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We study nonsmooth multiobjective fractional programming problem containing local Lipschitz exponential 𝐵-(𝑝, 𝑟)-invex
functions with respect to 𝜂 and 𝑏. We introduce a new concept of nonconvex functions, called exponential 𝐵-(𝑝, 𝑟)-invex functions.
Base on the generalized invex functions, we establish sufficient optimality conditions for a feasible point to be an efficient solution.
Furthermore, employing optimality conditions to performMond-Weir type dualitymodel and prove the duality theorems including
weak duality, strong duality, and strict converse duality theorem under exponential 𝐵-(𝑝, 𝑟)-invexity assumptions. Consequently,
the optimal values of the primal problem and the Mond-Weir type duality problem have no duality gap under the framework of
exponential 𝐵-(𝑝, 𝑟)-invexity.

1. Introduction

Convexity plays an important role in mathematical pro-
gramming problems, some of which are sufficient optimality
conditions or duality theorems.The sufficient optimality con-
ditions and duality theorems are being studied by extending
the concept of convexity. One of the most generalizations
of convexity of differentiable function in optimality theory
was introduced by Hanson [1]. Then the characteristics of
invexity—an invariant convexity—were applied in mathe-
matical programming (cf. [1–7]). Besides, the concept of
invexity of differentiable functions has been extended to the
case of nonsmooth functions (cf. [8–17]). After Clarke [18]
defined generalized derivative and subdifferential on local
Lipschitz functions, many practical problems are described
under nonsmooth functions. For example, Reiland [17] used
the generalized gradient of Clarke [18] to define nondifferen-
tiable invexity for Lipschitz real valued functions. Later on,
with generalized invex Lipschitz functions, optimality con-
ditions and duality theorems were established in nonsmooth
mathematical programming problems (cf. [8–17]). Indeed,
problems of multiobjective factional programming have var-
ious types of optimization problems, for example, finan-
cial and economic problems, game theory, and all optimal

decision problems. In multiobjective programming prob-
lems, when the necessary optimality conditions are estab-
lished, the conditions for searching an optimal solution
will be employed. That is, extra reasonable assumptions for
the necessary optimality conditions are needed in order to
prove the sufficient optimality conditions. Moreover, these
reasonable assumptions are various (e.g., generalized con-
vexity, generalized invexity, set-value functions, and complex
functions). When the existence of optimality solution is
approved in the sufficient optimality theorems, the optimal-
ity conditions to investigate the duality models could be
employed. Then the duality theorems could be proved. The
better condition is that there is no duality gap between primal
problems and duality problems.

In this paper, we focus a system of nondifferentiable
multiobjective nonlinear fractional programming problem as
the following form:

(𝑃) Minimize 𝜙 (𝑥) ≡
𝑓 (𝑥)

𝑔 (𝑥)
≡ (

𝑓
1

(𝑥)

𝑔
1

(𝑥)
,

𝑓
2

(𝑥)

𝑔
2

(𝑥)
, . . . ,

𝑓
𝑘

(𝑥)

𝑔
𝑘

(𝑥)
)

≡ (𝜙
1

(𝑥) , 𝜙
2

(𝑥) , . . . , 𝜙
𝑘

(𝑥)) ,

(1)
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subject to 𝑥 ∈ 𝑋 ⊂ R𝑛 with

F = {𝑥 ∈ 𝑋 | ℎ (𝑥) = (ℎ
1
, ℎ
2
, . . . , ℎ

𝑚
) (𝑥) ∈ −R

𝑚

+
} , (2)

where𝑋 is a separable reflexive Banach space in the Euclidean
𝑛-space R𝑛, 𝑓

𝑖
, 𝑔
𝑖

: 𝑋 → R, 𝑖 = 1, 2, . . . , 𝑘, and ℎ :

𝑋 → R𝑚 are locally Lipschitz functions on 𝑋. Without loss
of generality, we may assume that 𝑓

𝑖
(𝑥) ≥ 0, 𝑔

𝑖
(𝑥) > 0 for all

𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑘.
In this paper, we introduce a new class of Lipschitz func-

tions, namely, exponential 𝐵-(𝑝, 𝑟)-invex Lipschitz functions
which are motivated from the results of Antczak [3], Clarke
[18], and Reiland [17]. We employ this exponential 𝐵-(𝑝, 𝑟)-
invexity and necessary optimality conditions to establish the
sufficient optimality conditions on a nondifferentiable mul-
tiobjective fractional programming problem (𝑃). Using opti-
mality conditions, we constructMond-Weir dualitymodel for
the primal problem (𝑃) and prove that the duality theorems
have the same optimal value as the primal problem involving
𝐵-(𝑝, 𝑟)-invexity.

2. Definitions and Preliminaries

Let R𝑛 denote Euclidean space, and let R𝑛
+
denote the order

cone. For cone partial order, if 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑦 =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) in R𝑛, we define:

(1) 𝑥 = 𝑦 if and only if 𝑥
𝑖
= 𝑦
𝑖
for all 𝑖 = 1, 2, . . . , 𝑛;

(2) 𝑥 > 𝑦 if and only if 𝑥
𝑖
> 𝑦
𝑖
for all 𝑖 = 1, 2, . . . , 𝑛;

(3) 𝑥 ≧ 𝑦 if and only if 𝑥
𝑖
≥ 𝑦
𝑖
for all 𝑖 = 1, 2, . . . , 𝑛;

(4) 𝑥 ≥ 𝑦 if and only if 𝑥 ≧ 𝑦 and 𝑥
𝑖

̸= 𝑦
𝑖
for some 𝑖 ∈

{1, 2, . . . , 𝑛}.

Definition 1. Let 𝑋 be an open subset of R𝑛. The function 𝜃 :

𝑋 → R is said to be locally Lipschitz at 𝑥 ∈ 𝑋 if there exists
a positive real constant C and a neighborhood N of 𝑥 ∈ 𝑋

such that
𝜃 (𝑦) − 𝜃 (𝑧)

 ≦ C
𝑦 − 𝑧

 , ∀𝑧, 𝑦 ∈ N, (3)

where ‖ ⋅ ‖ is an arbitrary norm in R𝑛.

For any vector ] in R𝑛, the generalized directional deriva-
tive of 𝜃 at 𝑥 in the direction ] ∈ R𝑛 in Clarke’s sense [18] is
defined by

𝜃
∘
(𝑥; ]) = lim sup

𝑦→𝑥

𝜆→0
+

𝜃 (𝑦 + 𝜆]) − 𝜃 (𝑦)

𝜆
. (4)

The generalized subdifferential of 𝜃 at 𝑥 ∈ 𝑋 is defined by
the set

𝜕
∘
𝜃 (𝑥) = {𝜉 ∈ 𝑋

∗
: 𝜃
∘
(𝑥; ]) ≥ ⟨𝜉, ]⟩ ∀] ∈ 𝑋} , (5)

where 𝑋
∗ is the dual space of 𝑋 and ⟨𝜉; ]⟩ stands for the dual

pair of 𝑋 and 𝑋
∗.

Evidently, 𝜃
∘
(𝑥; ]) = max{⟨𝜉; ]⟩ : 𝜉 ∈ 𝜕

∘
𝜃(𝑥)} for any 𝑥

and ] in 𝑋. If 𝜃 is a convex function, then 𝜕
∘
𝜃 is coincid with

usual subdifferential 𝜕𝜃.

Definition 2 (see [18]). 𝜃 is said to be regular at 𝑥 if for any
] ∈ 𝑋, the one-side directional derivative 𝜃


(𝑥; ]) exists and

𝜃

(𝑥; ]) = 𝜃

∘
(𝑥; ]).

Lemma 3 (see [18]). Let 𝑓 and 𝑔 be Lipschitz near 𝑥, and
suppose 𝑔(𝑥) ̸= 0. Then 𝑓(𝑥)/𝑔(𝑥) is Lipschitz near 𝑥 and one
has

𝜕
∘
(

𝑓

𝑔
) (𝑥) ⊂

𝑔 (𝑥) 𝜕
∘
𝑓 (𝑥) − 𝑓 (𝑥) 𝜕

∘
𝑔 (𝑥)

𝑔2 (𝑥)
,

𝑝𝑟𝑜V𝑖𝑑𝑒𝑑 𝑓 (𝑥) ≧ 0, 𝑔 (𝑥) > 0.

(6)

If 𝑓 and −𝑔 are regular at 𝑥, then equality holds to the above
⊂, that is, the subdifferential is singleton and 𝑓/𝑔 is regular at
𝑥.

Let ℎ : 𝑋 → R𝑚 be a local Lipschitz function. For 𝑥
0

∈

𝑋, we define

𝐽 (𝑥
0
) = {𝑗 ∈ 𝐽 : ℎ

𝑗
(𝑥
0
) = 0} , 𝐽 = {1, 2, . . . , 𝑚} ,

Λ = {] ∈ 𝑋 : ℎ
∘

𝑗
(𝑥
0
, ]) < 0, 𝑗 ∈ 𝐽 (𝑥

0
)} .

(7)

If Λ ̸= 0, we say that the problem (𝑃) has constraint qualifica-
tion at 𝑥

0
(cf. [19]).

On the basis of the definition for invex functions of
Lipschitz functions in Reiland [17], we modified Antczak’s
generalized𝐵-(𝑝, 𝑟)-invexwith respect to 𝜂 and 𝑏 for differen-
tiable to nondifferentiable case for a class of locally Lipschitz
exponential 𝐵-(𝑝, 𝑟)-invex functions as follows.

Definition 4. Let 𝑝, 𝑟 be arbitrary real numbers. A locally
Lipschitz function 𝜃 : 𝑋 ⊆ R𝑛 → R is said to be exponential
𝐵-(𝑝, 𝑟)-invex (strictly) at 𝑢 ∈ 𝑋 with respect to w.r.t. (for
brevity) if there exists a function 𝜂 : 𝑋 × 𝑋 → R𝑛 with
property 𝜂(𝑥, 𝑢) = 0 only if 𝑢 = 𝑥 in 𝑋 and a function
𝑏 : 𝑋 × 𝑋 → R

+
\ {0} such that for each 𝑥 ∈ 𝑋, the following

inequality holds for 𝜉 ∈ 𝜕
∘
𝑓(𝑢):

1

𝑟
𝑏 (𝑥, 𝑢) (𝑒

𝑟(𝜃(𝑥)−𝜃(𝑢))
− 1)

≥
1

𝑝
⟨𝜉, (𝑒

𝑝𝜂(𝑥,𝑢)
− 1)⟩ (> if 𝑥 ̸= 𝑢) , for 𝑝 ̸= 0, 𝑟 ̸= 0.

(8)

If 𝑝 or 𝑟 is zero, then (8) can give some modification by using
the limit of 𝑝 → 0 or 𝑟 → 0.

(i) If 𝑟 ̸= 0, 𝑝 → 0 in (8), then we deduce that

1

𝑟
𝑏 (𝑥, 𝑢) (𝑒

𝑟(𝜃(𝑥)−𝜃(𝑢))
− 1)

≥ ⟨𝜉, 𝜂 (𝑥, 𝑢)⟩ (> if 𝑥 ̸= 𝑢) , for 𝑝 = 0, 𝑟 ̸= 0.

(9)

(ii) If 𝑝 ̸= 0, 𝑟 → 0, then (8) becomes

𝑏 (𝑥, 𝑢) (𝜃 (𝑥) − 𝜃 (𝑢))

≥
1

𝑝
⟨𝜉, (𝑒

𝑝𝜂(𝑥,𝑢)
− 1)⟩ (> if 𝑥 ̸= 𝑢) for 𝑝 ̸= 0, 𝑟 = 0.

(10)
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(iii) If 𝑟 = 0, 𝑝 → 0, then (10)

𝑏 (𝑥, 𝑢) (𝑓 (𝑥) − 𝑓 (𝑢))

≥ ⟨𝜉, 𝜂 (𝑥, 𝑢)⟩ (> if 𝑥 ̸= 𝑢) for 𝑝 = 0, 𝑟 = 0

(11)

holds.

Remark 5. All theorems in our work will be described only in
the case of 𝑝 ̸= 0 and 𝑟 ̸= 0. We omit the proof of other cases
like in (i), (ii), and (iii).

A feasible solution𝑥 to (𝑃) is said to be an efficient solution
to (𝑃) if there is no 𝑥 ∈ F such that 𝜙(𝑥) ≤ 𝜙(𝑥).

3. Optimality Conditions

In this section, we establish some sufficient optimality con-
ditions. The necessary optimality conditions to the primal
problem (𝑃) given by [20] and the subproblems (𝑆𝑃

𝑖
) of (𝑃),

for 𝑖 ∈ {1, 2, . . . , 𝑘}, given by [8] are used in our theorem.

Lemma 6 (see [8]). 𝑥 is an optimal solution to problem (𝑃)

if and only if 𝑥 solves (𝑆𝑃
𝑖
), where (𝑆𝑃

𝑖
) is as the following

problem:

(𝑆𝑃
𝑖
) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑀
𝑖

= {𝑥 ∈ 𝑋 :

𝑓
𝑝

(𝑥)

𝑔
𝑝

(𝑥)
≦

𝑓
𝑝

(𝑥)

𝑔
𝑝

(𝑥)

= 𝜙
𝑝

(𝑥) , 𝑝 ̸= 𝑖, 𝑝 =1, 2, . . . , 𝑘,

ℎ (𝑥) ∈ −R
𝑚

+
}

= {𝑥 ∈ 𝑋 : 𝑓
𝑝

(𝑥) − 𝜙
𝑝

(𝑥) 𝑔
𝑝

(𝑥)

≦ 0, 𝑝 ̸= 𝑖, 𝑝 = 1, 2, . . . , 𝑘,

ℎ (𝑥) ∈ −R
𝑚

+
} .

(12)

Theorem 7 (see [20], necessary optimality conditions).
If 𝑥 is an optimal solution of (𝑃) and has a constraint quali-
fication, for (𝑆𝑃

𝑖
), 𝑖 = 1, 2, . . . , 𝑘, then, there exist 𝛼

∗
∈ R𝑘 and

𝑧
∗

∈ R𝑚 such that

0 ∈

𝑘

∑

𝑖=1

𝛼
∗

𝑖
𝜕
∘
𝑓
𝑖
(𝑥) + 𝜙

𝑖
(𝑥) 𝜕
∘
(−𝑔
𝑖
) (𝑥) + ⟨𝑧

∗
, 𝜕
∘
ℎ (𝑥)⟩

𝑚
,

(13)

𝑧
∗

𝑗
ℎ
𝑗
(𝑥) = 0 ∀𝑗 = 1, 2, . . . , 𝑚, (14)

𝑓
𝑖
(𝑥) − 𝜙

𝑖
(𝑥) 𝑔
𝑖
(𝑥) = 0, ∀𝑖 = 1, 2, . . . , 𝑘, (15)

𝛼
∗

∈ I
𝑘

+
\ {0} , 𝑧

∗
∈ R
𝑚

+
, (16)

where

I
𝑘

+
= {𝛼
∗

∈ R
𝑘

+
| 𝛼
∗

= (𝛼
∗

1
, 𝛼
∗

2
, . . . , 𝛼

∗

𝑘
) ,

𝑘

∑

𝑖=1

𝛼
∗

𝑖
= 1} ,

⟨𝑧
∗
, 𝜕
∘
ℎ (𝑥)⟩

𝑚
≡

𝑚

∑

𝑗=1

𝑧
∗

𝑗
𝜕
∘
ℎ
𝑗
(𝑥) .

(17)

For convenience, let

⟨𝑧
∗
, ℎ (𝑥)⟩

𝑚
≡

𝑚

∑

𝑗=1

𝑧
∗

𝑗
ℎ
𝑗
(𝑥) ,

⟨𝑧
∗
, 𝜌⟩
𝑚

≡

𝑚

∑

𝑗=1

𝑧
∗

𝑗
𝜌
𝑗
,

(18)

where 𝑧
∗

∈ R𝑚
+

𝜌
𝑗

∈ 𝜕
∘
ℎ
𝑗
(𝑥).

Now, we give a useful lemma whose simple proof is
omitted in this paper.

Lemma8. If (1/𝑟)(𝑒
𝑟𝜃(𝑥)

−1) ≥ 0, where 𝜃(𝑥) is a real function,
then 𝜃(𝑥) ≥ 0.

The sufficient optimality conditions can be deduced
from the converse of necessary optimality conditions with
extra assumptions. Since the sufficient optimality theorem is
various depending on extra assumptions, the dualitymodel is
also various.We establish the sufficient optimality conditions
and duality theorems involving the exponential 𝐵-(𝑝, 𝑟)-
invexity.

Theorem 9. Let 𝑥 ∈ F be a feasible solution of (𝑃) such
that there exist 𝑦

∗, 𝑧
∗ satisfying the conditions (13)∼(16) at 𝑥.

Furthermore, suppose that any one of the conditions (𝑎) and
(𝑏) hold:

(a) 𝐴
1
(𝑥) = ∑

𝑘

𝑖=1
𝛼
∗

𝑖
[𝑓
𝑖
(𝑥) − 𝜙

𝑖
(𝑥)𝑔
𝑖
(𝑥)] + ⟨𝑧

∗
, ℎ(𝑥)⟩

𝑚
is

an exponential 𝐵-(𝑝, 𝑟)-invex function at 𝑥 in F w.r.t.
𝜂 and 𝑏

1
,

(b) 𝐴
2
(𝑥) = ∑

𝑘

𝑖=1
𝛼
∗

𝑖
[𝑓
𝑖
(𝑥) − 𝜙

𝑖
(𝑥)𝑔
𝑖
(𝑥)] is an exponential

𝐵-(𝑝, 𝑟)-invex function at 𝑥 in F w.r.t. 𝜂 and 𝑏
2
, and

𝐴
3
(𝑥) = ⟨𝑧

∗
, ℎ(𝑥)⟩

𝑚
is an exponential 𝐵-(𝑝, 𝑟)-invex

function at 𝑥 inF w.r.t. the same function 𝜂 and 𝑏
3
but

not necessarily, equal to 𝑏
2
.

Then, 𝑥 is an efficient solution to problem (𝑃).

Proof. Suppose that 𝑥 is (𝑃)-feasible. By expression (13), there
exist 𝜉

𝑖
∈ 𝜕
∘
𝑓
𝑖
(𝑥), 𝜁
𝑖

∈ 𝜕
∘
(−𝑔
𝑖
)(𝑥), 𝑖 = 1, 2, . . . , 𝑘 and 𝜌

𝑗
∈

𝜕
∘
ℎ
𝑗
(𝑥), 𝑗 = 1, 2, . . . , 𝑚 such that

⟨ã
1
⟩ ≡

𝑘

∑

𝑖=1

𝛼
∗

𝑖
(𝜉
𝑖
+ 𝜙
𝑖
(𝑥) 𝜁
𝑖
) + ⟨𝑧

∗
, 𝜌⟩
𝑚

= 0 in 𝑋
∗ (19)

and that ⟨ã
1
⟩ is a zero vector of 𝑋

∗.
From the above expression, the dual pair of ⟨𝑋

∗
, 𝑋⟩

⟨⟨ã
1
⟩ , (𝑒
𝑝𝜂(𝑥,𝑥)

− 1)⟩ = 0. (20)
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If 𝑥 is not an efficient solution to problem (𝑃), then there
exists 𝑥 ∈ (𝑃)-feasible such that

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

≦
𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

for 𝑖 = 1, 2, . . . , 𝑘,

𝑓
𝑡
(𝑥)

𝑔
𝑡
(𝑥)

<
𝑓
𝑡
(𝑥)

𝑔
𝑡
(𝑥)

for some 𝑡 ∈ 𝑘 = {1, 2, . . . , 𝑘} ;

(21)

that is,

𝑓
𝑖
(𝑥) − 𝜙

𝑖
(𝑥) 𝑔
𝑖
(𝑥)

≦ 𝑓
𝑖
(𝑥) − 𝜙

𝑖
(𝑥) 𝑔
𝑖
(𝑥) for 𝑖 = 1, 2, . . . , 𝑘,

𝑓
𝑡
(𝑥) − 𝜙

𝑡
(𝑥) 𝑔
𝑡
(𝑥)

< 𝑓
𝑡
(𝑥) − 𝜙

𝑡
(𝑥) 𝑔
𝑡
(𝑥) for some 𝑡 ∈ 𝑘.

(22)

Thus, we have

𝐴
2

(𝑥) =

𝑘

∑

𝑖=1

𝛼
∗

𝑖
[𝑓
𝑖
(𝑥) − 𝜙

𝑖
(𝑥) 𝑔
𝑖
(𝑥)]

<

𝑘

∑

𝑖=1

𝛼
∗

𝑖
[𝑓
𝑖
(𝑥) − 𝜙

𝑖
(𝑥) 𝑔
𝑖
(𝑥)] = 𝐴

2
(𝑥) .

(23)

From relations ℎ(𝑥) ∈ −R𝑚
+
, (14), and (16), we obtain

𝐴
3

(𝑥) = ⟨𝑧
∗
, ℎ (𝑥)⟩

𝑚
≦ ⟨𝑧
∗
, ℎ (𝑥)⟩

𝑚
= 𝐴
3

(𝑥) , (24)

where ⟨𝑧
∗
, ℎ(𝑥)⟩

𝑚
≡ ∑
𝑚

𝑗=1
𝑧
∗

𝑗
ℎ(𝑥).

If hypothesis (a) holds, 𝐴
1
(𝑥) is an exponential 𝐵-(𝑝, 𝑟)-

invexity w.r.t. 𝜂 and 𝑏
1
at 𝑥 for all 𝑥 ∈ F.Then byDefinition 4,

we have that the following inequality

1

𝑟
𝑏
1

(𝑥, 𝑥) (𝑒
𝑟(𝐴
1
(𝑥)−𝐴

1
(𝑥))

− 1)

≧
1

𝑝
⟨⟨ã
1
⟩ , (𝑒
𝑝𝜂(𝑥,𝑥)

− 1)⟩

(25)

holds. Because of equality (20) and inequality (25), we obtain

1

𝑟
𝑏
1

(𝑥, 𝑥) (𝑒
𝑟(𝐴
1
(𝑥)−𝐴

1
(𝑥))

− 1) ≧ 0. (26)

According to Lemma 8 and 𝑏
1
(𝑥, 𝑥) ∈ R

+
\ {0}, we have

𝐴
1

(𝑥) ≧ 𝐴
1

(𝑥) . (27)

Equation (23) along with (24) yields

𝐴
1

(𝑥) =

𝑘

∑

𝑖=1

𝛼
∗

𝑖
[𝑓
𝑖
(𝑥) − 𝜙

𝑖
(𝑥) 𝑔
𝑖
(𝑥)] + ⟨𝑧

∗
, ℎ (𝑥)⟩

𝑚

<

𝑘

∑

𝑖=1

𝛼
∗

𝑖
[𝑓
𝑖
(𝑥) − 𝜙

𝑖
(𝑥) 𝑔
𝑖
(𝑥)] + ⟨𝑧

∗
, ℎ (𝑥)⟩

𝑚

= 𝐴
1

(𝑥)

(28)

which contradicts inequality (27).

If hypothesis (b) holds, 𝐴
3
(𝑥) is an exponential 𝐵-(𝑝, 𝑟)-

invex function w.r.t. 𝜂 and 𝑏
3
at 𝑥 for all 𝑥, that is, (𝑃)-feasible.

Then by Definition 4, we have the following inequality:

1

𝑟
𝑏
3

(𝑥, 𝑥) (𝑒
𝑟(𝐴
3
(𝑥)−𝐴

3
(𝑥))

− 1)

≧
1

𝑝
⟨⟨𝑧
∗
, 𝜌⟩
𝑚

, (𝑒
𝑝𝜂(𝑥,𝑥)

− 1)⟩ .

(29)

From inequalities (24) and (29), we have

1

𝑝
⟨⟨𝑧
∗
, 𝜌⟩
𝑚

, (𝑒
𝑝𝜂(𝑥,𝑥)

− 1)⟩ ≤ 0. (30)

By inequality (30) and multiplying (20) by 1/𝑝, it yields that

1

𝑝
⟨

𝑘

∑

𝑖=1

𝛼
∗

𝑖
(𝜉
𝑖
+ 𝜙
𝑖
(𝑥) 𝜁
𝑖
) , (𝑒
𝑝𝜂(𝑥,𝑥)

− 1)⟩ ≥ 0. (31)

Since 𝐴
2
(𝑥) is an exponential 𝐵-(𝑝, 𝑟)-invex function

w.r.t. 𝜂 and 𝑏
2
at 𝑥 for all 𝑥, that is, (𝑃)-feasible then by

Definition 4, we have
1

𝑟
𝑏
2

(𝑥, 𝑥) (𝑒
𝑟(𝐴
2
(𝑥)−𝐴

2
(𝑥))

− 1)

≧
1

𝑝
⟨

𝑘

∑

𝑖=1

𝛼
∗

𝑖
(𝜉
𝑖
+ 𝜙
𝑖
(𝑥) 𝜁
𝑖
) , (𝑒
𝑝𝜂(𝑥,𝑥)

− 1)⟩ .

(32)

From inequalities (31) and (32), we obtain

1

𝑟
𝑏
2

(𝑥, 𝑥) (𝑒
𝑟(𝐴
2
(𝑥)−𝐴

2
(𝑥))

− 1) ≧ 0. (33)

By Lemma 8 and 𝑏
2
(𝑥, 𝑥) ∈ R

+
\ {0}, we get

𝐴
2

(𝑥) ≧ 𝐴
2

(𝑥) . (34)

If 𝑥 is not an efficient solution to problem (𝑃), then we
reduce inequality (23) in the same way. But inequality (34)
contradicts inequality (23). Hence, the proof is complete.

4. Mond-Weir Type Duality Model

In order to propose Mond-Weir type duality model, it is
convenient to restate the necessary conditions in Theorem 7
as the following form.Mainly, we use the expressions (13) and
(15) to get

0 ∈

𝑘

∑

𝑖=1

𝛼
∗

𝑖
[𝜕
∘
𝑓
𝑖
(𝑥) +

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

𝜕
∘
(−𝑔
𝑖
) (𝑥)] + ⟨𝑧

∗
, 𝜕
∘
ℎ (𝑥)⟩

𝑚
.

(35)

Then putting 𝛼
∗

= 𝛼
∗
𝑔(𝑥) ∈ I𝑘

+
in the above expression, we

obtain

0 ∈

𝑘

∑

𝑖=1

𝛼
∗

𝑖
𝑔
𝑖
(𝑥) [𝜕

∘
𝑓
𝑖
(𝑥) + ⟨𝑧

∗
, 𝜕
∘
ℎ (𝑥)⟩

𝑚
]

+

𝑘

∑

𝑖=1

𝛼
∗

𝑖
𝑓
𝑖
(𝑥) 𝜕
∘
(−𝑔
𝑖
) (𝑥) .

(36)
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Consequently, from inequality (14), it yields that

0 ∈

𝑘

∑

𝑖=1

𝛼
∗

𝑖
𝑔
𝑖
(𝑥) [𝜕

∘
𝑓
𝑖
(𝑥) + ⟨𝑧

∗
, 𝜕
∘
ℎ (𝑥)⟩

𝑚
]

+

𝑘

∑

𝑖=1

𝛼
∗

𝑖
[𝑓
𝑖
(𝑥) + ⟨𝑧

∗
, ℎ (𝑥)⟩

𝑚
] 𝜕
∘
(−𝑔
𝑖
) (𝑥) ,

(37)

where ⟨𝑧
∗
, ℎ(𝑥)⟩

𝑚
≡ ∑
𝑚

𝑗=1
𝑧
∗

𝑗
ℎ
𝑗
(𝑥). For simplicity, we write

𝛼
∗

𝑖
still by 𝛼

∗

𝑖
. Then the result ofTheorem 7 can be restated as

the following theorem.

Theorem 10 (necessary optimality conditions). If 𝑥 is an
efficient solution to (𝑃) and satisfyies constraint qualification
in (𝑆𝑃

𝑖
), 𝑖 = 1, 2, . . . , 𝑘, then, there exist 𝛼

∗
∈ R𝑘, 𝑧

∗
∈ R𝑚

such that

0 ∈

𝑘

∑

𝑖=1

𝛼
∗

𝑖
𝑔
𝑖
(𝑥) [𝜕

∘
𝑓
𝑖
(𝑥) + ⟨𝑧

∗
, 𝜕
∘
ℎ (𝑥)⟩

𝑚
]

+

𝑘

∑

𝑖=1

𝛼
∗

𝑖
[𝑓
𝑖
(𝑥) + ⟨𝑧

∗
, ℎ (𝑥)⟩

𝑚
] 𝜕
∘
(−𝑔
𝑖
) (𝑥) ,

(38)

𝑧
∗

𝑗
ℎ
𝑗
(𝑥) = 0 ∀𝑗 = 1, 2, . . . , 𝑚, (39)

𝛼
∗

∈ I
𝑘

+
, 𝑧

∗
∈ R
𝑚

+
. (40)

For any 𝑢 ∈ F, if we use (𝛼, 𝑧) ∈ R𝑘 × R𝑚 instead of
(𝛼
∗
, 𝑧
∗
) ∈ R𝑘 × R𝑚 satisfying the necessary conditions (38)∼

(40) as the constraints of a new dual problem, namely,Mond-
Weir type dual (𝐷), then it constitutes by a maximization
programming problem with the same objective function
as the problem (𝑃), and we use the necessary optimality
conditions of (𝑃) as the constraint of the new problem (𝐷).
Precisely, we can state this dual problem as the maximization
problem as the following form:

(𝐷) Maximize Φ (𝑢) ≡ (
𝑓
1

(𝑢)

𝑔
1

(𝑢)
,

𝑓
2

(𝑢)

𝑔
2

(𝑢)
, . . . ,

𝑓
𝑘

(𝑢)

𝑔
𝑘

(𝑢)
)

≡ (Φ
1

(𝑢) , Φ
2

(𝑢) , . . . , Φ
𝑘

(𝑢)) ,

(41)

subject to the resultant of necessary condition inTheorem 10:

0 ∈

𝑘

∑

𝑖=1

𝛼
𝑖
𝑔
𝑖
(𝑢) [𝜕

∘
𝑓
𝑖
(𝑢) + ⟨𝑧, 𝜕

∘
ℎ (𝑢)⟩

𝑚
]

+

𝑘

∑

𝑖=1

𝛼
𝑖
𝜕
∘
(−𝑔
𝑖
) (𝑢) [𝑓

𝑖
(𝑢) + ⟨𝑧, ℎ (𝑢)⟩𝑚] ,

(42)

⟨𝑧, ℎ (𝑢)⟩
𝑚

≡

𝑚

∑

𝑗=1

𝑧
𝑗
ℎ
𝑗
(𝑢) = 0, (43)

𝑢 ∈ 𝑋, 𝛼 ∈ I
𝑘

+
, 𝑧 ∈ R

𝑚

+
. (44)

LetD be the constraint set {𝑢; 𝛼, 𝑧} of (𝐷) satisfying (42)∼
(44) which are the necessary optimality conditions of (𝑃). For
convenience, we denote the projective-like set by:

𝑝𝑟FD = {𝑢 ∈ F | (𝑢; 𝛼, 𝑧) ∈ D} . (45)

Then we can derive the following weak duality theorem
between (𝑃) and (𝐷).

Theorem 11 (weak duality). Let 𝑥 and (𝑢; 𝛼, 𝑧) be (𝑃)-feasible
and (𝐷)-feasible, respectively. Denote a function 𝐴

4
: 𝑋 → R

by

𝐴
4

(⋅) =

𝑘

∑

𝑖=1

𝛼
𝑖
𝑔
𝑖
(𝑢) [𝑓

𝑖
(⋅) + ⟨𝑧, ℎ (⋅)⟩𝑚]

−

𝑘

∑

𝑖=1

𝛼
𝑖
𝑔
𝑖
(⋅) [𝑓
𝑖
(𝑢) + ⟨𝑧, ℎ (𝑢)⟩

𝑚
] ,

(46)

with 𝐴
4
(𝑢) = 0. Suppose that 𝐴

4
(⋅) is an exponential 𝐵-(𝑝, 𝑟)-

invex function at 𝑢 ∈ 𝑝𝑟FD w.r.t. 𝜂 and 𝑏
4
.

Then 𝜙(𝑥) ≰ Φ(𝑢).

Proof. Let 𝑥 and (𝑢; 𝛼, 𝑧) be (𝑃)- and (𝐷)-feasible, respec-
tively. From expression (38), there exist 𝜉

𝑖
∈ 𝜕
∘
𝑓
𝑖
(𝑢), 𝜁
𝑖

∈

𝜕
∘
(−𝑔
𝑖
)(𝑢), 𝑖 = 1, 2, . . . , 𝑘 and 𝜌

𝑗
∈ 𝜕
∘
ℎ
𝑗
(𝑢), 𝑗 = 1, 2, . . . , 𝑚

to satisfy

⟨ã
4
⟩ ≡

𝑘

∑

𝑖=1

𝛼
𝑖
𝑔
𝑖
(𝑢) [𝜉
𝑖
+ ⟨𝑧, 𝜌⟩

𝑚
]

+

𝑘

∑

𝑖=1

𝛼
𝑖
[𝑓
𝑖
(𝑢) + ⟨𝑧, ℎ (𝑢)⟩𝑚] 𝜁

𝑖
= 0 ∈ 𝑋

∗
,

(47)

where 𝜌 = (𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑚
).

Then, the dual pair of ⟨𝑋
∗
, 𝑋⟩ yields

⟨⟨ã
4
⟩ , (𝑒
𝑝𝜂(𝑥,𝑢)

− 1)⟩ = 0. (48)

Since𝐴
4
is an exponential𝐵-(𝑝, 𝑟)-invex functionw.r.t. 𝜂 and

𝑏
4
at 𝑢 ∈ 𝑝𝑟FD, we have the following inequality:

1

𝑟
𝑏
4

(𝑥, 𝑢) (𝑒
𝑟(𝐴
4
(𝑥)−𝐴

4
(𝑢))

− 1)

≥
1

𝑝
⟨⟨ã
4
⟩ , (𝑒
𝑝𝜂(𝑥,𝑢)

− 1)⟩ = 0.

(49)

By the above inequality and equality (48), we obtain

1

𝑟
𝑏
4

(𝑥, 𝑢) (𝑒
𝑟(𝐴
4
(𝑥)−𝐴

4
(𝑢))

− 1) ≥ 0. (50)

According to Lemma 8 and 𝑏
4

∈ R \ {0}, we have

𝐴
4

(𝑥) ≥ 𝐴
4

(𝑢) = 0. (51)

We want to prove that 𝜙(𝑥) ≰ Φ(𝑢).
Suppose on the contrary that 𝜙(𝑥) ≤ Φ(𝑢). Then

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

≤
𝑓
𝑖
(𝑢)

𝑔
𝑖
(𝑢)

∀𝑖 = 1, 2, . . . , 𝑘, (52)
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and there is some index 𝑡 ∈ 𝑘 such that

𝑓
𝑡
(𝑥)

𝑔
𝑡
(𝑥)

<
𝑓
𝑡
(𝑢)

𝑔
𝑡
(𝑢)

. (53)

Then by 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑘
) ∈ I𝑘
+
, we have

𝑘

∑

𝑖=1

𝛼
𝑖
𝑓
𝑖
(𝑥) 𝑔
𝑖
(𝑢) <

𝑘

∑

𝑖=1

𝛼
𝑖
𝑔
𝑖
(𝑥) 𝑓
𝑖
(𝑢) . (54)

Since ℎ(𝑥) ∈ −R𝑚
+
, it follows from (43), (44), and (54) that

𝑘

∑

𝑖=1

𝛼
𝑖
𝑔
𝑖
(𝑢) [𝑓

𝑖
(𝑥) + ⟨𝑧, ℎ (𝑥)⟩𝑚]

<

𝑘

∑

𝑖=1

𝛼
𝑖
𝑔
𝑖
(𝑥) [𝑓

𝑖
(𝑢) + ⟨𝑧, ℎ (𝑢)⟩

𝑚
] .

(55)

This implies that

𝐴
4

(𝑥) =

𝑘

∑

𝑖=1

𝛼
𝑖
𝑔
𝑖
(𝑢) [𝑓

𝑖
(𝑥) + ⟨𝑧, ℎ (𝑥)⟩𝑚]

−

𝑘

∑

𝑖=1

𝛼
𝑖
𝑔
𝑖
(𝑥) [𝑓

𝑖
(𝑢) + ⟨𝑧, ℎ (𝑢)⟩𝑚] < 0,

(56)

which contradicts inequality (51), and the proof of theorem is
complete.

Theorem 12 (strong duality). Let 𝑥 be the efficient solution of
problem (𝑃) satisfying the constraint qualification at 𝑥 in (𝑆𝑃

𝑖
),

𝑖 = 1, 2, . . . , 𝑘.Then there exist 𝛼
∗

∈ R𝑘 and 𝑧
∗

∈ R𝑚 such that
(𝑥; 𝛼
∗
, 𝑧
∗
) ∈ (𝐷)-feasible. If the hypotheses of Theorem 11 are

fulfilled, then (𝑥; 𝛼
∗
, 𝑧
∗
) is an efficient solution to problem (𝐷).

Furthermore, the efficient values of (𝑃) and (𝐷) are equal.

Proof. Let 𝑥 be an efficient solution to problem (𝑃). Then
there exist 𝛼

∗, 𝑧∗ such that (𝑥; 𝛼
∗
, 𝑧
∗
) satisfies (42)∼(44) that

is, (𝑥; 𝛼
∗
, 𝑧
∗
) ∈ D is a feasible solution for the problem (𝐷).

Actually, (𝑥; 𝛼
∗
, 𝑧
∗
) is also an efficient solution of (𝐷).

Suppose on the contrary that if (𝑥; 𝛼
∗
, 𝑧
∗
) were not an

efficient solution to (𝐷), then there exists a feasible solution
(𝑥; 𝛼, 𝑧) of (𝐷) such that

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

≦
𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

∀𝑖 = 1, 2, . . . , 𝑘, (57)

and there is a 𝑡 ∈ 𝑘,

𝑓
𝑡
(𝑥)

𝑔
𝑡
(𝑥)

<
𝑓
𝑡
(𝑥)

𝑔
𝑡
(𝑥)

. (58)

It follows that 𝜙(𝑥) ≤ Φ(𝑥) which contradicts the weak
duality Theorem 11. Hence, (𝑥; 𝛼

∗
, 𝑧
∗
) is an efficient solution

of (𝐷) and the efficient values of (𝑃) and (𝐷) are clearly equal.

Theorem 13 (strict converse duality). Let 𝑥 and (𝑢
∗
; 𝛼
∗
, 𝑧
∗
)

be the efficient solutions of (𝑃) and (𝐷), respectively. Denote a
function 𝐴

5
: 𝑋 → R by

𝐴
5

(⋅) =

𝑘

∑

𝑖=1

𝛼
∗

𝑖
𝑔
𝑖
(𝑢
∗
) [𝑓
𝑖
(⋅) + ⟨𝑧

∗
, ℎ (⋅)⟩

𝑚
]

−

𝑘

∑

𝑖=1

𝛼
∗

𝑖
𝑔
𝑖
(⋅) [𝑓
𝑖
(𝑢
∗
) + ⟨𝑧

∗
, ℎ (𝑢
∗
)⟩
𝑚

] ,

(59)

with 𝐴
5
(𝑢
∗
) = 0. If 𝐴

5
(⋅) is a strictly exponential 𝐵-(𝑝, 𝑟)-

invex function at 𝑢
∗

∈ 𝑝𝑟FD w.r.t. 𝜂 and 𝑏
5
for all optimal

vectors 𝑥 in (𝑃) and (𝑢
∗
; 𝛼
∗
, 𝑧
∗
) in (𝐷), respectively, then 𝑥 =

𝑢
∗ and the efficient values of (𝑃) and (𝐷) are equal.

Proof. Suppose that 𝑥 ̸= 𝑢
∗. From expression (42), there exist

𝜉
𝑖

∈ 𝜕
∘
𝑓
𝑖
(𝑢
∗
), 𝜁
𝑖

∈ 𝜕
∘
(−𝑔
𝑖
)(𝑢
∗
), 𝑖 = 1, 2, . . . , 𝑘 and 𝜌

𝑗
∈

𝜕
∘
ℎ
𝑗
(𝑢
∗
), 𝑗 = 1, 2, . . . , 𝑚 such that

⟨ã
5
⟩ ≡

𝑘

∑

𝑖=1

𝛼
∗

𝑖
𝑔
𝑖
(𝑢
∗
) [𝜉
𝑖
+ ⟨𝑧
∗
, 𝜌⟩
𝑚

]

+

𝑘

∑

𝑖=1

𝛼
∗

𝑖
[𝑓
𝑖
(𝑢
∗
) + ⟨𝑧

∗
, ℎ (𝑢
∗
)⟩
𝑚

] 𝜁
𝑖
= 0 ∈ 𝑋

∗
,

(60)

where 𝜌 = (𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑚
).

It follows that the dual pair in ⟨𝑋
∗
, 𝑋⟩ becomes

1

𝑝
⟨⟨ã
5
⟩ , (𝑒
𝑝𝜂(𝑥,𝑢

∗
)
− 1)⟩ = 0. (61)

From Theorem 12, we see that there exist 𝛼 and 𝑧 such that
(𝑥; 𝛼, 𝑧) is the efficient solution of (𝐷) and

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

=
𝑓
𝑖
(𝑢
∗
)

𝑔
𝑖
(𝑢
∗
)

∀𝑖 = 1, 2, . . . , 𝑘. (62)

By inequality (43) and equality (62), it becomes

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

=
𝑓
𝑖
(𝑢
∗
) + ⟨𝑧

∗
, ℎ (𝑢
∗
)⟩
𝑚

𝑔
𝑖
(𝑢
∗
)

. (63)

Eliminating the dominators in (63), we get

𝑓
𝑖
(𝑥) 𝑔
𝑖
(𝑢
∗
) = [𝑓

𝑖
(𝑢
∗
) + ⟨𝑧

∗
, ℎ (𝑢
∗
)⟩
𝑚

] 𝑔
𝑖
(𝑥) (64)

or

𝑓
𝑖
(𝑥) 𝑔
𝑖
(𝑢
∗
) − [𝑓

𝑖
(𝑢
∗
) + ⟨𝑧

∗
, ℎ (𝑢
∗
)⟩
𝑚

] 𝑔
𝑖
(𝑥) = 0. (65)

According to the above equality and by the property (44),
𝐴
5
(𝑥) reduces to
𝑘

∑

𝑖=1

𝛼
∗

𝑖
𝑔
𝑖
(𝑢
∗
) [𝑓
𝑖
(𝑥) + ⟨𝑧

∗
, ℎ (𝑥)⟩

𝑚
]

−

𝑘

∑

𝑖=1

𝛼
∗

𝑖
𝑔
𝑖
(𝑥) [𝑓

𝑖
(𝑢
∗
) + ⟨𝑧

∗
, ℎ (𝑢
∗
)⟩
𝑚

]

= 𝐴
5

(𝑥) =

𝑘

∑

𝑖=1

𝛼
∗

𝑖
𝑔
𝑖
(𝑢
∗
) ⟨𝑧
∗
, ℎ (𝑥)⟩

𝑚
.

(66)
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From relations ℎ(𝑥) ∈ −R𝑚
+
, (44), (66), and 𝑔

𝑖
(𝑢
∗
) > 0, we

obtain

𝐴
5

(𝑥) ≦ 0 = 𝐴
5

(𝑢
∗
) . (67)

Hence, we reduce

1

𝑟
𝑏
5

(𝑥, 𝑢
∗
) (𝑒
𝑟(𝐴
5
(𝑥)−𝐴

5
(𝑢
∗
))

− 1) ≦ 0 for any 𝑟 ̸= 0. (68)

Since𝐴
5
is a strictly exponential𝐵-(𝑝, 𝑟)-invex functionw.r.t.

𝜂 and 𝑏
5
at 𝑢
∗

∈ 𝑝𝑟FD, we have

1

𝑟
𝑏
5

(𝑥, 𝑢
∗
) (𝑒
𝑟(𝐴
5
(𝑥)−𝐴

5
(𝑢
∗
)
− 1)

> ⟨⟨ã
5
⟩ , (𝑒
𝑝𝜂(𝑥,𝑢

∗
)
− 1)⟩ .

(69)

From (68) and (69), we obtain

1

𝑝
⟨⟨ã
5
⟩ , (𝑒
𝑝𝜂(𝑥
∗
,𝑢
∗
)
− 1)⟩ < 0. (70)

This contradicts equality (61). Hence, the proof of theorem is
complete.
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