (𝑋, ) is a quasi-metric space
(generally,  is not symmetric). It is well known that any
quasi-metric induces different metrics and mostly used are

(𝜇) 𝜇(𝑥, 𝑦) = (𝑥, 𝑦) + (𝑦, 𝑥),
(𝜌) 𝜌(𝑥, 𝑦) = max{(𝑥, 𝑦), (𝑦, 𝑥)}.

The following result is an immediate consequence of the
above definitions and relations.

Theorem 10. Let (𝑋, 𝐺) be a 𝐺-metric space and let 𝐷 ∈

{𝜇, 𝜌}. Then

(1) {𝑥
𝑛
} ⊂ 𝑋 is 𝐺-convergent to 𝑥 ∈ 𝑋 if and only if {𝑥

𝑛
}

is convergent to 𝑥 in (𝑋,𝐷);
(2) {𝑥

𝑛
} ⊂ 𝑋 is 𝐺-Cauchy if and only if {𝑥

𝑛
} is Cauchy in

(𝑋,𝐷);
(3) (𝑋, 𝐺) is 𝐺-complete if and only if (𝑋,𝐷) is complete.



Journal of Applied Mathematics 3

Recently, Samet et al. [14] and Jleli and Samet [13] observed
that some fixed point theorems in context of 𝐺-metric space
can be proved (by simple transformation) using related
existing results in the setting of (quasi) metric space. Namely,
if the contraction condition of the fixed point theorem on
𝐺-metric space can be reduced to two variables, then one
can construct an equivalent fixed point theorem in setting
of usual metric space. This idea is not completely new, but
it was not successfully used before; see [15]. Karapinar and
Agarval in [16] continued to develop Jleli-Samet technique
in 𝐺-metric space, but, on the other side, they proved fixed
point theorems on the context of 𝐺-metric space for which
Jleli-Samet technique is not applicable. So, in some cases,
as it is noticed even in Jleli and Samet paper [13], when
the contraction condition is of nonlinear type, this strategy
cannot be always successfully used. This is exactly the case
in our paper where in fixed point results the use of Jleli-
Samet technique does not give satisfactory results. If, for
instance, the function 𝑓 in (17) is not independent of the
variable 𝜇 ∈ F(𝑋), then 𝑛(𝜇), 𝜇 ∈ F(𝑋), the exponent
factor in contraction conditions in our theorems, is not the
constant function (as it is the case in our paper), implying that
conditions which the contractor Φ in related metric space
must satisfy become significantly more restrictive if the Jleli-
Samet technique is used. But, using directly 𝐺-metric 𝐺, the
proofs of theorems in our paper are given. The conclusion is
that results from our paper cannot be deduced from the usual
one in metric or quasi-metric space and cannot be derived
from the results of Samet et al. [14] and Jleli and Samet [13].

For some fixed point results in 𝐺-metric spaces we refer
to [17–22].

3. Fuzzy Generalized Metric Space

Let (𝑋, 𝑑) be a metric space and let K(𝑋) be the set of all
nonempty compact subsets of 𝑋. For all 𝑥 ∈ 𝑋 and all
𝐴, 𝐵 ∈ K(𝑋), let 𝑑(𝑥, 𝐴) = inf

𝑎∈𝐴
𝑑(𝑥, 𝑎) and 𝑑(𝐴, 𝐵) =

inf
𝑎∈𝐴,𝑏∈𝐵

𝑑(𝑎, 𝑏). The Hausdorff metric on K(𝑋) is defined
by 𝐻(𝐴, 𝐵) = max{sup

𝑎∈𝐴
𝑑(𝑎, 𝐵), sup

𝑏∈𝐵
𝑑(𝑏, 𝐴)}. By F(𝑋)

we denote the set of all fuzzy sets 𝜇 : 𝑋 → [0, 1] with
compact 𝛼-levels 𝜇

𝛼
, 𝛼 ∈ (0, 1], where 𝜇

𝛼
= {𝑥 ∈ 𝑋 : 𝜇(𝑥) ≥

𝛼} and bounded support 𝜇
0
= ∪
𝛼∈(0,1]

𝜇
𝛼
. In the set F(𝑋)

the metric is introduced by 𝛿(𝜇, ]) = sup
𝛼∈(0,1]

𝐻(𝜇
𝛼
, ]
𝛼
). If

𝜇, ] ∈ F(𝑋), then (𝜇 ⊆ ]) ⇔ (𝜇(𝑥) ≤ ](𝑥)) for all 𝑥 ∈ 𝑋 and
(𝜇 = ]) ⇔ (𝜇 ⊆ ] ∧ ] ⊆ 𝜇).

The functionG : F(𝑋)×F(𝑋)×F(𝑋) → R+ is defined
by

G (𝜇, ], 𝜂) = max {L (𝜇, ], 𝜂) ,L (𝜂, 𝜇, ]) ,L (], 𝜂, 𝜇)} ,
(5)

where

L (𝜇, ], 𝜂)

= sup
𝛼∈(0,1]

{sup
𝑥∈𝜇
𝛼

{𝑑 (𝑥, ]𝛼) + 𝑑 (]𝛼, 𝜂𝛼) + 𝑑 (𝑥, 𝜂𝛼)}} .

(6)

Lemma 11. For all 𝜇, ] ∈ F(𝑋), 𝛿(𝜇, ]) < G(𝜇, ], ]) ≤

2𝛿(𝜇, ]).

Proof. Since

L (𝜇, ], ]) = sup
𝛼∈(0,1]

{2sup
𝑥∈𝜇
𝛼

𝑑 (𝑥, ]
𝛼
)} ,

L (], 𝜇, ]) = L (], ], 𝜇)

= sup
𝛼∈(0,1]

{sup
𝑦∈]
𝛼

𝑑 (𝑦, 𝜇
𝛼
) + 𝑑 (𝜇

𝛼
, ]
𝛼
)} ,

(7)

from (5) and (6), we obtain

G (𝜇, ], ])

= max{ sup
𝛼∈(0,1]

{2sup
𝑥∈𝜇
𝛼

𝑑 (𝑥, ]𝛼)} ,

sup
𝛼∈(0,1]

{sup
𝑦∈]
𝛼

𝑑 (𝑦, 𝜇
𝛼
) + 𝑑 (𝜇

𝛼
, ]
𝛼
)}}

= sup
𝛼∈(0,1]

{max{2sup
𝑥∈𝜇
𝛼

𝑑 (𝑥, ]
𝛼
) , sup
𝑦∈]
𝛼

𝑑 (𝑦, 𝜇
𝛼
)

+ 𝑑 (𝜇
𝛼, ]𝛼)}} .

(8)

The next two inequalities,

G (𝜇, ], ])

= sup
𝛼∈(0,1]

{max{2sup
𝑥∈𝜇
𝛼

𝑑 (𝑥, ]
𝛼
) , sup
𝑦∈]
𝛼

𝑑 (𝑦, 𝜇
𝛼
)

+ 𝑑 (𝜇𝛼, ]𝛼)}}

≤ 2 sup
𝛼∈(0,1]

{max{sup
𝑥∈𝜇
𝛼

𝑑 (𝑥, ]
𝛼
) , sup
𝑦∈]
𝛼

𝑑 (𝑦, 𝜇
𝛼
)}}

= 2 sup
𝛼∈(0,1]

{𝐻 (𝜇𝛼, ]𝛼)} = 2𝛿 (𝜇, ]) ,

G (𝜇, ], ])

= sup
𝛼∈(0,1]

{max{2sup
𝑥∈𝜇
𝛼

𝑑 (𝑥, ]
𝛼
) , sup
𝑦∈]
𝛼

𝑑 (𝑦, 𝜇
𝛼
)

+ 𝑑 (𝜇𝛼, ]𝛼)}}

> sup
𝛼∈(0,1]

{max{sup
𝑥∈𝜇
𝛼

𝑑 (𝑥, ]
𝛼
) , sup
𝑦∈]
𝛼

𝑑 (𝑦, 𝜇
𝛼
)}}

= sup
𝛼∈(0,1]

{𝐻 (𝜇𝛼, ]𝛼)} = 𝛿 (𝜇, ]) ,

(9)

imply the relation 𝛿(𝜇, ]) < G(𝜇, ], ]) ≤ 2𝛿(𝜇, ]), what we
had to prove.
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Proposition 12. If (𝑋, 𝑑) is a complete metric space, then
(F(𝑋),G) is a complete 𝐺-metric fuzzy space.

Proof. Properties (𝐺1), (𝐺2), and (𝐺4) from Definition 1 are
obvious, so the proof is omitted.

(𝐺3) Since 𝑑(𝑥, 𝐴) ≤ 𝑑(𝑥, 𝐵) + 𝑑(𝐴, 𝐵) for all 𝑥 ∈ 𝑋 and
all 𝐴, 𝐵 ∈ K(𝑋), we have

L (𝜇, ], ])

= sup
𝛼∈(0,1]

{sup
𝑥∈𝜇
𝛼

{𝑑 (𝑥, ]
𝛼
) + 𝑑 (𝑥, ]

𝛼
) + 𝑑 (]

𝛼
, ]
𝛼
)}}

≤ sup
𝛼∈(0,1]

{sup
𝑥∈𝜇
𝛼

{𝑑 (𝑥, ]𝛼) + 𝑑 (𝑥, 𝜂𝛼) + 𝑑 (𝜂𝛼, ]𝛼)}}

= L (𝜇, ], 𝜂) .

(10)

By the same way we show that

L (], 𝜇, ]) ≤ L (𝜂, 𝜇, ]) , L (], ], 𝜇) ≤ L (], 𝜂, 𝜇) ,
(11)

which implies thatG(𝜇, ], ]) ≤ G(𝜇, ], 𝜂).
(𝐺5) To prove thatG(𝜇, ], 𝜂) ≤ G(𝜇, 𝜃, 𝜃) +G(𝜃, ], 𝜂), we

consider the related inequality forL:

L (𝜇, ], 𝜂)

= sup
𝛼∈(0,1]

{sup
𝑥∈𝜇
𝛼

{𝑑 (𝑥, ]
𝛼
) + 𝑑 (𝑥, 𝜂

𝛼
) + 𝑑 (𝜂

𝛼
, ]
𝛼
)}}

≤ sup
𝛼∈(0,1]

{sup
𝑥∈𝜇
𝛼

{𝑑 (𝑥, 𝜃
𝛼
) + 𝑑 (𝜃

𝛼
, ]
𝛼
) + 𝑑 (𝑥, 𝜃

𝛼
)

+𝑑 (𝜃𝛼, 𝜂𝛼) + 𝑑 (𝜂𝛼, ]𝛼)}}

≤ sup
𝛼∈(0,1]

{sup
𝑥∈𝜇
𝛼

{𝑑 (𝑥, 𝜃
𝛼
) + sup
𝑡∈𝜃
𝛼

𝑑 (𝑡, ]
𝛼
) + 𝑑 (𝑥, 𝜃

𝛼
)

+sup
𝑡∈𝜃
𝛼

𝑑 (𝑡, 𝜂
𝛼
) + 𝑑 (𝜂

𝛼
, ]
𝛼
)}}

= sup
𝛼∈(0,1]

{sup
𝑥∈𝜇
𝛼

{𝑑 (𝑥, 𝜃
𝛼
) + 𝑑 (𝑥, 𝜃

𝛼
) + 𝑑 (𝜃

𝛼
, 𝜃
𝛼
)}

+sup
𝑡∈𝜃
𝛼

{𝑑 (𝑡, ]
𝛼
) + 𝑑 (𝑡, 𝜂

𝛼
) + 𝑑 (𝜂

𝛼
, ]
𝛼
)}}

= L (𝜇, 𝜃, 𝜃) +L (𝜃, ], 𝜂) .

(12)

Analogously, L(𝜂, 𝜇, ]) ≤ L(𝜃, 𝜇, 𝜃) + L(𝜂, 𝜃, ]) and L(],
𝜂, 𝜇) ≤ L(𝜃, 𝜃, 𝜇) +L(], 𝜂, 𝜃). All three inequalities together
imply thatG(𝜇, ], 𝜂) ≤ G(𝜇, 𝜃, 𝜃) +G(𝜃, ], 𝜂).

The completeness of (F(𝑋),G) is a consequence of the
completeness of (F(𝑋), 𝛿) and inequality from the previous
lemma.

Proposition 13. 𝐺-metric fuzzy space (F(𝑋),G) is not sym-
metric.

Proof. We prove thatG(𝜇, ], ]) ̸=G(], 𝜇, 𝜇). If

sup
𝛼∈(0,1]

sup
𝑥∈𝜇
𝛼

𝑑 (𝑥, ]𝛼) = 𝐴,

sup
𝛼∈(0,1]

sup
𝑦∈]
𝛼

𝑑 (𝑦, 𝜇
𝛼
) = 𝑏,

sup
𝛼∈(0,1]

𝑑 (]
𝛼
, 𝜇
𝛼
) = 𝐶,

(13)

then

G (𝜇, ], ]) = max {2𝐴, 𝐵 + 𝐶}

̸=G (], 𝜇, 𝜇)

= max {2𝐵, 𝐴 + 𝐶} .

(14)

4. Fixed Point for Contractive Iterate at
the Point and Orbitally Contractive at
the Point Fuzzy Mappings

A generalization of the contraction principle can be obtained
using different type of a nondecreasing right continuous
function Φ : [0,∞) → [0,∞). The most usual additional
properties imposed on Φ are given using a combination of
the next seven conditions:

(𝜙1) Φ(0) = 0,
(𝜙
2
) Φ(𝑥) < 𝑥, for all 𝑥 > 0,

(𝜙
3) lim𝑖→∞Φ

𝑖
(𝑥) = 0, for all 𝑥 > 0,

(𝜙
4
) {𝑥
𝑖
} ⊂ [0,∞) is a sequence such that 𝑥

𝑖+1
≤ Φ(𝑥

𝑖
);

then lim
𝑖→∞

𝑥
𝑖
= 0.

(𝜙5) for any 𝑥 ≥ 0 there exists a 𝑦(𝑥) ≥ 0, 𝑦(𝑥) =

sup
𝑦≥0

{𝑦 ≤ 𝑥 + Φ(𝑦)},

(𝜙
6
) lim
𝑥→∞

(𝑥 − Φ(𝑥)) = ∞,

(𝜙
7) ∑
∞

𝑖=1
Φ
𝑖
(𝑥) < ∞, for all 𝑥 > 0.

Some of the noted properties of Φ are equivalent, some
of them imply other, and some of them are incompatible.
The next lemma discusses some of the relations between
properties (𝜙

1
)–(𝜙
7
), especially those which are used in this

paper to define a generalized contraction.

Lemma 14. Let Φ : [0,∞) → [0,∞) be a nondecreasing
right continuous function. Then

(i) (𝜙
2
) ⇔ (𝜙

3
) ⇔ (𝜙

4
),

(ii) (𝜙
7
) ⇒ (𝜙

𝑘
) ⇒ (𝜙

1
), where 𝑘 ∈ {2, 3, 4},

(iii) (𝜙
5
) + (𝜙

2
)  (𝜙

7
) and (𝜙

6
) + (𝜙

2
)  (𝜙

7
),

(iv) (𝜙
7
)  (𝜙

5
) and (𝜙

7
)  (𝜙

6
).
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Proof. (i) It is enough to prove that (𝜙
4
) ⇒ (𝜙

2
) ⇔ (𝜙

3
) ⇒

(𝜙
4
).

(𝜙
2
) ⇒ (𝜙

3
).We assume that for some𝑥 > 0, lim

𝑖→∞
Φ
𝑖
(𝑥) =

𝑎 > 0. Since {Φ
𝑖
(𝑥)} is nonincreasing sequence, by

the right continuity of Φ, Φ(𝑎) = Φ lim
𝑖→∞

Φ
𝑖
(𝑥) =

lim
𝑖→∞

Φ
𝑖+1
(𝑥) = 𝑎 > 0; that is, 0 < 𝑎 = Φ(𝑎) which

contradicts (𝜙
2
).

(𝜙
3
) ⇒ (𝜙

2
). If for some 𝑥 > 0,Φ(𝑥) ≥ 𝑥, then, knowing that

Φ is nondecreasing, Φ𝑖(𝑥) ≥ Φ
𝑖−1
(𝑥) ≥ ⋅ ⋅ ⋅ ≥ Φ(𝑥) ≥ 𝑥 > 0.

It means that lim𝑖→∞Φ
𝑖
(𝑥) ̸= 0, which contradicts (𝜙3).

(𝜙
3) ⇒ (𝜙4). Let {𝑥𝑖} ⊂ [0,∞) be any sequence such that

𝑥𝑖+1 ≤ Φ(𝑥𝑖). Then 𝑥𝑖 ≤ Φ(𝑥𝑖−1) ≤ Φ
2
(𝑥𝑖−2) ≤ ⋅ ⋅ ⋅ ≤ Φ

𝑖
(𝑥0)

and lim
𝑖→∞

𝑥
𝑖
≤ lim
𝑖→∞

Φ
𝑖
(𝑥
0
) = 0.

(𝜙
4
) ⇒ (𝜙

2
). If (𝜙

2
) does not hold, that is, there exists a 𝑦 > 0,

𝑦 ≤ Φ(𝑦), then putting 𝑥
𝑖
= 𝑦, for all 𝑖 = 0, 1, . . ., we have the

sequence with 𝑦 = 𝑥
𝑖+1

≤ Φ(𝑦) = Φ(𝑥
𝑖
), but that sequence

does not converge to 0.
(ii) is obvious, so the proof is omitted.
(iii) Function

Φ (𝑥) = {
(𝑛 + 2)

−1
, (𝑛 + 1)

−1
≤ 𝑥 < 𝑛

−1
, 𝑛 ∈ N,

3
−1
, 1 ≤ 𝑥

(15)

satisfies (𝜙
5
), (𝜙
6
) and (𝜙

2
) but not (𝜙

7
).

(iv) Function

Φ (𝑥) =
{

{

{

(
𝑥

2
)
2

, 0 ≤ 𝑥 < 2,

𝑥 − 1, 2 ≤ 𝑥

(16)

satisfies (𝜙
7
) but not (𝜙

5
) nor (𝜙

6
).

Theorem 15. Let (𝑋, 𝑑) be a complete metric space, let
(F(𝑋),G) be related𝐺-metric fuzzy space, and letB ⊆ F(𝑋).
Further, let {𝑓

𝑖
} be the sequence of self-mappings ofF(𝑋) such

that, for all 𝑖 ∈ N, 𝑓
𝑖
(B) ⊆ B and for each 𝜇 ∈ F(𝑋) there

exists an 𝑛(𝜇) ∈ N such that

G (𝑓
𝑛(𝜇)

𝑖
(]) , 𝑓

𝑛(𝜇)

𝑗
(𝜇) , 𝑓

𝑛(𝜇)

𝑗
(𝜇))

≤ Φ (max {G (], 𝜇, 𝜇) ,

2
−1
[G (], 𝑓𝑛(𝜇)

𝑗
(𝜇) , 𝑓

𝑛(𝜇)

𝑗
(𝜇))

+G (𝜇, 𝑓
𝑛(𝜇)

𝑗
(𝜇) , 𝑓

𝑛(𝜇)

𝑗
(𝜇))] ,

2
−1
[G (], 𝑓𝑛(𝜇)

𝑗
(𝜇) , 𝑓

𝑛(𝜇)

𝑗
(𝜇))

+G (𝑓
𝑛(𝜇)

𝑖
(]) , 𝜇, 𝜇)]}) ,

(17)

for all 𝑖, 𝑗 ∈ N and all ] ∈ B, where Φ satisfies (𝜙
2
). If there

exists 𝜇∗ ∈ B such that 𝑓𝑛(𝜇
∗

)

𝑖
(𝜇
∗
) = 𝜇

∗ for all 𝑖 ∈ N, then
𝜇
∗ is a unique common fixed point for {𝑓𝑖} inB and, for every
𝜇1 ∈ F(𝑋), the sequence 𝜇𝑗+1 = 𝑓

𝑛(𝜇
∗

)

𝑖
(𝜇𝑗), 𝑖 ∈ N, converges

to 𝜇∗.

Proof. First we prove that 𝜇∗ is a unique point in B with
the property that 𝑓𝑛(𝜇

∗

)

𝑖
(𝜇
∗
) = 𝜇

∗, 𝑖 ∈ N. If ] ∈ B, ] ̸= 𝜇
∗,

𝑓
𝑛(𝜇
∗

)

𝑖
(]) = ], 𝑖 ∈ N, then

G (], 𝜇∗, 𝜇∗) ≤ G (𝑓
𝑛(𝜇
∗

)

𝑖
(]) , 𝑓

𝑛(𝜇
∗

)

𝑗
(𝜇
∗
) , 𝑓
𝑛(𝜇
∗

)

𝑗
(𝜇
∗
))

≤ Φ (G (], 𝜇∗, 𝜇∗)) .
(18)

By the property Φ(𝑡) < 𝑡, 𝑡 > 0, since G(], 𝜇∗, 𝜇∗) > 0, we
have the contradiction; that is, the assumption 𝜇

∗
̸= ] is not

correct.
Further, since

𝑓𝑖 (𝜇
∗
) = 𝑓𝑖 (𝑓

𝑛(𝜇
∗

)

𝑖
(𝜇
∗
)) = 𝑓

𝑛(𝜇
∗

)+1

𝑖
(𝜇
∗
) = 𝑓
𝑛(𝜇
∗

)

𝑖
(𝑓𝑖 (𝜇

∗
)) ,

(19)

it follows that 𝑓
𝑖
(𝜇
∗
) = 𝜇
∗ for all 𝑖 ∈ N.

Now, for some 𝜇
1
∈ B, we form the sequence 𝜇

𝑖+1
=

𝑓
𝑛(𝜇
∗

)

𝑖
(𝜇𝑖).

If 𝜇
1
= 𝜇
∗, then 𝜇

𝑖
= 𝑓
𝑛(𝜇
∗

)

𝑖−1
(𝑓
𝑛(𝜇
∗

)

𝑖−2
⋅ ⋅ ⋅ (𝑓
𝑛(𝜇
∗

)

1
(𝜇
∗
)) ⋅ ⋅ ⋅ ) =

𝜇
∗ and the sequence {𝜇

𝑖
} converges to 𝜇∗.

If 𝜇
𝑖
̸= 𝜇
∗, in order to prove that the sequence {𝜇

𝑖
}

converges to 𝜇
∗, we consider the sequence G(𝜇

𝑖+1
, 𝜇
∗
, 𝜇
∗
),

𝑖 ∈ N:

G (𝜇𝑖+1, 𝜇
∗
, 𝜇
∗
)

= G (𝑓
𝑛(𝜇
∗

)

𝑖
(𝜇
𝑖
) , 𝑓
𝑛(𝜇
∗

)

𝑗
(𝜇
∗
) , 𝑓
𝑛(𝜇
∗

)

𝑗
(𝜇
∗
))

≤ Φ (max {G (𝜇
𝑖
, 𝜇
∗
, 𝜇
∗
) ,

2
−1
[G (𝜇
𝑖
, 𝜇
∗
, 𝜇
∗
) +G (𝜇

∗
, 𝜇
∗
, 𝜇
∗
)] ,

2
−1
[G (𝜇
𝑖
, 𝜇
∗
, 𝜇
∗
) +G (𝜇

𝑖+1
, 𝜇
∗
, 𝜇
∗
)]})

= Φ (max {G (𝜇
𝑖
, 𝜇
∗
, 𝜇
∗
) ,

2
−1
[G (𝜇
𝑖
, 𝜇
∗
, 𝜇
∗
) +G (𝜇

𝑖+1
, 𝜇
∗
, 𝜇
∗
)]}) .

(20)

If we choose the option that

max {G (𝜇
𝑖
, 𝜇
∗
, 𝜇
∗
) , 2
−1
[G (𝜇
𝑖
, 𝜇
∗
, 𝜇
∗
) +G (𝜇

𝑖+1
, 𝜇
∗
, 𝜇
∗
)]}

= 2
−1
[G (𝜇
𝑖
, 𝜇
∗
, 𝜇
∗
) +G (𝜇

𝑖+1
, 𝜇
∗
, 𝜇
∗
)] ,

(21)

it implies that

G (𝜇
𝑖
, 𝜇
∗
, 𝜇
∗
) ≤ G (𝜇

𝑖+1
, 𝜇
∗
, 𝜇
∗
) . (22)

On the other hand, in that case

G (𝜇𝑖+1, 𝜇
∗
, 𝜇
∗
) ≤ Φ (2

−1
[G (𝜇𝑖, 𝜇

∗
, 𝜇
∗
) +G (𝜇𝑖+1, 𝜇

∗
, 𝜇
∗
)])

< 2
−1
G (𝜇𝑖, 𝜇

∗
, 𝜇
∗
) + 2
−1
G (𝜇𝑖+1, 𝜇

∗
, 𝜇
∗
) ;

(23)

that is

G (𝜇
𝑖+1, 𝜇
∗
, 𝜇
∗
) < G (𝜇𝑖, 𝜇

∗
, 𝜇
∗
) . (24)
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It is obvious that (22) contradicts (24). So,

G (𝜇
𝑖+1, 𝜇
∗
, 𝜇
∗
) ≤ Φ (G (𝜇𝑖, 𝜇

∗
, 𝜇
∗
)) . (25)

Now, applying that procedure 𝑖 times and letting 𝑖 → ∞, we
get

G (𝜇
𝑖+1, 𝜇
∗
, 𝜇
∗
) ≤ Φ (G (𝜇𝑖, 𝜇

∗
, 𝜇
∗
))

≤ ⋅ ⋅ ⋅ ≤ Φ
𝑖
(G (𝜇1, 𝜇

∗
, 𝜇
∗
)) .

(26)

Since 𝜇
1

̸= 𝜇
∗,G(𝜇

𝑖
, 𝜇
∗
, 𝜇
∗
) > 0 and lim

𝑖→∞
G(𝜇
𝑖+1
, 𝜇
∗
,𝜇
∗
) =

0. The last relation proves that the sequence {𝜇
𝑖
} converges to

𝜇
∗.

Theorem 16. Let (𝑋, 𝑑) be a complete metric space, 𝑓 :

F(𝑋) → F(𝑋), where (F(𝑋),G) is related 𝐺-metric fuzzy
space, and letΦ : [0,∞) → [0,∞) be a subadditive mapping
satisfying (𝜙7). If for some 𝜇

0
∈ F(𝑋) the orbit O(𝑓; 𝜇

0
) is

complete and for each 𝜇 ∈ O(𝑓; 𝜇0) there exists an 𝑛(𝜇) ∈ N

such that

G (𝑓
𝑛(𝜇)

(]) , 𝑓𝑛(𝜇) (𝜇) , 𝑓𝑛(𝜇) (𝜇)) ≤ Φ (G (], 𝜇, 𝜇)) , (27)

for all ] ∈ O(𝑓; 𝜇0), then the sequence 𝜇𝑖+1 = 𝑓
𝑛(𝜇
𝑖
)
(𝜇𝑖), 𝑖 ∈ N0,

converges to some 𝜇∗ ∈ F(𝑋).
If inequality (27) holds for all 𝜇 ∈ O(𝑓; 𝜇0), then

𝑓
𝑛(𝜇
∗

)
(𝜇
∗
) = 𝜇

∗ and 𝑓
𝑖
(𝜇) → 𝜇

∗ for all 𝜇 ∈ O(𝑓; 𝜇
0
). If

𝑓(O(𝑓; 𝜇
0
)) ⊆ O(𝑓; 𝜇

0
), then 𝜇∗ is the fixed point of 𝑓.

Proof. First, we show that {𝜇
𝑖
}
𝑖∈N
0

⊂ F(𝑋) is a Cauchy
sequence. For sufficiently large 𝑚 ∈ N, there exist 𝑘, 𝑟 ∈ N,
1 ≤ 𝑟 < 𝑛(𝜇

0
) such that𝑚 = 𝑘 ⋅ 𝑛(𝜇

0
) + 𝑟. Using (27), we get

G (𝑓
𝑚
(𝜇0) , 𝜇0, 𝜇0)

≤ G (𝑓
𝑘𝑛(𝜇
0
)+𝑟

(𝜇0) , 𝑓
𝑛(𝜇
0
)
(𝜇0) , 𝑓

𝑛(𝜇
0
)
(𝜇0))

+G (𝑓
𝑛(𝜇
0
)
𝜇
0
, 𝜇
0
, 𝜇
0
)

≤ Φ (G (𝑓
(𝑘−1)𝑛(𝜇

0
)+𝑟

(𝜇
0
) , 𝜇
0
, 𝜇
0
))

+G (𝑓
𝑛(𝜇
0
)
(𝜇
0
) , 𝜇
0
, 𝜇
0
)

≤ Φ (G (𝑓
(𝑘−1)𝑛(𝜇

0
)+𝑟

(𝜇
0
) , 𝑓
𝑛(𝜇
0
)
(𝜇
0
) , 𝑓
𝑛
(𝜇
0
))

+ G (𝑓
𝑛(𝜇
0
)
(𝜇0) , 𝜇0, 𝜇0))

+G (𝑓
𝑛(𝜇
0
)
(𝜇
0
) , 𝜇
0
, 𝜇
0
)

≤ Φ
2
(G (𝑓

(𝑘−2)𝑛(𝜇
0
)+𝑟

(𝜇
0
) , 𝜇
0
, 𝜇
0
))

+ Φ (G (𝑓
𝑛(𝜇
0
)
(𝜇
0
) , 𝜇
0
, 𝜇
0
)) +G (𝑓

𝑛(𝜇
0
)
(𝜇
0
) , 𝜇
0
, 𝜇
0
)

≤ ⋅ ⋅ ⋅ ≤ Φ
𝑘
(G (𝑓

𝑟
(𝜇
0
) , 𝜇
0
, 𝜇
0
))

+

𝑘−1

∑
𝑖=1

Φ
𝑖
(G (𝑓

𝑛(𝜇
0
)
, 𝜇
0
, 𝜇
0
)) .

(28)

Putting 𝐴 = max{G(𝑓𝑝(𝜇
0
), 𝜇
0
, 𝜇
0
) : 1 ≤ 𝑝 ≤ 𝑛(𝜇

0
)}, for all

𝑚 ∈ N, the next inequality holds:

G (𝑓
𝑚
(𝜇0) , 𝜇0, 𝜇0) ≤

𝑘

∑
𝑠=1

Φ
𝑠
(𝐴) ≤

∞

∑
𝑠=1

Φ
𝑠
(𝐴) = 𝐵 < ∞,

(29)

and, consequently,

G (𝜇
𝑚
, 𝜇
𝑚
, 𝜇
𝑚+1

)

= G (𝑓
𝑛(𝜇
𝑚−1
)
(𝜇
𝑚−1

) , 𝑓
𝑛(𝜇
𝑚−1
)
(𝜇
𝑚−1

) ,

𝑓
𝑛(𝜇
𝑚
)
𝑓
𝑛(𝜇
𝑚−1
)
(𝜇
𝑚−1

))

≤ Φ (G (𝜇𝑚−1, 𝜇𝑚−1, 𝑓
𝑛(𝜇
𝑚
)
(𝜇𝑚−1)))

≤ ⋅ ⋅ ⋅ ≤ Φ
𝑚
(G (𝜇

0
, 𝜇
0
, 𝑓
𝑛(𝜇
𝑚
)
(𝜇
0
))) ≤ Φ

𝑚
(𝐵) ,

(30)

for all 𝑚 ∈ N. Using the last inequality, for every 𝑖, 𝑗 ∈ N,
𝑖 < 𝑗, we have

G (𝜇𝑖, 𝜇𝑖, 𝜇𝑗) ≤ G (𝜇
𝑖
, 𝜇
𝑖
, 𝜇
𝑖+1
)

+ ⋅ ⋅ ⋅ +G (𝜇
𝑘−1, 𝜇𝑘−1, 𝜇𝑘) ≤

𝑗

∑
𝑠=𝑖

Φ
𝑠
(𝐵) ,

(31)

implying that {𝜇
𝑖
}
𝑖∈N is a Cauchy sequence. Since (F(𝑋),G)

is a complete𝐺-metric fuzzy space, there exists an𝜇∗ ∈ F(𝑋)

such that lim
𝑖→∞

𝜇
𝑖
= 𝜇
∗.

In the second part of the theorem, inequality (27) holds
for all 𝜇 ∈ O(𝑓; 𝜇

0
). Then, the elements 𝜇

𝑖
of the sequence

{𝜇
𝑖
}
𝑖∈N from the previous part of the proof satisfy the next two

relations:

G (𝑓
𝑛(𝜇
∗

)
(𝜇
∗
) , 𝑓
𝑛(𝜇
∗

)
(𝜇
∗
) , 𝑓
𝑛(𝜇
∗

)
(𝜇𝑖))

≤ Φ (G (𝜇
∗
, 𝜇
∗
, 𝜇
𝑖
)) ,

(32)

G (𝑓
𝑛(𝜇
∗

)
(𝜇
𝑖
) , 𝜇
𝑖
, 𝜇
𝑖
)

= G (𝑓
𝑛(𝜇
∗

)
𝑓
𝑛(𝜇
𝑖−1
)
(𝜇
𝑖−1
) , 𝑓
𝑛(𝜇
𝑖−1
)
(𝜇
𝑖−1
) ,

𝑓
𝑛(𝜇
𝑖−1
)
(𝜇𝑖−1))

≤ Φ(G (𝑓
𝑛(𝜇
∗

)
(𝜇
𝑖−1
) , 𝜇
𝑖−1
, 𝜇
𝑖−1
))

≤ Φ
𝑖
(G (𝑓

𝑛(𝜇
∗

)
(𝜇
0
) , 𝜇
0
, 𝜇
0
)) .

(33)

By (32)

lim
𝑖→∞

𝑓
𝑛(𝜇
∗

)
(𝜇𝑖) = 𝑓

𝑛(𝜇
∗

)
(𝜇
∗
) (34)

and by (33)

lim
𝑖→∞

G (𝑓
𝑛(𝜇
∗

)
(𝜇
𝑖
) , 𝜇
𝑖
, 𝜇
𝑖
) = G (𝑓

𝑛(𝜇
∗

)
(𝜇
∗
) , 𝜇
∗
, 𝜇
∗
) = 0.

(35)

Hence, 𝑓𝑛(𝜇
∗

)
(𝜇
∗
) = 𝜇
∗.
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To show that 𝜇∗ is a unique fixed point of 𝑓𝑛(𝜇
∗

) in
O(𝑓; 𝜇

0
), we assume that there exists another point 𝑥∗∗ ∈

O(𝑓; 𝜇
0
) with the same property. Then

G (𝑥
∗∗
, 𝜇
∗
, 𝜇
∗
) = G (𝑓

𝑛(𝜇
∗

)
𝑥
∗∗
, 𝑓
𝑛(𝜇
∗

)
𝜇
∗
, 𝑓
𝑛(𝜇
∗

)
𝜇
∗
)

≤ Φ (G (𝑥
∗∗
, 𝜇
∗
, 𝜇
∗
)) .

(36)

That is 𝑥∗∗ = 𝜇
∗. Further, if 𝑓(O(𝑓; 𝜇

0
)) ⊆ O(𝑓; 𝜇

0
), then

𝑓𝜇
∗
= 𝑓(𝑓

𝑛(𝜇
∗

)
𝜇
∗
) = 𝑓

𝑛(𝜇
∗

)
(𝑓𝜇
∗
), implying that 𝑓𝜇∗ = 𝜇

∗.

5. Subfixed Point for Generalized Contraction
Family of Fuzzy Mappings

We say that 𝜇∗ ∈ F(𝑋) is a subfixed point of the mapping
𝑓 : F(𝑋) → F(𝑋) if and only if 𝜇∗ ⊆ 𝑓(𝜇

∗
).

The proof of the next two propositions is the same as in
[10]; only, instead of the derived metric 𝑑

𝐺
, the metric 𝑑 from

original metric space (𝑋, 𝑑) is used.

Proposition 17. If 𝜇
1
, 𝜇
2
, ]
2
∈ F(𝑋) and 𝜇

1
≤ 𝜇
2
, then there

exists a ]
1
∈ F(𝑋) such thatG(𝜇

1
, ]
1
, ]
1
) ≤ G(𝜇

2
, ]
2
, ]
2
).

Proposition 18. If 𝜇, ], 𝜂 ∈ F(𝑋) and 𝜇 ⊆ ], then

(i) L(𝜇, 𝜂, 𝜂) ≤ L(], 𝜂, 𝜂),
(ii) L(𝜂, ], ]) ≤ L(𝜂, 𝜇, 𝜇),
(iii) L(𝜇, ], ]) = 0 ⇔ 𝜇 ⊆ ].

In the next two theorems we consider the existence of a
fuzzy set 𝜇∗ which represents a common subfixed point for
the family of self-mappings {𝑓

𝑖
}, that is, the point such that

𝜇
∗
⊆ 𝑓
𝑖
(𝜇
∗
) for all 𝑖 ∈ N.

Let (𝑋, 𝑑) be a complete metric space, and let (F(𝑋),G)
be related 𝐺-metric fuzzy space. Further, let for all 𝜇, ] ∈

F(𝑋) and all 𝑖, 𝑗 ∈ N, 𝑖 ̸= 𝑗,

G (𝑓
𝑖 (]) , 𝑓𝑗 (𝜇) , 𝑓𝑗 (𝜇))

≤ Φ (max {(G (], 𝜇, 𝜇) ,L (], 𝑓
𝑖 (]) , 𝑓𝑖 (])) ,

L (𝜇, 𝑓
𝑗
(𝜇) , 𝑓

𝑗
(𝜇))) ,

L (], 𝑓
𝑗
(𝜇) , 𝑓

𝑗
(𝜇)) ,L (𝜇, 𝑓

𝑖 (]) , 𝑓𝑖 (]))}) ,

(37)

where Φ : [0,∞) → [0,∞).
If𝜇
0
is any element fromF(𝑋) and a𝜇

1
∈ F(𝑋) is chosen

such that 𝜇
1
⊆ 𝑓
1
(𝜇
0
), then, by Proposition 17, there exists a

𝜇
2
⊆ 𝑓
2
(𝜇
1
), such that

G (𝜇
1
, 𝜇
2
, 𝜇
2) ≤ G (𝑓1 (𝜇0) , 𝑓2 (𝜇1) , 𝑓2 (𝜇1)) . (38)

By the same principle as for the first three members, the
sequence {𝜇

𝑖
} is formed such that

𝜇
𝑖+1

⊆ 𝑓
𝑖+1

(𝜇
𝑖
) , ∀𝑖 ∈ N, (39)

G (𝜇
𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) ≤ G (𝑓

𝑖
(𝜇
𝑖−1
) , 𝑓
𝑖+1

(𝜇
𝑖
) , 𝑓
𝑖+1

(𝜇
𝑖
)) . (40)

Lemma 19. IfΦ in (37) satisfies (𝜙
5
) together with (𝜙

2
) or (𝜙

3
)

or (𝜙
4
), the sequence {𝜇

𝑖
} defined in (39) is a Cauchy sequence.

Proof. By (37), for any 𝑖, 𝑗 ∈ N, we have

G (𝜇
𝑖, 𝜇𝑗, 𝜇𝑗)

≤ G (𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑗
(𝜇
𝑗−1

) , 𝑓
𝑗
(𝜇
𝑗−1

))

≤ Φ (max {G (𝜇
𝑖−1
, 𝜇
𝑗−1

, 𝜇
𝑗−1

) ,

L (𝜇
𝑖−1
, 𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑖
(𝜇
𝑖−1
)) ,

L (𝜇
𝑗−1

, 𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑖
(𝜇
𝑖−1
)) ,

L (𝜇𝑗−1, 𝑓𝑗 (𝜇𝑗−1) , 𝑓𝑗 (𝜇𝑗−1)) ,

L (𝜇
𝑖−1
, 𝑓
𝑗
(𝜇
𝑗−1

) , 𝑓
𝑗
(𝜇
𝑗−1

))})

≤ Φ (max {G (𝜇
𝑖−1
, 𝜇
𝑗−1

, 𝜇
𝑗−1

) ,

L (𝜇
𝑖−1
, 𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑖
(𝜇
𝑖−1
)) ,

L (𝜇
𝑗−1

, 𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑖
(𝜇
𝑖−1
)) ,

L (𝜇𝑗−1, 𝑓𝑗 (𝜇𝑗−1) , 𝑓𝑗 (𝜇𝑗−1)) ,

L (𝜇
𝑖−1
, 𝑓
𝑗
(𝜇
𝑗−1

) , 𝑓
𝑗
(𝜇
𝑗−1

))})

≤ Φ (max {G (𝜇𝑖−1, 𝜇𝑗−1, 𝜇𝑗−1) ,

L (𝜇
𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
) ,L (𝜇

𝑗−1
, 𝜇
𝑖
, 𝜇
𝑖
) ,

L (𝜇
𝑗−1

, 𝜇
𝑗
, 𝜇
𝑗
) ,L (𝜇

𝑖−1
, 𝜇
𝑗
, 𝜇
𝑗
)})

≤ Φ (max {G (𝜇𝑖−1, 𝜇𝑗−1, 𝜇𝑗−1) ,G (𝜇
𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
) ,

G (𝜇
𝑗−1

, 𝜇
𝑖
, 𝜇
𝑖
) ,G (𝜇

𝑗−1
, 𝜇
𝑗
, 𝜇
𝑗
) ,

G (𝜇𝑖−1, 𝜇𝑗, 𝜇𝑗)}) .

(41)

Considering relation (41) for different values 𝑘 ≤ 𝑖, 𝑗 ≤ 𝑛, we
get

sup
𝑘≤𝑖,𝑗≤𝑛

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)} ≤ Φ( sup

𝑘−1≤𝑖,𝑗≤𝑛

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)}) ,

(42)

for all 𝑘, 𝑛 ∈ N, 2 ≤ 𝑘 < 𝑛. Knowing that

sup
1≤𝑖,𝑗≤𝑛

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)}

≤ max {G (𝜇
1
, 𝜇
2
, 𝜇
2
) ,G (𝜇

2
, 𝜇
1
, 𝜇
1
)}

+ sup
2≤𝑖,𝑗≤𝑛

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)}

(43)
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and using (42) with 𝑘 = 2, we obtain

sup
1≤𝑖,𝑗≤𝑛

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)}

≤ max {G (𝜇
1
, 𝜇
2
, 𝜇
2
) ,G (𝜇

2
, 𝜇
1
, 𝜇
1
)}

+ Φ( sup
1≤𝑖,𝑗≤𝑛

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)}) .

(44)

Putting 𝑥 = max{G(𝜇
1
, 𝜇
2
, 𝜇
2
),G(𝜇

2
, 𝜇
1
, 𝜇
1
)} and applying

the property (𝜙
5
) in (44), there exists a 𝑦(𝑥) > 0 such that

sup
1≤𝑖,𝑗≤𝑛

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)} ≤ 𝑦 (𝑥) . (45)

Taking 𝑘 = 2 in (42) again, using the last relation, we get

sup
2≤𝑖,𝑗≤𝑛

{G (𝜇𝑖, 𝜇𝑗, 𝜇𝑗)} ≤ Φ (𝑦 (𝑥)) . (46)

Continuing this process, we obtain

sup
𝑘≤𝑖,𝑗≤𝑛

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)} ≤ Φ

𝑘−1
(𝑦 (𝑥)) , (47)

where 𝑘, 𝑛 ∈ N, 2 ≤ 𝑘 < 𝑛. Now, letting 𝑘 → ∞ and
using the properties ofΦ, finally we show that {𝜇

𝑖
} is a Cauchy

sequence; that is

lim
𝑘→∞

sup
𝑘≤𝑖,𝑗≤𝑛

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)} ≤ lim
𝑘→∞

Φ
𝑘−1

(𝑦 (𝑥)) = 0. (48)

Using Lemma 14(ii), property (𝜙
3
) can be replaced by (𝜙

2
) or

(𝜙
4
).

Lemma20. IfΦ in (37) satisfies (𝜙
6
) together with (𝜙

2
) or (𝜙

3
)

or (𝜙
4
), the sequence {𝜇

𝑖
} defined in (39) is a Cauchy sequence.

Proof. Using properties of Φ satisfying (𝜙
6
) together with

(𝜙
4
), we prove by contradiction that

lim
𝑛→∞

sup
1≤𝑖,𝑗≤𝑛

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)} = sup
1≤𝑖,𝑗

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)} < ∞.

(49)

The assumption that (49) is not the case leads to

lim
𝑛→∞

sup
1≤𝑖,𝑗≤𝑛

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)} = ∞. (50)

On the other hand, by (𝜙
6
) and (44) we obtain

∞ = lim
𝑛→∞

( sup
1≤𝑖,𝑗≤𝑛

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)}

−𝜙( sup
1≤𝑖,𝑗≤𝑛

{G (𝜇𝑖, 𝜇𝑗, 𝜇𝑗)}))

≤ max {G (𝜇
1
, 𝜇
2
, 𝜇
2
) ,G (𝜇

2
, 𝜇
1
, 𝜇
1
)} ,

(51)

which is a contradiction implying that (49) is true. Now we
define a decreasing sequence {𝑥

𝑘
} ⊂ (0,∞) by

𝑥
𝑘 = sup
𝑘≤𝑖,𝑗

{G (𝜇𝑖, 𝜇𝑗, 𝜇𝑗)} (52)

and, using (41),

𝑥
𝑘
≤ 𝜙 (𝑥

𝑘−1
) ≤ ⋅ ⋅ ⋅ ≤ 𝜙

𝑘−1
(𝑥
1
) . (53)

Letting 𝑘 → ∞, finally we prove that

lim
𝑘→∞

sup
𝑘≤𝑖,𝑗

{G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)} = 0. (54)

So, {𝜇𝑖} is a Cauchy sequence. Using Lemma 14(ii), property
(𝜙
4
) can be replaced by (𝜙

2
) or (𝜙

3
).

Theorem 21. If all assumptions from Lemma 19 or from
Lemma 20 are satisfied, then there exists a ]∗ ∈ F(𝑋) such
that ]∗ ⊆ 𝑓

𝑖
(]∗) for all 𝑖 ∈ N.

Proof. In Lemma 19 or Lemma 20 it was proved that {𝜇
𝑖
} is

a Cauchy sequence and, by the completeness of (F(𝑋),G),
lim
𝑖→∞

𝜇
𝑖
= 𝜇
∗
∈ F(𝑋). To prove that 𝜇∗ ⊆ 𝑓

𝑗
(𝜇
∗
), we

proceed as follows:

L (𝜇
∗
, 𝑓𝑗 (𝜇

∗
) , 𝑓𝑗 (𝜇

∗
))

≤ lim
𝑖→∞

L (𝜇
∗
, 𝜇
𝑖
, 𝜇
𝑖
) + lim
𝑖→∞

L (𝜇
𝑖
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
))

= lim
𝑖→∞

G (𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
))

≤ lim
𝑖→∞

Φ(max {G (𝜇
𝑖−1
, 𝜇
∗
, 𝜇
∗
) ,

L (𝜇
𝑖−1
, 𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑖
(𝜇
𝑖−1
)) ,

L (𝜇
∗
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
)) ,

L (𝜇
𝑖−1, 𝑓𝑗 (𝜇

∗
) , 𝑓𝑗 (𝜇

∗
)) ,

L (𝜇
∗
, 𝑓𝑖 (𝜇𝑖−1) , 𝑓𝑖 (𝜇𝑖−1))})

≤ lim
𝑖→∞

Φ(max {G (𝜇
𝑖−1
, 𝜇
∗
, 𝜇
∗
) ,L (𝜇

𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
) ,

L (𝜇
∗
, 𝑓𝑗 (𝜇

∗
) , 𝑓𝑗 (𝜇

∗
)) ,

L (𝜇
𝑖−1
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
)) ,

L (𝜇
∗
, 𝜇
𝑖
, 𝜇
𝑖
)})
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≤ Φ (max {G (𝜇
∗
, 𝜇
∗
, 𝜇
∗
) ,L (𝜇

∗
, 𝜇
∗
, 𝜇
∗
) ,

L (𝜇
∗
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
)) ,

L (𝜇
∗
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
)) ,

L (𝜇
∗
, 𝜇
∗
, 𝜇
∗
)})

= Φ (max {0, 0,L (𝜇
∗
, 𝑓𝑗 (𝜇

∗
) , 𝑓𝑗 (𝜇

∗
)) ,

0 +L (𝜇
∗
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
)) , 0})

≤ L (𝜇
∗
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
)) .

(55)

Hence,L(𝜇
∗
, 𝑓
𝑗
(𝜇
∗
), 𝑓
𝑗
(𝜇
∗
)) = 0 ⇒ 𝜇

∗
⊆ 𝑓
𝑗
(𝜇
∗
), for all

𝑗 ∈ N, what we had to prove.

Let 𝜑 : [0,∞)
5
→ [0,∞) be nondecreasing continuous

from the right function with respect to each of the five
variables such that

∑
𝑘∈N

𝜑
𝑘
(𝑡, 𝑡, 𝑡, 2𝑡, 0) < ∞, (56)

for all 𝑡 > 0. Obviously, for all 𝑡 > 0,

lim
𝑘

𝜑
𝑘
(𝑡, 𝑡, 𝑡, 2𝑡, 0) = 0, 𝜑 (𝑡, 𝑡, 𝑡, 2𝑡, 0) < 𝑡,

𝜑 (0, 0, 0, 0, 0) = 0.

(57)

Further, let (𝑋, 𝑑) be a complete metric space, let (F(𝑋),G)
be related 𝐺-metric fuzzy space, and the family of self-
mapings {𝑓

𝑖
} satisfy the next inequality:

G (𝑓
𝑖 (]) , 𝑓𝑗 (𝜇) , 𝑓𝑗 (𝜇))

≤ 𝜑 (G (], 𝜇, 𝜇) ,L (], 𝑓
𝑖 (]) , 𝑓𝑖 (])) ,

L (𝜇, 𝑓𝑗 (𝜇) , 𝑓𝑗 (𝜇)) ,

L (], 𝑓
𝑗
(𝜇) , 𝑓

𝑗
(𝜇)) ,L (𝜇, 𝑓

𝑖 (]) , 𝑓𝑖 (]))) ,

(58)

for all 𝜇, ] ∈ F(𝑋) and all 𝑖, 𝑗 ∈ N.
Using the same arguments as in (39), the sequence {𝜇

𝑖
} is

formed:

𝜇
𝑖+1

⊆ 𝑓
𝑖+1

(𝜇
𝑖
) , ∀𝑖 ∈ N, (59)

with property

G (𝜇
𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1) ≤ G (𝑓𝑖 (𝜇𝑖−1) , 𝑓𝑖+1 (𝜇𝑖) , 𝑓𝑖+1 (𝜇𝑖)) . (60)

Lemma 22. The sequence {𝜇
𝑖
} defined in (59) is a Cauchy

sequence.

Proof. In order to prove that {𝜇
𝑖
} is a Cauchy sequence,

we consider the sequence {G(𝜇
𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
)}. Using relations

(58) and (60) and the implication 𝜇
𝑖
⊆ 𝑓
𝑖
(𝜇
𝑖−1
) ⇒ L(𝜇

𝑖
,

𝑓
𝑖
(𝜇
𝑖−1
), 𝑓
𝑖
(𝜇
𝑖−1
)) = 0, we get

G (𝜇
𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
)

≤ G (𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑖+1

(𝜇
𝑖
) , 𝑓
𝑖+1

(𝜇
𝑖
))

≤ 𝜑 (G (𝜇
𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
) ,L (𝜇

𝑖−1
, 𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑖
(𝜇
𝑖−1
)) ,

L (𝜇𝑖, 𝑓𝑖+1 (𝜇𝑖) , 𝑓𝑖+1 (𝜇𝑖)) ,

L (𝜇
𝑖−1
, 𝑓
𝑖+1

(𝜇
𝑖
) , 𝑓
𝑖+1

(𝜇
𝑖
)) ,

L (𝜇
𝑖
, 𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑖
(𝜇
𝑖−1
)))

≤ 𝜑 (G (𝜇
𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
) ,L (𝜇

𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
) ,

L (𝜇
𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) ,L (𝜇

𝑖−1
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) , 0)

≤ 𝜑 (G (𝜇𝑖−1, 𝜇𝑖, 𝜇𝑖) ,G (𝜇𝑖−1, 𝜇𝑖, 𝜇𝑖) ,G (𝜇𝑖, 𝜇𝑖+1, 𝜇𝑖+1) ,

G (𝜇
𝑖−1
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) , 0) .

(61)

SinceG(𝜇
𝑖−1, 𝜇𝑖+1, 𝜇𝑖+1) ≤ G(𝜇𝑖−1, 𝜇𝑖, 𝜇𝑖)+G(𝜇𝑖, 𝜇𝑖+1, 𝜇𝑖+1), the

next relation holds:

G (𝜇𝑖, 𝜇𝑖+1, 𝜇𝑖+1)

≤ 𝜑 (G (𝜇
𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
) ,

G (𝜇
𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
) ,G (𝜇

𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) ,

G (𝜇𝑖−1, 𝜇𝑖, 𝜇𝑖) +G (𝜇𝑖, 𝜇𝑖+1, 𝜇𝑖+1) , 0) .

(62)

The assumption G(𝜇
𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) ≰ G(𝜇

𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
), which

is equivalent to G(𝜇
𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) > G(𝜇

𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
), leads to

inequality

G (𝜇𝑖, 𝜇𝑖+1, 𝜇𝑖+1)

≤ 𝜑 (G (𝜇
𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) ,G (𝜇

𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) ,

G (𝜇
𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) , 2G (𝜇

𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) , 0)

< G (𝜇𝑖, 𝜇𝑖+1, 𝜇𝑖+1) ,

(63)

which is a contradiction. In the last transformation we used
nondecreasingness of 𝜙 and the property 𝜑(𝑡, 𝑡, 𝑡, 2𝑡, 0) <

𝑡, 𝑡 ∈ R+. Hence, G(𝜇
𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) ≤ G(𝜇

𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
). With

notationG(𝜇
𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
) = 𝑡
𝑖
, we have

𝑡
𝑖+1 ≤ 𝜑 (𝑡𝑖, 𝑡𝑖, 𝑡𝑖, 2𝑡𝑖, 0) < 𝑡𝑖 ≤ ⋅ ⋅ ⋅ ≤ 𝜑

𝑖
(𝑡
1, 𝑡1, 𝑡1, 2𝑡1, 0) .

(64)

If 𝜇
0

= 𝜇
1
, then 𝑡

1
= G(𝜇

0
, 𝜇
1
, 𝜇
1
) = 0. Since

𝜑(0, 0, 0, 0, 0) = 0, from inequality (64) we get (𝜇
0
= 𝜇
1
) ⇒

(𝜇
1
= 𝜇
2
) ⇒ ⋅ ⋅ ⋅ ⇒ (𝜇

𝑖−1
= 𝜇
𝑖
) ⇒ ⋅ ⋅ ⋅ . Further, 𝜇

0
= 𝜇
𝑖
⊆

𝑓
𝑖
(𝜇
𝑖−1
) = 𝑓
𝑖
(𝜇
0
), which means that 𝜇∗ = 𝜇

0
and the proof is

completed.
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If 𝜇
0

̸= 𝜇
1
, we prove that lim

𝑖→∞
G(𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
) = 0 when-

ever 𝑖 < 𝑗:

G (𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
)

≤ G (𝜇
𝑖
, 𝜇
𝑖+1
, 𝜇
𝑖+1
) +G (𝜇

𝑖+1
, 𝜇
𝑖+2
, 𝜇
𝑖+2
)

+ ⋅ ⋅ ⋅ +G (𝜇
𝑗−1

, 𝜇
𝑗
, 𝜇
𝑗
)

=

𝑗−1

∑
𝑘=𝑖

G (𝜇
𝑘
, 𝜇
𝑘+1

, 𝜇
𝑘+1

)

=

𝑗−1

∑
𝑘=𝑖

𝑡𝑘+1 ≤

𝑗−1

∑
𝑘=𝑖

𝜑
𝑘
(𝑡1, 𝑡1, 𝑡1, 2𝑡1, 0) ,

(65)

and, since 𝑡
1
= G(𝜇

0
, 𝜇
1
, 𝜇
1
) > 0, lim

𝑖→∞
G(𝜇
𝑖
, 𝜇
𝑗
, 𝜇
𝑗
) =

0. Also, G(𝜇
𝑗
, 𝜇
𝑖
, 𝜇
𝑖
) ≤ 2G(𝜇

𝑖
, 𝜇
𝑗
, 𝜇
𝑗
) → 0. So, we have

proved that {𝜇
𝑖
} is a Cauchy sequence and, consequently,

there exists a 𝜇∗ ∈ F(𝑋) such that lim
𝑖→∞

𝜇
𝑖
= 𝜇
∗; that

is, lim
𝑖→∞

G(𝜇
𝑖
, 𝜇
∗
, 𝜇
∗
) = lim

𝑖→∞
G(𝜇∗, 𝜇

𝑖
, 𝜇
𝑖
) = 0.

Theorem 23. If all assumptions from the previous lemma are
satisfied, then there exists a ]∗ ∈ F(𝑋) such that ]∗ ⊆ 𝑓

𝑖
(]∗)

for all 𝑖 ∈ N.

Proof. If L(𝜇
∗
, 𝑓
𝑗
(𝜇
∗
), 𝑓
𝑗
(𝜇
∗
)) = 0 for all 𝑗 ∈ N, then

𝜇
∗

⊆ 𝑓𝑗(𝜇
∗
). So, assume that, for some 𝑗 ∈ N, L(𝜇

∗
,

𝑓
𝑗
(𝜇
∗
), 𝑓
𝑗
(𝜇
∗
)) > 0. Then

L (𝜇
∗
, 𝑓𝑗 (𝜇

∗
) , 𝑓𝑗 (𝜇

∗
))

≤ lim
𝑖→∞

L (𝜇
∗
, 𝜇
𝑖
, 𝜇
𝑖
) + lim
𝑖→∞

L (𝜇
𝑖
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
))

≤ lim
𝑖→∞

L (𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
))

≤ lim
𝑖→∞

G (𝑓𝑖 (𝜇𝑖−1) , 𝑓𝑗 (𝜇
∗
) , 𝑓𝑗 (𝜇

∗
))

≤ lim
𝑖→∞

𝜑 (G (𝜇
𝑖−1
, 𝜇
∗
, 𝜇
∗
) ,L (𝜇

𝑖−1
, 𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑖
(𝜇
𝑖−1
)) ,

L (𝜇
∗
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
)) ,

L (𝜇
𝑖−1
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
)) ,

L (𝜇
∗
, 𝑓
𝑖
(𝜇
𝑖−1
) , 𝑓
𝑖
(𝜇
𝑖−1
)))

≤ lim
𝑖→∞

𝜑 (G (𝜇
𝑖−1
, 𝜇
∗
, 𝜇
∗
) ,L (𝜇

𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
) ,

L (𝜇
∗
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
)) ,

L (𝜇
𝑖−1
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
)) ,

L (𝜇
∗
, 𝜇
𝑖
, 𝜇
𝑖
)) .

(66)

If we put 𝑎 = L(𝜇
∗
, 𝑓𝑗(𝜇
∗
), 𝑓𝑗(𝜇

∗
)) > 0, since lim𝑖→∞ 𝜇𝑖 =

𝜇
∗, for every 𝜀 ∈ (0, 𝑎) there exists an 𝑖

0
= max{𝑖

1
, 𝑖
2
, 𝑖
3
, 𝑖
4
},

where

(i) G(𝜇
𝑖−1
, 𝜇
∗
, 𝜇
∗
) < 𝜀 < 𝑎 for all 𝑖 > 𝑖

1
,

(ii) L(𝜇
𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
) < 𝜀 < 𝑎 for all 𝑖 > 𝑖

2
,

(iii) L(𝜇
𝑖−1
, 𝑓
𝑗
(𝜇
∗
), 𝑓
𝑗
(𝜇
∗
)) ≤ L(𝜇

𝑖−1
, 𝜇
𝑖
, 𝜇
𝑖
) + L(𝜇

𝑖
,

𝑓
𝑗(𝜇
∗
), 𝑓𝑗(𝜇

∗
)) < (𝜀/2) + 𝑎 + (𝜀/2) < 2𝑎, for all 𝑖 > 𝑖3,

(iv) L(𝜇
∗
, 𝜇𝑖, 𝜇𝑖) < 𝜀 for all 𝑖 > 𝑖4.

Now, relation (66) becomes

L (𝜇
∗
, 𝑓
𝑗
(𝜇
∗
) , 𝑓
𝑗
(𝜇
∗
)) ≤ 𝜑 (𝜀, 𝜀, 𝑎, 𝜀 + 𝑎, 𝜀)

≤ 𝜑 (𝑎, 𝑎, 𝑎, 2𝑎, 𝜀)

(67)

and, letting 𝜀 → 0, we get 𝑎 ≤ 𝜑(𝑎, 𝑎, 𝑎, 2𝑎, 0) < 𝑎, where
𝑎 = L(𝜇

∗
, 𝑓
𝑗
(𝜇
∗
), 𝑓
𝑗
(𝜇
∗
)). Hence, L(𝜇

∗
, 𝑓
𝑗
(𝜇
∗
), 𝑓
𝑗
(𝜇
∗
)) =

0 ⇒ 𝜇
∗
⊆ 𝑓
𝑗
(𝜇
∗
), for all 𝑗 ∈ N, what we had to prove.
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