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Most of the direct methods solve optimal control problems with nonlinear programming solver. In this paper we propose a novel
feedback control method for solving for solving affine control system, with quadratic cost functional, which makes use of only
linear systems. This method is a numerical technique, which is based on the combination of Haar wavelet collocation method and
successive Generalized Hamilton-Jacobi-Bellman equation. We formulate some new Haar wavelet operational matrices in order
to manipulate Haar wavelet series. The proposed method has been applied to solve linear and nonlinear optimal control problems
with infinite time horizon. The simulation results indicate that the accuracy of the control and cost can be improved by increasing
the wavelet resolution.

1. Introduction

Optimal control is an important branch of mathematics and
has been widely applied in a number of fields, including
engineering, science, and economics. Although, the neces-
sary and sufficient conditions for optimality have already
been derived for 𝐻

2
and 𝐻

∞
optimal controls, they are only

useful for finding analytical solutions for quite restricted
cases. If we assume full-state knowledge, and if the optimal
control problem is linear, then the optimal control is a linear
feedback of the state, which is obtained by solving a matrix
Riccati equation. However, if the system is nonlinear, then the
optimal control is a state feedback function, which depends
on the solution to aHamilton-Jacobi-Bellman equation (HJB)
or a Hamilton-Jacobi-Issac equation (HJI) for 𝐻

2
or 𝐻
∞

optimal control problem, respectively [1], and is usually
difficult to solve analytically. Feng et al. [2] have solved anHJI
equation iteratively by solving a sequence of HJB equation. In
this paper, we are more concerned with approximate solution
forHJB equation. Among numerous computational approach
for solution of HJI equation, we refer in particular to [3–5].
Robustness of nonlinear state feedback is discussed in [6].

Broadly speaking, and in general, numerical methods
for solving optimal control problem are divided into two

categories: direct and indirect methods. The direct meth-
ods reduce optimal control problem to a nonlinear pro-
gramming problem, by parameterizing or discretizing the
infinite-dimensional optimal control problem, into finite-
dimensional optimization problem. On the other hand, the
indirect methods solve HJB equation or the first order
necessary condition for optimality, which are obtained from
Pontryagin minimum principle. Both these methods are
important for solving optimal control problems; however,
the difference between them is that the indirect methods are
believed to yield more accurate result, whereas the direct
methods tend to have better convergence properties. von
Stryk and Bulirsch [7] have used both direct and indi-
rect methods to solve optimal control problem for trajec-
tory optimization in Apollo capsule. Beard et al. [8] have
introduced Generalized Hamilton-Jacobi-Bellman equation
to successively approximate solution of the HJB equation.
Given an arbitrary stabilizing control law, their method
can be used to improve the performance of the control.
Moreover, Jaddu [9] has reported some numerical methods
to solve unconstrained and constrained optimal control prob-
lems, by converting optimal control problems into quadratic
programming problem. He has used a parameterization
technique using the Chebyshev polynomials. Meanwhile,



2 Abstract and Applied Analysis

Beeler et al. [10] have performed a comparison study of
five different methods for solving nonlinear control systems
and studied the performance of the methods on several test
problems. Park and Tsiotras [11] have proposed a succes-
sive wavelet collocation algorithm which used interpolat-
ing wavelets, to iteratively solve the Generalized Hamilton-
Jacobi-Bellman equation and the corresponding optimal
control law.

Wavelet basis that has compact support allows us to better
represent functions with sharp spikes or edges than other
bases. This property is advantageous in many applications in
signal or image processing. In addition, the availability of fast
transformmakes it attractive as a computational tool. Numer-
ical solutions of integral and differential equations have been
discussed in many papers, which basically fall either in the
class of spectral Galerkin and Collocation methods or finite
element and finite difference methods.

Haar wavelet is the simplest orthogonal wavelet with a
compact support. Chan and Hsiao [12] have used the Haar
operational matrix method to solve lumped and distributed
parameter systems. Hsiao andWang [13] have solved optimal
control of linear time-varying systems via Haar wavelets. Dai
and Cochran Jr. [14] have considered a Haar wavelet tech-
nique to transform optimal control problems into nonlinear
programming (NLP) parameters at collocation points. This
NLP can be solved using nonlinear programming solver such
as SNOPT.

In the present paper we have considered the method of
Beard et al. [8] to successively approximate the solution of
HJB equation. Instead of using the Galerkin method with
polynomial basis, we have used collocation method with
Haar wavelet basis to solve the Generalized Hamilton-Jacobi-
Bellman equation. Galerkin method requires the computa-
tion of multidimensional integrals which makes the method
impractical for higher order systems [15].Themain advantage
of using collocation method in general is that computational
burden of solving Generalized Hamilton-Jacobi-Bellman
equation is reduced to matrix computation only. Our new
successive Haar wavelet collocation method is used to solve
linear and nonlinear optimal control problems. In the process
of establishing the method we have to define new operational
matrices of integration for a chosen stabilizing domain and
new operational matrix for the product of two dimensions
Haar wavelet functions.

2. Haar Wavelets

The orthogonal set of the Haar wavelets ℎ
𝑖
(𝑥) is a group of

square wave over the interval 𝑥 ∈ [𝜏
1
, 𝜏
2
) defined as follows:

ℎ
0
(𝑥) = {

1, 𝜏
1
≤ 𝑥 < 𝜏

2
,

0, elsewhere,

ℎ
1
(𝑥) =

{{{{

{{{{

{

1, 𝜏
1
≤ 𝑥 <

1

2
(𝜏
1
+ 𝜏
2
) ,

−1,
1

2
(𝜏
1
+ 𝜏
2
) ≤ 𝑥 < 𝜏

2
,

0, elsewhere.

(1)

Other wavelets can be obtained by dilation and translation of
the mother wavelet ℎ

1
(𝑥). In general, ℎ

𝑖
(𝑥) = ℎ

1
(2
𝑗
𝑥 − 𝑘),

where 𝑖 = 2𝑗 + 𝑘, 𝑗, 𝑘 ∈ 𝑁 ∪ {0}, and 0 ≤ 𝑘 < 2𝑗.
Each𝑓(𝑥) ∈ 𝐿2([𝜏

1
, 𝜏
2
)) can be expanded intoHaar series

of infinite terms:

𝑓 (𝑥) = 𝑐
0
ℎ
0
(𝑥) + 𝑐

1
ℎ
1
(𝑥) + 𝑐

2
ℎ
2
(𝑥) + ⋅ ⋅ ⋅ . (2)

If 𝑓(𝑥) is approximated as piecewise constants then it can be
decomposed as

𝑓 (𝑥) =

𝑚−1

∑

𝑖=0

𝑐
𝑖
ℎ
𝑖
(𝑥) , (3)

where 𝑖 = 2𝑗+𝑘, 𝑗 = 0, 1, 2, . . . , log
2
𝑚, and 𝑘 = 0, 1, 2, . . . , 2𝑗−

1.
The Haar coefficients that are

𝑐
𝑖
=

2
𝑗

𝜏
2
− 𝜏
1

∫

𝜏
2

𝜏
1

𝑓 (𝑥) ℎ
𝑖
(𝑥) 𝑑𝑥 (4)

can be obtain by minimizing the integral square error
∫
𝜏
2

𝜏
1

(𝑓(𝑥) − ∑
𝑚−1

𝑖=0
𝑐
𝑖
ℎ
𝑖
(𝑥))
2
𝑑𝑥.

The sum in (3) can be compactly written in the form

𝑓 (𝑥) = 𝑐
𝑇

𝑚
h
𝑚
(𝑥) , (5)

where 𝑐𝑇
𝑚
= [𝑐
0
𝑐
1
⋅ ⋅ ⋅ 𝑐
𝑚−1

] is called the coefficient vector
and h

𝑚
(𝑥) = [ℎ

0
(𝑥) ℎ

1
(𝑥) ⋅ ⋅ ⋅ ℎ

𝑚−1
(𝑥)]
𝑇 is the Haar func-

tion vector.
At collocation points 𝑥

𝑗
= (𝜏
1
+ ((𝜏
2
− 𝜏
1
)/2𝑚)(2𝑗 − 1)),

𝑗 = 1, 2, 3, . . . , 𝑚, the Haar function vector can be expressed
in matrix form as

(𝐻
𝑚
)
𝑖,𝑗
= ℎ
𝑖
(𝑥
𝑗
) . (6)

For instance, the fourth Haar wavelet matrix 𝐻
4
can be rep-

resented in matrix form as follows:

𝐻
4
=

[
[
[

[

1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1

]
]
]

]

. (7)

3. Haar Wavelet Operational Matrices

The integration of ℎ
𝑖
(𝑥) in the interval of [0, 𝜏) can also be

expanded into a Haar series, that is,

∫

𝑥

0

h
𝑚
(𝑥) 𝑑𝑥 ≅ 𝑃

𝑚
h
𝑚
(𝑥) , (8)

where the 𝑚 × 𝑚 matrix 𝑃
𝑚
is called the operational matrix

of integration obtain recursively as

𝑃
𝑚
=

1

2𝑚

[

[

2𝑚𝑃
𝑚/2

−𝜏𝐻
𝑚/2

𝜏𝐻
−1

𝑚/2
0
𝑚/2

]

]

, 𝑃
1
= [

𝜏

2
] . (9)
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The formula in the interval of [0, 1) was first given by Chen
and Hsiao [12].

In order to solve nonlinear optimal control problem, it is
essential to have the product of h(𝑥) and h𝑇(𝑥). The product
of two functions 𝑓(𝑥) = 𝑐𝑇h(𝑥) and 𝑔(𝑥) = 𝑑𝑇h(𝑥) can be
expanded into a Haar series with a Haar coefficient matrix
𝑀
𝑚
as

𝑑
𝑇h (𝑥) h𝑇 (𝑥) 𝑐 = 𝑑𝑇𝑀

𝑚
h (𝑥) , (10)

where 𝑀
𝑚
is an 𝑚 × 𝑚 matrix referred to as the product

operational matrix. It was first given by Hsiao and Wu [16]
as

𝑀
𝑚
= [

𝑀
𝑚/2

𝐻
𝑚/2

diag (𝑐
𝑏
)

diag (𝑐
𝑏
)𝐻
−1

𝑚/2
diag (𝑐𝑇

𝑎
𝐻
𝑚/2
)

] , (11)

where 𝑀
1
= 𝑐
0
and 𝑐
𝑎
= [𝑐
0
, . . . , 𝑐

𝑚/2−1
]
𝑇, 𝑐
𝑏
= [𝑐
𝑚/2
, . . . ,

𝑐
𝑚−1

]
𝑇.

Two-dimensional Haar wavelets basis can be formed by
taking a tensor product of h

𝑛
(𝑥) and h

𝑚
(𝑥). Let the basis be

{ℎ
𝑖
(𝑥
1
)ℎ
𝑗
(𝑥
2
)}, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚. Then the two

dimensions Haar function vector can be expressed as

H (𝑥
1
, 𝑥
2
) =

[
[
[
[
[
[
[
[
[
[

[

ℎ
1
(𝑥
1
) ℎ
1
(𝑥
2
)

...
ℎ
1
(𝑥
1
) ℎ
𝑚
(𝑥
2
)

ℎ
2
(𝑥
1
) ℎ
1
(𝑥
2
)

...
ℎ
𝑛
(𝑥
1
) ℎ
𝑚
(𝑥
2
)

]
]
]
]
]
]
]
]
]
]

]

. (12)

Any function 𝑓 ∈ 𝐿2([−𝜏
1
, 𝜏
1
) × [−𝜏

2
, 𝜏
2
)) can be written as

𝑓 (𝑥
1
, 𝑥
2
) = 𝐶
𝑇H (𝑥

1
, 𝑥
2
) , (13)

where 𝐶𝑇 = [𝑐
11
⋅ ⋅ ⋅ 𝑐
1𝑛
𝑐
21
⋅ ⋅ ⋅ 𝑐
2𝑛
⋅ ⋅ ⋅ 𝑐
𝑚1

⋅ ⋅ ⋅ 𝑐
𝑚𝑛
]. Subse-

quently, we assume that 𝑛 = 𝑚 and 𝜏
1
= 𝜏
2
= 𝜏, so that

the operation matrix will be a square matrix. Let 𝐶 = vec(𝐶̌)
where 𝐶̌ is a𝑚×𝑚matrix. By using the Haar wavelet matrix
in (6), the coefficient 𝐶𝑇 in (13) can be obtained from 𝐶̌ as
follows:

𝐶̌ = (𝐻
−1

𝑚
)
𝑇

⋅ 𝑓 ⋅ 𝐻
−1

𝑚
(14)

and 𝑓
𝑖,𝑗
= [𝑓(𝑥

𝑖
, 𝑥
𝑗
)], 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

The integration of two dimensions Haar function vectors
in [−𝜏, 𝜏) × [−𝜏, 𝜏) is

∫

𝑥
𝑖

0

H (𝑥
1
, 𝑥
2
) 𝑑𝑥
𝑖
= (𝑄
𝑖
− 𝜏𝐸
𝑖
)H (𝑥

1
, 𝑥
2
) , (15)

where𝑄
𝑖
and𝐸

𝑖
for 𝑖 = 1, 2 are the𝑚2×𝑚2 operationalmatri-

ces given as follows:

𝑄
1
= 𝑃
𝑚
⊗ 𝐼
𝑚
, 𝑄

2
= 𝐼
𝑚
⊗ 𝑃
𝑚
,

𝐸
1
= 𝐴
𝑚
⊗ 𝐼
𝑚
, 𝐸

2
= 𝐼
𝑚
⊗ 𝐴
𝑚
,

(16)

where⊗denotes theKronecker product [17], 𝐼
𝑚
denotes𝑚×𝑚

identity matrix, and

(𝐴
𝑚
)
𝑖,𝑗
= {

1, 𝑖 = 1, 2, 𝑗 = 1,

0, otherwise.
(17)

As in (10), we also required the product of H(𝑥
1
, 𝑥
2
) and

H𝑇(𝑥
1
, 𝑥
2
). Let

H (𝑥
1
, 𝑥
2
)H𝑇 (𝑥

1
, 𝑥
2
) 𝐶 = 𝑁

𝐶
H (𝑥
1
, 𝑥
2
) . (18)

The algorithm to obtain𝑁
𝐶
is as follows.

Step 1. Let 𝐶̌ be a matrix of 𝐶, or equivalently 𝐶 = vec(𝐶̌).

Step 2. Compute𝑀
𝐶̌
𝑖

, 𝑖 = 1, 2, . . . , 𝑚 according to (11) using
the column 𝐶̌

𝑖
as the coefficient vector.

Step 3. For 𝑖 = 1, 2, . . . , 𝑚, compute vec(𝑀
𝐶̌
𝑖

).

Step 4. Form a big matrix by concatenating all vectors from
Step 3; that is, 𝑆 = [vec(𝑀

𝐶̌
1

) vec(𝑀
𝐶̌
2

) ⋅ ⋅ ⋅ vec(𝑀
𝐶̌
𝑚

)].

Step 5. For each row 𝑘 of matrix 𝑆, compute𝑁
𝑖,𝑗
according to

(11) using the row 𝑆
𝑘
as the coefficient vector.

Step 6. Form the matrix𝑁
𝐶̆
as follows:

𝑁
𝐶̌
=

[
[
[
[

[

𝑁
11

𝑁
12

. . . 𝑁
1𝑚

𝑁
21

𝑁
22

. . . 𝑁
2𝑚

...
... . . .

...
𝑁
𝑚1

𝑁
𝑚2

. . . 𝑁
𝑚𝑚

]
]
]
]

]

. (19)

Step 7. End.

4. Problem Statement

The system to be controlled is given by the nonlinear differ-
ential equation of the form

𝑥̇ (𝑡) = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 (𝑥) , 𝑥 (0) = 𝑥
0
, (20)

where 𝑥(𝑡) ∈ Ω ⊂ R𝑛 is the state vector, 𝑢 : Ω → R𝑚 is the
control, 𝑓 : Ω → R𝑛 and 𝑔 : Ω → R𝑛×𝑚 are continuously
differentiable with respect to all its arguments, 𝑥

0
is the initial

condition vector, andΩ is domain of attraction.
The problem is to find the optimal control 𝑢∗(𝑥) that

minimizes the following performance index:

𝐽 (𝑥
0
, 𝑢) = ∫

∞

0

(𝑥
𝑇
𝑄𝑥 + 𝑢

𝑇
𝑅𝑢) 𝑑𝑡, (21)

where 𝑄 ∈ R𝑛×𝑛 is a positive semidefinite matrix and 𝑅 ∈

R𝑚×𝑚 is a positive definite matrix. Given an arbitrary control
𝑢, the performance of the control at 𝑥 ∈ Ω ⊂ R𝑛 is given by a
Lyapunov function for the system [8]

𝑉 (𝑥, 𝑢) = ∫

∞

0

(𝑙 (𝑥 (𝑡)) + ‖𝑢 (𝑥 (𝑡))‖
2

𝑅
) 𝑑𝑡, (22)
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where, ‖𝑢‖2
𝑅
= 𝑢
𝑇
𝑅𝑢 and 𝑙(𝑥) = 𝑥𝑇𝑄𝑥.The optimal controller

in feedback form is presented as follows [8]:

𝑢
∗
(𝑥) = −

1

2
𝑅
−1
𝑔
𝑇
(𝑥)

𝜕𝑉
∗
(𝑥)

𝜕𝑥
, (23)

where𝑉∗(𝑥) is the solution to the followingHamilton-Jacobi-
Bellman (HJB) equation

𝜕𝑉
∗𝑇
(𝑥)

𝜕𝑥
𝑓 (𝑥) + 𝑙 (𝑥) −

1

4

𝜕𝑉
∗𝑇
(𝑥)

𝜕𝑥
𝑔 (𝑥) 𝑅

−1

× 𝑔(𝑥)
𝑇 𝜕𝑉
∗
(𝑥)

𝜕𝑥
= 0

(24)

with boundary condition 𝑉∗(0) = 0; that is 𝑉(𝑥∗, 𝑢∗) ≤
𝑉(𝑥, 𝑢) for all 𝑢, and 𝑥∗(𝑡) is the solution of 𝑥̇ = 𝑓(𝑥) +

𝑔(𝑥)𝑢
∗
(𝑡). Basically, it is not so easy to solve the nonlin-

ear partial differential equation in (24) for the purpose of
obtaining 𝑉∗(𝑥) and consequently 𝑢∗(𝑥) from (23); rather
the following two linear equations have been iterated by the
algorithm proposed by [8]

𝜕𝑉
(𝑖)𝑇
(𝑥)

𝜕𝑥
(𝑓 (𝑥) + 𝑔 (𝑥) 𝑢

(𝑖)
(𝑥)) + 𝑙 (𝑥) +

󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑖)
(𝑥)
󵄩󵄩󵄩󵄩󵄩

2

𝑅
= 0

(25)

with initial condition 𝑉(𝑖)(0) = 0 and

𝑢
(𝑖+1)

(𝑥) = −
1

2
𝑅
−1
𝑔
𝑇
(𝑥)

𝜕𝑉
(𝑖)
(𝑥)

𝜕𝑥
. (26)

Equation (25) is called the Generalized Hamilton-Jacobi-
Bellman (GHJB) equation in [8]. In case of moderate pre-
sumptions, it has been established in [8] that the itera-
tion between the GHJB (25) and the control (26) coincide
with original HJB equation solution (24). If we can find
a stabilizing control 𝑢(0)(𝑥) to start off, it is possible to
iteratively enhance the performance of this controller using
(25), (26), and finally the optimal controller can be optimally
approximated. Moreover, at each iteration step the controller
𝑢
(𝑖) is a stable control.

5. The Successive Haar Wavelet
Collocation Method

The following section describes the successive Haar wavelet
collocation method (SHWCM) used for obtaining the two
dimensional numerical solution to theHJB equation. In every
step of this algorithm, an approximate solution to the GHJB
equation (25) has been identified, namely, 𝜕𝑉(𝑖)/𝜕𝑥, 𝑉(𝑖), and
𝑢
(𝑖); all can be approximately expressed in term of Haar

wavelets. As 𝑖 → ∞, 𝑉(𝑖) and 𝑢(𝑖) will approach the optimal
solution 𝑉∗ and 𝑢∗, respectively.

Let us consider the following two-dimensional optimal
feedback control problem

min𝑉 (𝑥
0
, 𝑢) = ∫

∞

0

(𝑥
𝑇
𝑄𝑥 + 𝑢

𝑇
𝑅𝑢) 𝑑𝑡 (27)

subject to the dynamics

𝑥̇ = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 (𝑥) , 𝑥 (0) = 𝑥
0
, (28)

where 𝑥 = [
𝑥
1

𝑥
2
], 𝑓(𝑥) = [

𝑓
1
(𝑥
1
,𝑥
2
)

𝑓
2
(𝑥
1
,𝑥
2
)
], 𝑔(𝑥) = [

𝑔
1
(𝑥
1
,𝑥
2
)

𝑔
2
(𝑥
1
,𝑥
2
)
], and

𝑢 : Ω → R.
Without loss of generality, the domain of attraction has

been selected as Ω = [−𝜏, 𝜏] × [−𝜏, 𝜏] for the sake of con-
venience. The following equations express the pair of GHJB
equation and the control law:

𝜕𝑉
(𝑖)𝑇
(𝑥)

𝜕𝑥
(𝑓 (𝑥) + 𝑔 (𝑥) 𝑢

(𝑖)
(𝑥)) + 𝑥

𝑇
𝑄𝑥 + 𝑢

(𝑖)𝑇
𝑅𝑢
(𝑖)
= 0,

(29)

with initial condition 𝑉(𝑖)(0) = 0 and

𝑢
(𝑖+1)

(𝑥) = −
1

2
𝑅
−1
𝑔
𝑇
(𝑥)

𝜕𝑉
(𝑖)
(𝑥)

𝜕𝑥
. (30)

For (28), if initially 𝑢(0) is a stabilizing control, then from (29)
the solution to GHJB equation affiliated with 𝑢(0) becomes
a Lyapunov function for the system and equals to the cost
associated with 𝑢(0) as follows:

𝜕𝑉
(0)𝑇

(𝑥)

𝜕𝑥
(𝑓 (𝑥) + 𝑔 (𝑥) 𝑢

(0)
(𝑥)) + 𝑥

𝑇
𝑄𝑥 + 𝑢

(0)𝑇
𝑅𝑢
(0)
= 0.

(31)

According to (13), function approximation for 𝑓
1
(𝑥) +

𝑔
1
(𝑥)𝑢
(0)
(𝑥),𝑓
2
(𝑥)+𝑔

2
(𝑥)𝑢
0
(𝑥) and 𝑥𝑇𝑄𝑥+𝑢(0)𝑇(𝑥)𝑅𝑢(0)(𝑥),

can be written as

𝑓
1
(𝑥) + 𝑔

1
(𝑥) 𝑢
(0)
(𝑥) = 𝜃

𝑇H (𝑥
1
, 𝑥
2
) ,

𝑓
2
(𝑥) + 𝑔

2
(𝑥) 𝑢
(0)
(𝑥) = 𝜇

𝑇H (𝑥
1
, 𝑥
2
) ,

𝑥
𝑇
𝑄𝑥 + 𝑢

(0)𝑇
(𝑥) 𝑅𝑢

(0)
(𝑥) = 𝑘

𝑇H (𝑥
1
, 𝑥
2
) ,

(32)

where the coefficient vectors, 𝜃𝑇, 𝜇𝑇, and 𝑘𝑇, can be calculate
from (14). Since it is not possible to differentiate Haar
functions, and as (29) only involves first-order derivatives of
𝑉, we assume that second-order partial derivative of𝑉 exists;
that is,

𝜕
2
𝑉

𝜕𝑥
1
𝜕𝑥
2

= 𝜔
𝑇H (𝑥

1
, 𝑥
2
) (33)

for some coefficient vector 𝜔.
With the assumption

𝜕
2
𝑉

𝜕𝑥
1
𝜕𝑥
2

=
𝜕
2
𝑉

𝜕𝑥
2
𝜕𝑥
1

, (34)

the first-order partial derivative can be obtained by integrat-
ing (33), with respect to 𝑥

1
and 𝑥

2
, respectively,

𝜕𝑉

𝜕𝑥
1

= 𝜔
𝑇
(𝑄
2
− 𝜏𝐸
2
)H (𝑥

1
, 𝑥
2
) + 𝛼
𝑇

1
H (𝑥
1
, 𝑥
2
)

𝜕𝑉

𝜕𝑥
2

= 𝜔
𝑇
(𝑄
1
− 𝜏𝐸
1
)H (𝑥

1
, 𝑥
2
) + 𝛼
𝑇

2
H (𝑥
1
, 𝑥
2
) ,

(35)
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Figure 1: Optimal feedback control for Example 1 via the SHWCM
with𝑚 = 8, 16 and 𝑥

1
= −0.1250, −0.0625, respectively.
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Figure 2: Value cost function for Example 1 via the SHWCM with
𝑚 = 8, 16, 32 and 𝑥

1
= −0.1250, −0.0625, −0.0313, respectively.

where 𝛼𝑇
1
= [𝛼
11
, . . . , 𝛼

1𝑚
, 0, . . . , 0] and 𝛼𝑇

2
= [𝛼
21
, 0, . . . , 𝛼

22
,

0, . . . , 0, . . . , 𝛼
2𝑚
, 0, . . . 0].

It should be noted that 𝜔𝑇 has 𝑚2 unknown variables
while 𝛼𝑇

1
and 𝛼𝑇

2
have only 𝑚 unknown variables each. Now

substituting (32) and (35) into (29), we have

𝜔
𝑇
{(𝑄
2
− 𝜏𝐸
2
)𝑁
𝜃
+ (𝑄
1
− 𝜏𝐸
1
)𝑁
𝜇
}

+ 𝛼
𝑇

1
𝑁
𝜃
+ 𝛼
𝑇

2
𝑁
𝜇
= −𝑘
𝑇
.

(36)

Equation (36) is a system of underdetermined linear equa-
tions with 𝑚2 equations and (𝑚2 + 2𝑚) unknown variables
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−3
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u 8

u exact
u 32

u 16

x2

Figure 3: Optimal feedback control for Example 2 via the SHWCM
with𝑚 = 8, 16, 32 and 𝑥

1
= −0.1250, −0.0625, −0.0313, respectively.
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Figure 4: Value cost function for Example 2 via the SHWCM with
𝑚 = 8, 16, 32 and 𝑥

1
= −0.1250, −0.0625, −0.0313, respectively.

which can solve for the unknown vectors 𝜔𝑇, 𝛼𝑇
1
, and 𝛼𝑇

2

using Moore-Penrose pseudoinverse [18]. The underdeter-
mined equation is expected because the Lyapunov function
is not unique. The Moore-Penrose solution is the particular
solution whose vector 2-norm is minimal.

By using the solution of GHJB equation (29), a feedback
control law 𝑢

(1) is constructed using (30), which improves
the efficiency of 𝑢(0). The solution of the Hamilton-Jacobi-
Bellman equation is uniformly approximated by repeating the
above process.
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Figure 5: State trajectory comparison for Example 2.
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Figure 6: Optimal feedback control for Example 3 via the SHWCM
with𝑚 = 8, 16, 32 and 𝑥

1
= −0.1250, −0.0625, −0.0313, respectively.

Knowing that

𝑉 (𝑥) = ∫

𝑥

0

∇𝑉
𝑇
𝑑𝑥 (37)

depends only on the initial and final points, not on the path
followed, we can calculate the Lyapunov function 𝑉(𝑥) by
integrating parallel to the axes [19] as follows:

𝑉 (𝑥
1
, 𝑥
2
) = ∫

𝑥
1

0

𝜕𝑉

𝜕𝑥
1

(𝑥
1
, 0) 𝑑𝑥

1
+ ∫

𝑥
2

0

𝜕𝑉

𝜕𝑥
2

(𝑥
1
, 𝑥
2
) 𝑑𝑥
2
.

(38)
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Figure 7: Value cost function for Example 3 via the SHWCM with
𝑚 = 8, 16, 32 and 𝑥

1
= −0.1250, −0.0625, −0.0313, respectively.
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Figure 8: Some state trajectories for Example 3.

This gives

𝑉 (𝑥
1
, 𝑥
2
) = (𝛽

𝑇
(𝑄
1
− 𝜏𝐸
1
) + 𝜔
𝑇
(𝑄
1
− 𝜏𝐸
1
) (𝑄
2
− 𝜏𝐸
2
)

+ 𝛼
𝑇

2
(𝑄
2
− 𝜏𝐸
2
))H (𝑥

1
, 𝑥
2
) ,

(39)

where 𝛽𝑇 = (𝜔𝑇(𝑄
2
− 𝜏𝐸
2
) + 𝛼
𝑇

1
)H(𝑥
1
, 0).

6. Numerical Examples

To show the efficiency of the proposed method, we applied
ourmethod to a linear quadratic optimal control problemand
two nonlinear quadratic optimal control problems.
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Table 1: Iteration results 𝑢(𝑖) for Example 1 when 𝑚 = 8 and 𝑥
1
=

−1/8.

𝑥
2

𝑢
(0)

𝑢
(1)

𝑢
(2)

𝑢
(3)

𝑢
(4)

𝑢exact

−7/8 1.0000 1.4463 1.3772 1.3786 1.3793 1.3624
−5/8 0.7500 1.0636 1.0114 1.0130 1.0136 1.0089
−3/8 0.5000 0.68889 0.6548 0.6548 0.6550 0.6553
−1/8 0.2500 0.3135 0.3027 0.3017 0.3015 0.3018
1/8 0 −0.0615 −0.0515 −0.0519 −0.0520 −0.0518

3/8 −0.2500 −0.4397 −0.4080 −0.4053 −0.4049 −0.4053

5/8 −0.5000 −0.8137 −0.7584 −0.7571 −0.7572 −0.7589

7/8 −0.7500 −1.1880 −1.1123 −1.1130 −1.1135 −1.1124

Table 2: Iteration results 𝑉(𝑖) for Example 1 when 𝑚 = 8 and 𝑥
1
=

−1/8.

𝑥
2

𝑉
(0)

𝑉
(1)

𝑉
(2)

𝑉
(3)

𝑉exact

−7/8 0.7051 0.6709 0.6712 0.6714 0.6618
−5/8 0.3914 0.3723 0.3722 0.3723 0.3654
−3/8 0.1723 0.1640 0.1637 0.1637 0.1574
−1/8 0.0470 0.0444 0.0442 0.0441 0.0377
1/8 0.0155 0.0130 0.0130 0.0130 0.0065
3/8 0.0781 0.0704 0.0701 0.0701 0.0636
5/8 0.2348 0.2162 0.2154 0.2153 0.2091
7/8 0.4850 0.4500 0.4492 0.4492 0.4431

Example 1. Consider the following linear quadratic regulator
(LQR):

𝐽 =
1

2
∫

∞

0

𝑥
2

1
(𝑡) + 𝑢

2
(𝑡) 𝑑𝑡 (40)

subject to

𝑥̇ = [
0 1

0 0
] 𝑥 + [

0

1
] 𝑢. (41)

To solve this problemwe take the initial stabilizing control
𝑢
(0)
(𝑥) = −𝑥

1
− 𝑥
2
. Tables 1 and 2 show sample iteration

results for 𝑢(𝑖) and 𝑉(𝑖), respectively, when𝑚 = 8, 𝑥
1
= −1/8.

The iteration is terminated when the difference between two
successive controls is less than 𝜖 = 0.001. Subsequent, in
order to display two-dimensional plots, we fix the value for
𝑥
1
at 𝑥
1
[𝑚/2] = −𝜏/𝑚 and 𝑥

2
∈ [−1, 1). Figure 1 shows

that for the particular LQR problem, the usage of 𝑚 = 16

is enough to approximate the exact optimal feedback control
𝑢
∗
(𝑥) = −𝑥

1
− √2𝑥

2
; however, to approximate the exact cost

function we require higher value of𝑚 as shown in Figure 2.

Example 2. Consider the following nonlinear optimal control
problem [15]:

𝐽 = ∫

∞

0

𝑥
2

2
+ 𝑢
2
𝑑𝑡 (42)

subject to

𝑥̇ = [

[

𝑥
2

−𝑥
1
(
𝜋

2
+ tan−1 (5𝑥

1
)) −

5𝑥
2

1

2 (1 + 25𝑥
2

1
)
+ 4𝑥
2

]

]

+ [
0

3
] 𝑢.

(43)

The optimum solution for this problem is 𝑢∗(𝑥) = −3𝑥
2
and

𝑉
∗
= 𝑥
2

1
(𝜋/2 + tan−1(5𝑥

1
)) + 𝑥

2

2
. To solve this nonlinear

optimal control problem, we started with the initial stabiliz-
ing control 𝑢(0)(𝑥) = −1.8𝑥

2
. Figure 3 shows approximate

optimal feedback control law 𝑢
∗ for 𝑚 = 8, 16, and 32.

The graph for 𝑚 = 64 overlaps with the exact optimal
feedback control, and Figure 4 shows that the approximate
cost function converges to the exact cost function as we
increase the resolution. Figure 5 compares the exact state
trajectories with approximate trajectories.

Example 3. Consider the following optimal control problem
[8]:

𝐽 = ∫

∞

0

(𝑥
2

1
+ 𝑥
2

2
+ 𝑢
2
) 𝑑𝑡 (44)

subject to

𝑥̇ = [
−𝑥
3

1
− 𝑥
2

𝑥
1
+ 𝑥
2

] + [
0

1
] 𝑢. (45)

The initial stabilizing control 𝑢(0)(𝑥) = 0.4142𝑥
1
−

1.3522𝑥
2

can be obtained using feedback linearization
method as outlined in [20].The optimal feedback control and
cost function obtained using SHWCM for various resolution
𝑚=8, 16, and 32 are illustrated in Figures 6 and 7, respectively.
We believe that, by increasing Haar wavelet resolution, the
SHWCM will be capable of yielding more accurate results.
Figure 8 shows simulation of the system trajectories.

7. Conclusion

In this paper we had proposed a new numerical method
for solving the Hamilton-Jacobi-Bellman equation, which
appears in the formulation of optimal control problems.
Our approach uses a combination of successive Generalized
Hamilton-Jacobi-Bellman equation and Haar wavelets oper-
ational matrix methods. The proposed approach is simple
and stable and has been tested on linear and nonlinear
optimal control problem in two-dimensional state space.
Generally, by using our method, the approximate solutions
for optimal feedback control require lower resolution, than
the approximate solutions for the cost function. However,
in both cases, it is clear that more accurate results can be
obtained by increasing the resolution of Haar wavelet.
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