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We introduce theQ-lasso which generalizes the well-known lasso of Tibshirani (1996) withQ a closed convex subset of a Euclidean
m-space for some integer 𝑚 ≥ 1. This set Q can be interpreted as the set of errors within given tolerance level when linear
measurements are taken to recover a signal/image via the lasso. Solutions of the Q-lasso depend on a tuning parameter 𝛾. In this
paper, we obtain basic properties of the solutions as a function of 𝛾. Because of ill posedness, we also apply 𝑙

1
-𝑙

2
regularization to

the Q-lasso. In addition, we discuss iterative methods for solving the Q-lasso which include the proximal-gradient algorithm and
the projection-gradient algorithm.

1. Introduction

The lasso of Tibshirani [1] is the minimization problem:

min
𝑥∈R𝑛

1

2

‖𝐴𝑥 − 𝑏‖
2

2
+ 𝛾‖𝑥‖1

, (1)

where 𝐴 is an 𝑚 × 𝑛 (real) matrix, 𝑏 ∈ R𝑚, and 𝛾 > 0 is a
tuning parameter. It is equivalent to the basis pursuit (BP) of
Chen et al. [2]:

min
𝑥∈R𝑛

‖𝑥‖1
subject to𝐴𝑥 = 𝑏. (2)

It is well known that both lasso and BP model a number
of applied problems arising from machine learning, sig-
nal/image processing, and statistics, due to the fact that
they promote the sparsity of a signal 𝑥 ∈ R𝑛. Sparsity is
popular phenomenon that occurs in practical problems since
a solution may have a sparse representation in terms of an
appropriate basis and therefore has been paidmuch attention.

Observe that both the lasso (1) and BP (2) can be viewed
as the ℓ

1
regularization applied to the inverse linear system in

R𝑛:

𝐴𝑥 = 𝑏. (3)

In sparse recovery, the system (3) is underdetermined (i.e.,
𝑚 < 𝑛 and often 𝑚 ≪ 𝑛 indeed). The theory of
compressed sensing of Donoho [3] and Candès et al. [4,
5] makes a breakthrough that under certain conditions the
underdetermined system (3) can determine a unique 𝑘-sparse
solution. (Recall that a signal 𝑥 ∈ R𝑛 is said to be 𝑘-sparse if
the number of nonzero entries of 𝑥 is no bigger than 𝑘.)

However, due to errors of measurements, the system (3)
is actually inexact: 𝐴𝑥 ≈ 𝑏. It turns out that the BP (2) is
reformulated as

min
𝑥∈R𝑛

‖𝑥‖1
subject to ‖𝐴𝑥 − 𝑏‖ ≤ 𝜀, (4)

where 𝜀 > 0 is the tolerance level of errors and ‖ ⋅ ‖ is a norm
onR𝑛 (often it is the ℓ

𝑝
norm ‖ ⋅ ‖

𝑝
for 𝑝 = 1, 2,∞; a solution

to (4) when the tolerance is measured by the ℓ
∞

norm ‖ ⋅ ‖
∞

is known as the Dantzig selector by Candès and Tao [6]; see
also [7]).

Note that if we let 𝑄 := 𝐵
𝜀
(𝑏) be the closed ball in R𝑚

around 𝑏 and with radius of 𝜀, then (4) is rewritten as

min
𝑥∈R𝑛

‖𝑥‖1
subject to𝐴𝑥 ∈ 𝑄. (5)

Let now𝑄 be a nonempty closed convex subset ofR𝑚 and
let 𝑃

𝑄
be the projection from R𝑚 onto 𝑄. Then noticing the
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condition 𝐴𝑥 ∈ 𝑄 being equivalent to the condition 𝐴𝑥 −
𝑃

𝑄
(𝐴𝑥) = 0, we see that the problem (5) is solved via

min
𝑥∈R𝑛

‖𝑥‖1
subject to (𝐼 − 𝑃

𝑄
) 𝐴𝑥 = 0. (6)

Applying the Lagrangian method, we arrive at the following
equivalent minimization:

min
𝑥∈R𝑛

1

2





(𝐼 − 𝑃

𝑄
) 𝐴𝑥






2

2
+ 𝛾‖𝑥‖1

, (7)

where 𝛾 > 0 is a Lagrangian multiplier (also interpreted as a
regularization parameter).

Alternatively, we may view (7) as the ℓ
1
regularization of

the inclusion

𝐴𝑥 ∈ 𝑄 (equivalently, the equation (𝐼 − 𝑃
𝑄
) 𝐴𝑥 = 0)

(8)

which extends the linear system (3) in an obvious way.
We refer to the problem (7) as the 𝑄-lasso since it is
the ℓ

1
regularization of inclusion (8) as lasso (1) is the ℓ

1

regularization of the linear system (3). Throughout the rest
of this paper, we always assume that (8) is consistent (i.e.,
solvable).
𝑄-lasso (7) is also connected with the so-called split

feasibility problem (SFP) of Censor and Elfving [8] (see also
[9]) which is stated as finding a point 𝑥 with the property

𝑥 ∈ 𝐶, 𝐴𝑥 ∈ 𝑄, (9)

where 𝐶 and 𝑄 are closed convex subsets of R𝑛 and R𝑚,
respectively. An equivalent minimization formulation of the
SFP (9) is given as

min
𝑥∈𝐶

1

2





𝐴𝑥 − 𝑃

𝑄
𝐴𝑥





2

2
. (10)

Its ℓ
1
regularization is given as the minimization

min
𝑥∈𝐶

1

2





𝐴𝑥 − 𝑃

𝑄
𝐴𝑥





2

2
+ 𝛾‖𝑥‖1

, (11)

where 𝛾 > 0 is a regularization parameter. Problem (7) is a
special case of (11) when the set of constraints, 𝐶, is taken to
be the entire space R𝑛.

The purpose of this paper is to study the behavior, in
terms of 𝛾 > 0, of solutions to the regularized problem (7).
(We leave the more general problem (11) to further work,
due to the fact that the involvement of another closed convex
set 𝐶 brings some technical difficulties which are not easy
to overcome.) We discuss iterative methods for solving the
𝑄-lasso, including the proximal-gradient method and the
projection-gradient method, the latter being derived via a
duality technique. Due to ill posedness, we also apply the
ℓ
1
-ℓ

2
regularization to the 𝑄-lasso.

2. Preliminaries

Let 𝑛 ≥ 1 be an integer and let R𝑛 be the Euclidean 𝑛-space.
If 𝑝 ≥ 1, we use ‖ ⋅ ‖

𝑝
to denote the ℓ

𝑝
norm on R𝑛. Namely,

for 𝑥 = (𝑥
𝑗
)
𝑡
∈ R𝑛,

‖𝑥‖
𝑝
= (

𝑛

∑

𝑗=1






𝑥

𝑗







𝑝

)

1/𝑝

(1 ≤ 𝑝 < ∞) ,

‖𝑥‖∞
= max

1≤𝑗≤𝑛






𝑥

𝑗






.

(12)

Let 𝐾 be a closed convex subset of R𝑛. Recall that the
projection from R𝑛 to 𝐾 is defined as the operator

𝑃
𝐾
(𝑥) = arg min

𝑢∈𝐾

‖𝑥 − 𝑢‖
2

2
, 𝑥 ∈ R

𝑛
. (13)

The projection 𝑃
𝐾
is characterized as follows:

given𝑥 ∈ R𝑛 and 𝑧 ∈ 𝐾 : 𝑧 = 𝑃
𝐾
𝑥 ⇐⇒ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0,

𝑦 ∈ 𝐾.

(14)

Projections are nonexpansive. Namely, we have the following.

Proposition 1. One has that 𝑃
𝐾
is firmly nonexpansive in the

sense that

⟨𝑥 − 𝑦, 𝑃
𝐾
𝑥 − 𝑃

𝐾
𝑦⟩ ≥





𝑃

𝐾
𝑥 − 𝑃

𝐾
𝑦





2

, 𝑥, 𝑦 ∈ R
𝑛
. (15)

In particular,𝑃
𝐾
is nonexpansive; that is, ‖𝑃

𝐾
𝑥−𝑃

𝐾
𝑦‖ ≤ ‖𝑥−𝑦‖

for all 𝑥, 𝑦 ∈ R𝑛.

Recall that function 𝑓 : R𝑛
→ R is convex if

𝑓 ((1 − 𝜆) 𝑥 + 𝜆𝑦) ≤ (1 − 𝜆) 𝑓 (𝑥) + 𝜆𝑓 (𝑦) (16)

for all 𝜆 ∈ (0, 1) and 𝑥, 𝑦 ∈ R𝑛. (Note that we only consider
finite-valued functions.)

The subdifferential of a convex function 𝑓 is defined as
the operator 𝜕𝑓 given by

𝜕𝑓 (𝑥) = {𝜉 ∈ R
𝑛
: 𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨𝜉, 𝑦 − 𝑥⟩ , 𝑦 ∈ R

𝑛
} .

(17)

The inequality in (17) is referred to as the subdifferential
inequality of 𝑓 at 𝑥. We say that 𝑓 is subdifferentiable at 𝑥
if 𝜕𝑓(𝑥) is nonempty. It is well known that, for an everywhere
finite-valued convex function 𝑓 on R𝑛, 𝑓 is everywhere
subdifferentiable.

Examples. (i) If 𝑓(𝑥) = |𝑥| for 𝑥 ∈ R, then 𝜕𝑓(0) =
[−1, 1]; (ii) of 𝑓(𝑥) = ‖𝑥‖

1
for 𝑥 ∈ R𝑛, then 𝜕𝑓(𝑥) is given

componentwise by

(𝜕𝑓 (𝑥))
𝑗
= {

sgn (𝑥
𝑗
) , if𝑥

𝑗
̸= 0,

𝜉
𝑗
∈ [−1, 1] , if𝑥

𝑗
= 0,

1 ≤ 𝑗 ≤ 𝑛. (18)
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Here sgn is the sign function; that is, for 𝑎 ∈ R,

sgn (𝑎) =
{
{

{
{

{

1, if 𝑎 > 0,
0, if 𝑎 = 0,
−1, if 𝑎 < 0.

(19)

Consider the unconstrained minimization problem

min
𝑥∈R𝑛

𝑓 (𝑥) . (20)

The following are well known.

Proposition 2. Let 𝑓 be everywhere finite-valued on R𝑛.

(i) If 𝑓 is strictly convex, then (20) admits at most one
solution.

(ii) If 𝑓 is convex and satisfies the coercivity condition

‖𝑥‖ → ∞ ⇒ 𝑓 (𝑥) → ∞, (21)

then there exists at least one solution to (20). Therefore,
if 𝑓 is both strictly convex and coercive, there exists one
and only one solution to (20).

Proposition 3. Let 𝑓 be everywhere finite-valued convex on
R𝑛 and 𝑧 ∈ R𝑛. Suppose 𝑓 is bounded below (i.e., inf{𝑓(𝑥) :
𝑥 ∈ R𝑛

} > −∞). Then 𝑧 is a solution to minimization (20) if
and only if it satisfies the first-order optimality condition:

0 ∈ 𝜕𝑓 (𝑧) . (22)

3. Properties of the 𝑄-Lasso

We study some basic properties of the 𝑄-lasso which is
repeated below

min
𝑥∈R𝑛

𝜑
𝛾
(𝑥) :=

1

2





𝐴𝑥 − 𝑃

𝑄
𝐴𝑥





2

2
+ 𝛾‖𝑥‖1

, (23)

where 𝛾 > 0 is a regularization parameter. We also consider
the following minimization (we call it 𝑄-least squares prob-
lem):

min
𝑥∈R𝑛

1

2





𝐴𝑥 − 𝑃

𝑄
𝐴𝑥





2

2
. (24)

Denote by 𝑆 and 𝑆
𝛾
the solution sets of (24) and (23),

respectively. Since𝜑
𝛾
is continuous, convex, and coercive (i.e.,

𝜑
𝛾
(𝑥) → ∞ as ‖𝑥‖

2
→ ∞), 𝑆

𝛾
is closed, convex, and

nonempty. Notice also that since we assume the consistency
of (8), we have 𝑆 ̸= 0; moreover, the solution sets of (8) and
(24) coincide.

Observe that the assumption that 𝑆 ̸= 0 actually implies
that 𝑆

𝛾
is uniformly bounded in 𝛾 > 0, as shown by the lemma

below.

Lemma4. Assume that (24) is consistent (i.e., 𝑆 ̸= 0).Then, for
𝛾 > 0 and 𝑥

𝛾
∈ 𝑆

𝛾
, one has ‖𝑥

𝛾
‖
1
≤ inf

𝑥∈𝑆
‖𝑥‖

1
.

Proof. Let 𝑥
𝛾
∈ 𝑆

𝛾
. In the relation

1

2






(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾







2

2
+ 𝛾






𝑥

𝛾





1

≤

1

2





(𝐼 − 𝑃

𝑄
) 𝐴𝑥






2

2
+ 𝛾‖𝑥‖1

, 𝑥 ∈ R
𝑛
,

(25)

taking 𝑥 ∈ 𝑆 yields (for 𝑃
𝑄
𝑥 ∈ 𝑄)

1

2






(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾







2

2
+ 𝛾






𝑥

𝛾





1
≤ 𝛾‖𝑥‖1

, 𝑥 ∈ 𝑆. (26)

It follows that





𝑥

𝛾





1
≤ ‖𝑥‖1

, 𝑥 ∈ 𝑆. (27)

This proves the conclusion of the lemma.

Proposition 5. One has the following.

(i) The functions

𝜌 (𝛾) :=






𝑥

𝛾





1
, 𝜂 (𝛾) :=

1

2






(𝐼 − 𝑃

𝑄
)𝐴𝑥

𝛾







2

2
(28)

are well defined for 𝛾 > 0. That is, they do not depend
upon particular choice of 𝑥

𝛾
∈ 𝑆

𝛾
.

(ii) The function 𝜌(𝛾) is decreasing in 𝛾 > 0.
(iii) The function 𝜂(𝛾) is increasing in 𝛾 > 0.
(iv) (𝐼 − 𝑃

𝑄
)𝐴𝑥

𝛾
is continuous in 𝛾 > 0.

Proof. For 𝑥
𝛾
∈ 𝑆

𝛾
, we have the optimality condition:

0 ∈ 𝜕𝜑
𝛾
(𝑥

𝛾
) = 𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
+ 𝛾𝜕






𝑥

𝛾





1
. (29)

Here 𝐴𝑡 is the transpose of 𝐴 and 𝜕 stands for the subdiffer-
ential in the sense of convex analysis. Equivalently,

−

1

𝛾

𝐴
𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
∈ 𝜕






𝑥

𝛾





1
. (30)

It follows by the subdifferential inequality that

𝛾‖𝑥‖1
≥ 𝛾






𝑥

𝛾





1
− ⟨𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
, 𝑥 − 𝑥

𝛾
⟩ ,

∀𝑥 ∈ R
𝑛
.

(31)

In particular, for 𝑥
𝛾
∈ 𝑆

𝛾
,

𝛾






𝑥

𝛾





1
≥ 𝛾






𝑥

𝛾





1
− ⟨𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
, 𝑥

𝛾
− 𝑥

𝛾
⟩ . (32)

Interchange 𝑥
𝛾
and 𝑥

𝛾
to get

𝛾






𝑥

𝛾





1
≥ 𝛾






𝑥

𝛾





1
− ⟨𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
, 𝑥

𝛾
− 𝑥

𝛾
⟩ . (33)

Adding up (32) and (33) yields

0 ≥ ⟨𝐴𝑥
𝛾
− 𝐴𝑥

𝛾
, 𝐴𝑥

𝛾
− 𝐴𝑥

𝛾
⟩ =






𝐴𝑥

𝛾
− 𝐴𝑥

𝛾







2

2
. (34)
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Consequently,𝐴𝑥
𝛾
= 𝐴𝑥

𝛾
.Moreover, (32) and (33) imply that

‖𝑥
𝛾
‖
1
≥ ‖𝑥

𝛾
‖
1
and ‖𝑥

𝛾
‖
1
≥ ‖𝑥

𝛾
‖
1
, respectively. Hence ‖𝑥

𝛾
‖
1
=

‖𝑥
𝛾
‖
1
, and it follows that the functions

𝜌 (𝛾) :=






𝑥

𝛾





1
, 𝜂 (𝛾) :=

1

2






(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾







2

2

(𝑥
𝛾
∈ 𝑆

𝛾
)

(35)

are well defined for 𝛾 > 0.
Now substituting 𝑥

𝛽
∈ 𝑆

𝛽
for 𝑥 in (31), we get

𝛾






𝑥

𝛽





1
≥ 𝛾






𝑥

𝛾





1
− ⟨𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
, 𝑥

𝛽
− 𝑥

𝛾
⟩ . (36)

Interchange 𝛾 and 𝛽 and 𝑥
𝛾
and 𝑥

𝛽
to find

𝛽






𝑥

𝛾





1
≥ 𝛽






𝑥

𝛽





1
− ⟨𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛽
, 𝑥

𝛾
− 𝑥

𝛽
⟩ . (37)

Adding up (36) and (37) and using the fact that (𝐼 − 𝑃
𝑄
) is

firmly nonexpansive, we deduce that

(𝛾 − 𝛽) (






𝑥

𝛽





1
−






𝑥

𝛾





1
)

≥ ⟨(𝐼 − 𝑃
𝑄
) 𝐴𝑥

𝛾
− (𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛽
, 𝐴𝑥

𝛾
− 𝐴𝑥

𝛾
⟩

≥






(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
− (𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛽







2

2
.

(38)

We therefore find that if 𝛾 > 𝛽, then ‖𝑥
𝛽
‖
1
≥ ‖𝑥

𝛾
‖
1
. This

proves that 𝜌(𝛾) is nonincreasing in 𝛾 > 0. From (38) it also
follows that (𝐼−𝑃

𝑄
)𝐴𝑥

𝛾
is continuous for 𝛾 > 0, which implies

the continuity of 𝜂(𝛾) for 𝛾 > 0.
To see that 𝜂(𝛾) is increasing, we use the inequality (as

𝑥
𝛾
∈ 𝑆

𝛾
)

1

2






(𝐼 − 𝑃

𝑄
)𝐴𝑥

𝛾







2

2
+ 𝛾






𝑥

𝛾





1

≤

1

2






(𝐼 − 𝑃

𝑄
)𝐴𝑥

𝛽







2

2
+ 𝛾






𝑥

𝛽





1

(39)

which implies that

𝜂 (𝛾) ≤ 𝜂 (𝛽) + 𝛾 (






𝑥

𝛽





1
−






𝑥

𝛾





1
) . (40)

Now if 𝛽 > 𝛾 > 0, then, as ‖𝑥
𝛽
‖
1
≤ ‖𝑥

𝛾
‖
1
, we immediately get

that 𝜂(𝛾) ≤ 𝜂(𝛽) and the increase of 𝜂 is proven.

Proposition 6. One has the following.

(i) lim
𝛾→0

𝜂(𝛾) = inf
𝑥∈R𝑛(1/2)‖(𝐼 − 𝑃𝑄)𝐴𝑥‖

2

2
.

(ii) lim
𝛾→0

𝜌(𝛾) = min
𝑥∈𝑆
‖𝑥‖

1
.

Proof. (i) Taking the limit as 𝛾 → 0 in the inequality (and
using the boundedness of (𝑥

𝛾
))

1

2






(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾







2

2
+ 𝛾






𝑥

𝛾





1

≤

1

2





(𝐼 − 𝑃

𝑄
) 𝐴𝑥






2

2
+ 𝛾‖𝑥‖1

, ∀𝑥 ∈ R
𝑛
,

(41)

yields

lim
𝛾→0

𝜂 (𝛾) ≤

1

2





(𝐼 − 𝑃

𝑄
)𝐴𝑥






2

2
, ∀𝑥 ∈ R

𝑛
. (42)

The result in (i) then follows.
As for (ii), we have, by (27), ‖𝑥

𝛾
‖
1
≤ ‖𝑥‖

1
for any 𝑥 ∈ 𝑆. In

particular, ‖𝑥
𝛾
‖
1
≤ ‖𝑥

†
‖
1
, where 𝑥† is an ℓ

1
minimum-norm

element of 𝑆; that is, ‖𝑥†
‖
1
= min

𝑥∈𝑆
‖𝑥‖

1
.

Assume 𝛾
𝑘
→ 0 is such that 𝑥

𝛾
𝑘

→ 𝑥. Then for any 𝑥,

1

2





(𝐼 − 𝑃

𝑄
) 𝐴𝑥






2

2
= lim

𝑘→∞

1

2






(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
𝑘







2

2

= lim
𝑘→∞

1

2






(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
𝑘







2

2
+ 𝛾

𝑘






𝑥

𝛾
𝑘





1

≤ lim
𝑘→∞

1

2





(𝐼 − 𝑃

𝑄
) 𝐴𝑥






2

2
+ 𝛾

𝑘‖
𝑥‖1

=

1

2





(𝐼 − 𝑃

𝑄
)𝐴𝑥






2

2
.

(43)

It follows that 𝑥 solves the minimization problem:
min

𝑥
(1/2)‖(𝐼 − 𝑃

𝑄
)𝐴𝑥‖

2

2
; that is, 𝑥 ∈ 𝑆. Consequently,

lim
𝛾→0

𝜌 (𝛾) = lim
𝑘→∞

𝜌 (𝛾
𝑘
) = lim

𝑘→∞






𝑥

𝛾
𝑘





1

= ‖𝑥‖1
≤






𝑥

†


1
= min

𝑥∈𝑆

‖𝑥‖1
.

(44)

This suffices to ensure that the conclusion of (ii) holds.

It is a challenging problem how to select the tuning (i.e.,
regularizing) parameter 𝛾 in lasso (1) and 𝑄-lasso (7). There
is no general rule to universally select 𝛾which should instead
be selected in a case-to-case manner. The following result
however points out that 𝛾 cannot be large.

Proposition 7. Let 𝑄 be a nonempty closed convex subset of
R𝑚 and assume that 𝑄-lasso (7) is consistent (i.e., solvable). If
𝛾 > max{‖𝐴𝑡

𝑃
𝑄
𝐴𝑥‖

∞
: ‖𝑥‖

1
≤ minV∈𝑆

‖V‖
1
} (note that this

condition is reduced to 𝛾 > ‖𝐴𝑡
𝑏‖

∞
for lasso (1) for which 𝑄 =

{𝑏}), then 𝑥
𝛾
= 0. (Here 𝑆 is, as before, the solution set of the

𝑄-least squares problem (24).)

Proof. Let 𝑥
𝛾
∈ 𝑆

𝛾
. The optimality condition

−𝐴
𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
∈ 𝛾𝜕






𝑥

𝛾





1

(45)

implies that

−(𝐴
𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
)
𝑗
= 𝛾 ⋅ sgn [(𝑥

𝛾
)
𝑗
] , if (𝑥

𝛾
)
𝑗
̸= 0,








(𝐴
𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
)
𝑗








≤ 𝛾, if (𝑥
𝛾
)
𝑗
= 0.

(46)
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Taking 𝑥 = 2𝑥
𝛾
in subdifferential inequality (31) yields

𝛾






𝑥

𝛾





1
≥ −⟨𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
, 𝑥

𝛾
⟩

= − ∑

(𝑥𝛾)
𝑗

̸= 0

(𝐴
𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
)
𝑗
(𝑥

𝛾
)
𝑗

= ∑

(𝑥𝛾)
𝑗

̸= 0

𝛾 ⋅ [sgn (𝑥
𝛾
)]

𝑗
(𝑥

𝛾
)
𝑗

= 𝛾 ∑

(𝑥𝛾)
𝑗

̸= 0








(𝑥
𝛾
)
𝑗








= 𝛾‖𝑥‖
1
.

(47)

It follows that

𝛾






𝑥

𝛾





1
= − ⟨𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾
, 𝑥

𝛾
⟩

= − ⟨(𝐼 − 𝑃
𝑄
) 𝐴𝑥

𝛾
, 𝐴𝑥

𝛾
⟩ ,

(48)

= −






𝐴𝑥

𝛾







2

2
+ ⟨𝑃

𝑄
𝐴𝑥

𝛾
, 𝐴𝑥

𝛾
⟩

≤ ⟨𝑃
𝑄
𝐴𝑥

𝛾
, 𝐴𝑥

𝛾
⟩ = ⟨𝐴

𝑡
𝑃

𝑄
𝐴𝑥

𝛾
, 𝑥

𝛾
⟩

≤






𝐴

𝑡
𝑃

𝑄
𝐴𝑥

𝛾





∞






𝑥

𝛾





1
.

(49)

Now by Lemma 4, we have ‖𝑥
𝛾
‖
1
≤ minV∈𝑆

‖V‖
1
. Hence,

from (49) it follows that if 𝑥
𝛾
̸= 0, we must have 𝛾 ≤

max{‖𝐴𝑡
𝑃

𝑄
𝐴𝑥‖

∞
: ‖𝑥‖

1
≤ minV∈𝑆

‖V‖
1
}. This completes the

proof.

Notice that (48) shows that 𝜌(𝜆) = ‖𝑥
𝛾
‖
1
can be

determined by 𝐴𝑥
𝛾
. Hence, we arrive at the following char-

acterization of solutions of 𝑄-lasso (23).

Proposition 8. Let 𝑄 be a nonempty closed convex subset of
R𝑚 and let 𝛾 > 0 and 𝑥

𝛾
∈ 𝑆

𝛾
. Then 𝑥 ∈ R𝑛 is a solution of the

𝑄-lasso (23) if and only if 𝐴𝑥 = 𝐴𝑥
𝛾
and ‖𝑥‖ ≤ ‖𝑥

𝛾
‖. It turns

out that

𝑆
𝛾
= 𝑥

𝛾
+ 𝑁 (𝐴) ∩ 𝐵

𝜌(𝛾)
, (50)

where 𝑁(𝐴) = {𝑥 ∈ R𝑛
: 𝐴𝑥 = 0} is the null space of 𝐴 and

where 𝐵
𝑟
denotes the closed ball centered at the origin and with

radius of 𝑟 > 0. This shows that if one can find one solution to
𝑄-lasso (23), then all solutions are found by (50).

Proof. If 𝐴𝑥 = 𝐴𝑥
𝛾
, then from the relations

𝜑
𝛾
(𝑥

𝛾
) =

1

2






(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾







2

2
+ 𝛾






𝑥

𝛾





1

≤

1

2





(𝐼 − 𝑃

𝑄
) 𝐴𝑥






2

2
+ 𝛾‖𝑥‖1

=

1

2






(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾







2

2
+ 𝛾‖𝑥‖1

,

(51)

we obtain ‖𝑥
𝛾
‖
1
≤ ‖𝑥‖

1
. This together with the assumption of

‖𝑥‖
1
≤ ‖𝑥

𝛾
‖
1
yields that ‖𝑥‖

1
= ‖𝑥

𝛾
‖
1
which in turn implies

that 𝜑
𝛾
(𝑥) = 𝜑

𝛾
(𝑥

𝛾
) and hence 𝑥 ∈ 𝑆

𝛾
.

4. Iterative Methods

In this section we discuss the proximal iterative methods
for solving 𝑄-lasso (7). The basics are Moreau’s concept of
proximal operators and their fundamental properties which
are briefly mentioned below. (For the sake of our purpose, we
however confine ourselves to the finite-dimensional setting.)

4.1. Proximal Operators. Let Γ
0
(R𝑛
) be the space of convex

functions in R𝑛 that are proper, lower semicontinuous and
convex.

Definition 9 (see [10, 11]). The proximal operator of 𝜑 ∈

Γ
0
(R𝑛
) is defined by

prox
𝜑
(𝑥) := arg min

V∈R𝑛
{𝜑 (V) +

1

2

‖V − 𝑥‖2} , 𝑥 ∈ R
𝑛
. (52)

The proximal operator of 𝜑 of order 𝜆 > 0 is defined as the
proximal operator of 𝜆𝜑; that is,

prox
𝜆𝜑
(𝑥) := arg min

V∈R𝑛
{𝜑 (V) +

1

2𝜆

‖V − 𝑥‖2} , 𝑥 ∈ R
𝑛
.

(53)

For fundamental properties of proximal operators, the
reader is referred to [12, 13] for details. Here we only mention
the fact that the proximal operator prox

𝜆𝜑
can have a closed-

form expression in some important cases as shown in the
examples below [12].

(a) If we take 𝜑 to be any norm ‖ ⋅ ‖ of R𝑛, then

prox
𝜆‖⋅‖
(𝑥) =

{

{

{

(1 −

𝜆

‖𝑥‖

) 𝑥, if ‖𝑥‖ > 𝜆.

0, if ‖𝑥‖ ≤ 𝜆.
(54)

In particular, if we take 𝜑 to be the absolute value
function of the real line R, we get

prox
𝜆|⋅|
(𝑥) = sgn (𝑥)max {|𝑥| − 𝜆, 0} (55)

which is also known as the scalar soft-thresholding
operator.

(b) Let {𝑒
𝑘
}
𝑛

𝑘=1
be an orthonormal basis of R𝑛 and let

{𝜔
𝑘
}
𝑛

𝑘=1
be real positive numbers. Define 𝜑 by

𝜑 (𝑥) =

𝑛

∑

𝑘=1

𝜔
𝑘





⟨𝑥, 𝑒

𝑘
⟩




. (56)

Then prox
𝜑
(𝑥) = ∑

𝑛

𝑘=1
𝛼

𝑘
𝑒
𝑘
, where

𝛼
𝑘
= sgn (⟨𝑥, 𝑒

𝑘
⟩)max {


⟨𝑥, 𝑒

𝑘
⟩




− 𝜔

𝑘
, 0} . (57)

In particular, if 𝜑(𝑥) = ‖𝑥‖
1
for 𝑥 ∈ R𝑛, then

prox
𝜆‖⋅‖
1

(𝑥) = (prox
𝜆|⋅|
(𝑥

1
) , . . . , prox

𝜆|⋅|
(𝑥

𝑛
))

= (𝛼
1
, . . . , 𝛼

𝑛
) ,

(58)

where 𝛼
𝑘
= sgn(𝑥

𝑘
)max{|𝑥

𝑘
| − 𝜆, 0} for 𝑘 = 1, . . . , 𝑛.
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4.2. Proximal-Gradient Algorithm. The proximal operators
can be used to minimize the sum of two convex functions:

min
𝑥∈R𝑛

𝑓 (𝑥) + 𝑔 (𝑥) , (59)

where 𝑓, 𝑔 ∈ Γ
0
(R𝑛
). It is often the case where one of them

is differentiable. The following is an equivalent fixed point
formulation of (59).

Proposition 10 (see [12, 14]). Let 𝑓, 𝑔 ∈ Γ
0
(R𝑛
). Let 𝑥∗

∈ R𝑛

and 𝜆 > 0. Assume 𝑓 is finite valued and differentiable on R𝑛.
Then 𝑥∗ is a solution to (59) if and only if 𝑥∗ solves the fixed
point equation:

𝑥
∗
= (prox

𝜆𝑔
∘ (𝐼 − 𝜆∇𝑓)) 𝑥

∗
. (60)

Fixed point equation (60) immediately yields the fol-
lowing fixed point algorithm which is also known as the
proximal-gradient algorithm for solving (59).

Initialize 𝑥
0
∈ R𝑛 and iterate

𝑥
𝑘+1
= (prox

𝜆
𝑘
𝑔
∘ (𝐼 − 𝜆

𝑘
∇𝑓)) 𝑥

𝑘
, (61)

where {𝜆
𝑘
} is a sequence of positive real numbers.

Theorem 11 (see [12, 14]). Let 𝑓, 𝑔 ∈ Γ
0
(R𝑛
) and assume (59)

is consistent. Assume in addition the following.

(i) ∇𝑓 is Lipschitz continuous on R𝑛:




∇𝑓 (𝑥) − ∇𝑓 (𝑦)





≤ 𝐿





𝑥 − 𝑦





, 𝑥, 𝑦 ∈ R

𝑛
. (62)

(ii) 0 < lim inf
𝑛→∞

𝜆
𝑛
≤ lim sup

𝑛→∞
𝜆

𝑛
< 2/𝐿.

Then the sequence (𝑥
𝑘
) generated by the proximal-gradient

algorithm (61) converges to a solution of (59).

4.3. The Relaxed Proximal-Gradient Algorithm. The relaxed
proximal-gradient algorithm generates a sequence (𝑥

𝑘
) by the

following iteration process.
Initialize 𝑥

0
∈ R𝑛 and iterate

𝑥
𝑘+1
= (1 − 𝛼

𝑘
) 𝑥

𝑘
+ 𝛼

𝑘
(prox

𝜆
𝑘
𝑔
∘ (𝐼 − 𝜆

𝑘
∇𝑓)) 𝑥

𝑘
, (63)

where {𝛼
𝑘
} is the sequence of relaxation parameters and {𝜆

𝑘
}

is a sequence of positive real numbers.

Theorem 12 (see [14]). Let 𝑓, 𝑔 ∈ Γ
0
(R𝑛
) and assume (59) is

consistent. Assume in addition the following.

(i) ∇𝑓 is Lipschitz continuous on R𝑛:




∇𝑓 (𝑥) − ∇𝑓 (𝑦)





≤ 𝐿





𝑥 − 𝑦





, 𝑥, 𝑦 ∈ R

𝑛
. (64)

(ii) 0 < lim inf
𝑛→∞

𝜆
𝑛
≤ lim sup

𝑛→∞
𝜆

𝑛
< 2/𝐿.

(iii) 0 < lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼

𝑛
< 4/(2 + 𝐿 ⋅

lim sup
𝑛→∞

𝜆
𝑛
).

Then the sequence (𝑥
𝑘
) generated by proximal-gradient algo-

rithm (61) converges to a solution of (59).

If we take 𝜆
𝑛
≡ 𝜆 ∈ (0, 2/𝐿), then the relaxation

parameters 𝛼
𝑘
can be chosen from a larger pool; they are

allowed to be close to zero. More precisely, we have the
following theorem.

Theorem 13 (see [14]). Let 𝑓, 𝑔 ∈ Γ
0
(R𝑛
) and assume (59) is

consistent. Define the sequence (𝑥
𝑘
) by the following relaxed

proximal algorithm:

𝑥
𝑘+1
= (1 − 𝛼

𝑛
) 𝑥

𝑘
+ 𝛼

𝑘
prox

𝜆𝑔
(𝑥

𝑘
− 𝜆∇𝑓 (𝑥

𝑘
)) . (65)

Suppose that

(a) ∇𝑓 satisfies the Lipschitz continuity condition (i) in
Theorem 12;

(b) 0 < 𝜆 < 2/𝐿 and 0 ≤ 𝛼
𝑘
≤ (2 + 𝜆𝐿)/4 for all 𝑘;

(c) ∑∞

𝑛=1
𝛼

𝑛
((4/(2 + 𝜆𝐿)) − 𝛼

𝑘
) = ∞.

Then (𝑥
𝑛
) converges to a solution of (59).

4.4. Proximal-Gradient Algorithms Applied to Lasso. For 𝑄-
lasso (7), we take 𝑓(𝑥) = (1/2)‖(𝐼 − 𝑃

𝑄
)𝐴𝑥‖

2

2
and 𝑔(𝑥) =

𝛾‖𝑥‖
1
. Noticing that∇𝑓(𝑥) = 𝐴𝑡

(𝐼−𝑃
𝑄
)𝐴𝑥which is Lipschitz

continuouswith constant𝐿 = ‖𝐴‖2
2
for 𝐼−𝑃

𝑄
is nonexpansive,

we find that proximal-gradient algorithm (61) is reduced to
the following algorithm for solving 𝑄-lasso (7):

𝑥
𝑘+1
= prox

𝜆
𝑘
𝛾‖⋅‖
1

(𝐼 − 𝜆
𝑘
𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴) 𝑥

𝑘
. (66)

The convergence theorem of general proximal-gradient
algorithm (61) reads the following for 𝑄-lasso (7).

Theorem 14. Assume 0 < lim inf
𝑘→∞

𝜆
𝑘

≤

lim sup
𝑘→∞

𝜆
𝑘
< 2/‖𝐴‖

2

2
. Then the sequence (𝑥

𝑘
) generated

by proximal-gradient algorithm (66) converges to a solution of
lasso (7).

Remark 15. Relaxed proximal-gradient algorithms (63) and
(65) also apply to 𝑄-lasso (7). We however do not elaborate
on them in detail.

Remark 16. Proximal-gradient algorithm (61) can be reduced
to a projection-gradient algorithm in the case where the
convex function 𝑔 is homogeneous (i.e., 𝑔(𝑡𝑥) = 𝑡𝑔(𝑥) for
𝑡 ≥ 0 and 𝑥 ∈ R𝑛) because the homogeneity of 𝑔 implies
that the proximal operator of 𝑔 is actually a projection; more
precisely, we have

prox
𝜆𝑔
= 𝑃

𝜆𝐾
, 𝜆 > 0, (67)

where 𝐾 = 𝜕𝑔(0). As a result, proximal-gradient algorithm
(61) is reduced to the following projection-gradient algo-
rithm:

𝑥
𝑘+1
= (𝐼 − 𝑃

𝜆
𝑘
𝐾
) (𝐼 − 𝜆

𝑘
∇𝑓) 𝑥

𝑘
. (68)

Now we apply projection-gradient algorithm (68) to 𝑄-
lasso (7). In this case, we have𝑓(𝑥) = (1/2)‖(𝐼 − 𝑃

𝑄
)𝐴𝑥‖

2

2
and

𝑔(𝑥) = 𝛾‖𝑥‖
1
(homogeneous). Thus, ∇𝑓(𝑥) = 𝐴𝑡

(𝐼 − 𝑃
𝑄
)𝐴𝑥
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and the convex set 𝐾 = 𝜕𝑔(0) is given as 𝐾 = 𝛾𝜕(‖𝑧‖
1
)|

𝑧=0
=

𝛾[−1, 1]
𝑛. We find that, for each positive number 𝜆 > 0, 𝑃

𝜆𝐾

is the projection of the Euclidean space R𝑛 to the ℓ
∞

ball
with radius of 𝜆𝛾; that is, {𝑥 ∈ R𝑛

: ‖𝑥‖
∞
≤ 𝜆𝛾}. It turns

out that proximal-projection algorithm (66) is rewritten as a
projection algorithm below:

𝑥
𝑘+1
= (𝐼 − 𝑃

𝜆
𝑘
𝛾[−1,1]

𝑛) (𝐼 − 𝜆
𝑘
𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴) 𝑥

𝑘
. (69)

5. An ℓ
1
-ℓ

2
Regularization for the 𝑄-Lasso

𝑄-lasso (7) may be ill posed and therefore needs to be
regularized. Inspired by the elastic net [15] which regularizes
lasso (1), we introduce an ℓ

1
-ℓ

2
regularization for the𝑄-Lasso

as the minimization

min
𝑥∈R𝑛

1

2





(𝐼 − 𝑃

𝑄
)𝐴𝑥






2

2
+ 𝛾‖𝑥‖1

+ 𝛿

1

2

‖𝑥‖
2

2
=: 𝜑

𝛾,𝛿
(𝑥) , (70)

where 𝛾 > 0 and 𝛿 > 0 are regularization parameters. This
is indeed the traditional Tikhonov regularization applied to
𝑄-lasso (7).

Let 𝑥
𝛾,𝛿

be the unique solution of (70) and set

𝜑
𝛾
(𝑥) :=

1

2





(𝐼 − 𝑃

𝑄
) 𝐴𝑥






2

2
+ 𝛾‖𝑥‖1

,

𝜓
𝛿
(𝑥) :=

1

2





(𝐼 − 𝑃

𝑄
)𝐴𝑥






2

2
+ 𝛿

1

2

‖𝑥‖
2

2

(71)

which are the limits of 𝜑
𝛾,𝛿
(𝑥) as 𝛿 → 0 and 𝛾 → 0,

respectively. Let

𝑆
𝛾
= arg min

𝑥∈R𝑛
𝜑

𝛾
(𝑥) , 𝑥

𝛿
= arg min

𝑥∈R𝑛
𝜓

𝛿
(𝑥) . (72)

Proposition 17. Assume the 𝑄-least-squares problem

min
𝑥∈R𝑛

1

2





(𝐼 − 𝑃

𝑄
) 𝐴𝑥






2

2
(73)

is consistent (i.e., solvable) and let 𝑆 be its nonempty set of
solutions.

(i) As 𝛿 → 0 (for each fixed 𝛾 > 0), 𝑥
𝛾,𝛿
→ 𝑥

†

𝛾
which

is the (ℓ
2
) minimum-norm solution to 𝑄-lasso (7).

Moreover, as 𝛾 → 0, every cluster point of 𝑥†

𝛾
is a (ℓ

1
)

minimum-norm solution of 𝑄-least squares problem
(73), that is, a point in the set argmin

𝑥∈𝑆
‖𝑥‖

1
.

(ii) As 𝛾 → 0 (for each fixed 𝛿 > 0), 𝑥
𝛾,𝛿
→ 𝑥

𝛿
which

is the unique solution to the ℓ
2
regularized problem:

min
𝑥∈R𝑛

1

2





(𝐼 − 𝑃

𝑄
)𝐴𝑥






2

2
+ 𝛿

1

2

‖𝑥‖
2

2
. (74)

Moreover, as 𝛿 → 0, 𝑥
𝛿

→ 𝑥 which is
the ℓ

2
minimal norm solution of (73); that is, 𝑥 =

argmin
𝑥∈𝑆
‖𝑥‖

2
.

Proof. We have that 𝑥
𝛾,𝛿

satisfies the optimality condition:

0 ∈ 𝜕𝜑
𝛾,𝛿
(𝑥

𝛾,𝛿
) , (75)

where the subdifferential of 𝜑
𝛾,𝛿

is given by

𝜕𝜑
𝛾,𝛿
(𝑥) = 𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥 + 𝛿𝑥 + 𝛾𝜕‖𝑥‖1

. (76)

It turns out that the above optimality condition is reduced to

−

1

𝛾

(𝐴
𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾,𝛿
+ 𝛿𝑥

𝛾,𝛿
) ∈ 𝜕






𝑥

𝛾,𝛿





1
. (77)

Using the subdifferential inequality, we obtain

𝛾‖𝑥‖1
≥ 𝛾






𝑥

𝛾,𝛿





1
− ⟨𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾,𝛿
+ 𝛿𝑥

𝛾,𝛿
, 𝑥 − 𝑥

𝛾,𝛿
⟩

(78)

for 𝑥 ∈ R𝑛. Replacing 𝑥with 𝑥
𝛾

,𝛿
 for 𝛾 > 0 and 𝛿

> 0 yields

𝛾






𝑥

𝛾

,𝛿






1

≥ 𝛾






𝑥

𝛾,𝛿





1
− ⟨𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾,𝛿
+ 𝛿𝑥

𝛾,𝛿
, 𝑥

𝛾

,𝛿
 − 𝑥

𝛾,𝛿
⟩ .

(79)

Interchange 𝛾 and 𝛾 and 𝛿 and 𝛿 to get

𝛾




𝑥

𝛾,𝛿





1

≥ 𝛾




𝑥

𝛾

,𝛿






1
− ⟨𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾

,𝛿
 + 𝛿


𝑥

𝛾

,𝛿
 , 𝑥

𝛾,𝛿
− 𝑥

𝛾

,𝛿
⟩ .

(80)

Adding up (79) and (80) results in

(𝛾

− 𝛾) (






𝑥

𝛾,𝛿





1
−






𝑥

𝛾

,𝛿






1
)

≥ ⟨(𝐼 − 𝑃
𝑄
) 𝐴𝑥

𝛾

,𝛿
 − (𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾,𝛿
, 𝐴

𝑡
𝑥

𝛾

,𝛿
 − 𝐴

𝑡
𝑥

𝛾,𝛿
⟩

+ ⟨𝛿

𝑥

𝛾

,𝛿
 − 𝛿𝑥

𝛾,𝛿
, 𝑥

𝛾

,𝛿
 − 𝑥

𝛾,𝛿
⟩

≥






(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾,𝛿
− (𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝛾

,𝛿








2

2

+ (𝛿

− 𝛿) ⟨𝑥

𝛾

,𝛿
 , 𝑥

𝛾

,𝛿
 − 𝑥

𝛾,𝛿
⟩ + 𝛿






𝑥

𝛾

,𝛿
 − 𝑥

𝛾,𝛿







2

2
.

(81)

Since ℓ
1
-ℓ

2
regularization (70) is the Tikhonov regularization

of 𝑄-lasso (7), we get






𝑥

𝛾,𝛿





2
≤






𝑥

𝛾





2
≤ 𝑐






𝑥

𝛾





1
≤ 𝑐‖𝑥‖1

,

𝑥
𝛾
∈ 𝑆

𝛾
, 𝑥 ∈ 𝑆.

(82)

Here 𝑐 > 0 is a constant. It follows that {𝑥
𝛾,𝛿
} is bounded.

(i) For fixed 𝛾 > 0, we can use the theory of Tikhonov
regularization to conclude that 𝑥

𝛾,𝛿
is continuous in

𝛿 > 0 and converges, as 𝛿 → 0, to 𝑥†

𝛾
which is

the (ℓ
2
) minimum-norm solution to 𝑄-lasso (7), that

is, the unique element 𝑥†

𝛾
:= argmin

𝑥∈𝑆
𝛾

‖𝑥‖
2
. By

Proposition 6, we also find that every cluster point of
𝑥

†

𝛾
, as 𝛾 → 0, lies in the set argmin

𝑥∈𝑆
‖𝑥‖

1
.
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(ii) Fix 𝛿 > 0 and use Proposition 6 to see that 𝑥
𝛾,𝛿
→ 𝑥

𝛿

as 𝛾 → 0. Now the standard property of Tikhonov’s
regularization ensures that 𝑥

𝛿
→ argmin

𝑥∈𝑆
‖𝑥‖

2
as

𝛿 → 0.

ℓ
1
-ℓ

2
regularization (70) can be solved by proximal-

gradient algorithm (61). Take 𝑓(𝑥) = (1/2)‖(𝐼 − 𝑃
𝑄
)𝐴𝑥‖

2

2
+

(1/2)𝛿‖𝑥‖
2

2
and 𝑔(𝑥) = 𝛾‖𝑥‖

1
; then algorithm (61) is reduced

to

𝑥
𝑘+1
= prox

𝜆
𝑘
𝛾‖⋅‖
1

(𝑥
𝑘
− 𝜆

𝑘
[𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝑘
+ 𝛿𝑥

𝑘
]) . (83)

The convergence of this algorithm is given as follows.

Theorem 18. Assume

0 < lim inf
𝑘→∞

𝜆
𝑘
≤ lim sup

𝑘→∞

𝜆
𝑘
<

2

‖𝐴‖
2

2
+ 𝛿

. (84)

Then the sequence (𝑥
𝑘
) generated by algorithm (83) converges

to the solution of ℓ
1
-ℓ

2
regularization (70).

We can also take 𝑓(𝑥) = (1/2)‖(𝐼 − 𝑃
𝑄
)𝐴𝑥‖

2

2
and 𝑔(𝑥) =

𝛾‖𝑥‖
1
+ (1/2)𝛿‖𝑥‖

2

2
. Then prox

𝜇𝑔
(𝑥) = prox ]‖⋅‖

1

((1/(1 +

𝜇𝛿))𝑥) with ] = 𝜇𝛾/(1 + 𝜇𝛿), and the proximal algorithm
(61) is reduced to

𝑥
𝑘+1
= prox ]

𝑘
‖⋅‖
1

(

1

1 + 𝛿𝛾
𝑘

(𝑥
𝑘
− 𝜆

𝑘
𝐴

𝑡
(𝐼 − 𝑃

𝑄
) 𝐴𝑥

𝑘
)) .

(85)

Here ]
𝑘
= 𝛾𝜆

𝑘
/(1 + 𝛿𝛾

𝑘
). Convergence of this algorithm is

given below.

Theorem 19. Assume

0 < lim inf
𝑘→∞

𝜆
𝑘
≤ lim sup

𝑘→∞

𝜆
𝑘
<

2

‖𝐴‖
2

2

. (86)

Then the sequence (𝑥
𝑘
) generated by the algorithm (85)

converges to the solution of ℓ
1
-ℓ

2
regularization (70).
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