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This paper deals with design algorithms for the split variational inequality and equilibrium problems. Strong convergence theorems

are demonstrated.

1. Introduction

Let H be a real Hilbert space. Let C and Q be two nonempty
closed convex subsets of H. Consider the following problem.

Problem 1. Find a point u® € C such that
¥(u') € Q. )

This problem is called split feasibility problem when
Y is a bounded linear operator. In this case, Problem 1
can be applied to many practical problems such as signal
processing and image reconstruction. Specifically, we can find
the prototype of Problem 1 in intensity-modulated radiation
therapy; see, for example, [1-3]. Based on this relation, many
mathematicians were devoted to study the split feasibility
problem and develop its iterative algorithms. Related works
can be found in [4-8] and the references therein.

Let A,¥ : C — H be two mappings. Consider the vari-
ational inequality of finding u" € C, ¥(u") € C such that

(A", ¥ () - ¥ (u")) 20, 2)

for all ¥(u) € C. We use VI(A,¥) to denote the set of
solutions of (2). Variational inequality problems have import-
ant applications in many fields such as elasticity, optimiza-
tion, economics, transportation, and structural analysis, and
various numerical methods have been studied by many
researchers; see, for instance, [9-17].

Leto: CxC — R be an equilibrium bifunction; that is,
o(u,u) = 0 foreach u € C. Consider the equilibrium problem
which is to find u* € C such that

o(u,v)>0, VveC. (3)

Denote the set of solutions of (3) by EP(g, C). The equi-
librium problems include fixed point problems, optimization
problems, and variational inequality problems as special
cases. Some algorithms have been proposed to solve the equi-
librium problems; see, for example, [18-22]. Thus it is an
interesting topic associated with algorithmic approach to
the variational inequality and equilibrium problems. In this
paper, our main purpose is to study the following split prob-
lem involved in the variational inequality and equilibrium
problems. Find a point x' such that

x' e VI(A,9),
(4)
¥ (x") € EP(o,C).

We are devoted to study (4) with operator ¥ being a
nonlinear mapping. For this purpose, we develop an iterative
algorithm for solving the split problem (4). We can compute
x! iteratively by using our algorithm. Convergence analysis is
given under some mild assumptions.

2. Basic Concepts

Let C be a nonempty closed convex subset of a real Hilbert
space H. An operator B : C — H is said to be

(i) monotone —» (u —v,Bu — Bv) > 0 forall u,v € C;



(i) strongly monotone —» (u — v, Bu — Bv) > (|lu - v*
for some constant { > 0 and for all u, v € C;

(iii) inverse-strongly monotone - (u — v,Bu — Bv) >
¢||Bu — By|)* for some ¢ > 0 and for all u,v € C; in
this case, B is called ¢-inverse strongly monotone;

(iv) ¢-inverse strongly 6-monotone — (0(u) — 0(v), Bu —
Bv) > ¢|Bu — Bv|? forallu, v € Cand for somec > 0,
where 0 : C — C is a mapping.

A mapping 9 : C — His said to be
(i) nonexpansive — [|[9u — 9v|| < |lu —v| for all u,v € C;
(ii) firmly nonexpansive — [[9u — WI* < (u—v,9u—9)
forall u,v € C;

(iii) L-Lipschitz continuous — [[9u — 9v|| < L|u — v|| for
some constant L > 0 and for all u,v € C. In such a
case, 9 is said to be L-Lipschitz continuous.

In the sequel, we use Fix(9) to denote the set of fixed points
of 9.

Let A : H — 2" be a multivalued mapping. The effective
domain of A is denoted by dom(A). A is said to be

(i) monotone —» (x—y,u—v) > 0forall x, y € dom(A),
ueAx,andv € Ay;

(ii) maximal monotone — A is monotone and its graph
is not strictly contained in the graph of any other
monotone operator on H.

Afunction f: H — Rissaid tobe convexifforanyu,v €
Hand forany 7 € [0, 1], f(ru+(1-1)v) < 7f () +(1-7) f(v).

Let proj. : C — H be the metric projection from H onto
C. It is known that proj. satisfies the following inequality:

(x — projox, y — projox) < 0. (5)

forall x € H and y € C. From this characteristic inequality,
we can deduce that proj.. is firmly nonexpansive.

3. Useful Lemmas

In this section, we present several lemmas which will be used
in the next section.

Lemma 2 (see [19]). Let C be a nonempty closed convex subset
of a real Hilbert space H. Let o : C x C — R be a bifunction.
Assume that g satisfies the following conditions:

(F1) o(u,u) =0 forallu € C;

($2) o is monotone, that is, o(u, v) + o(v, u) < 0 for all
u,v e C;

(B3) for each u,v,w € C, lim;go(tw + (1 = t)u,v) <
o(u, v);

(F4) foreachu € C, v — o(u,v) is convex and lower
semicontinuous.

Let @ > 0 and u € C. Then there exists w € C such that

1
Q(w,v)+5(v—w,w—u)20, Vv e C. (6)
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Set Fpo(u) = {w € C: o(w,v) + (1/@){v—w,w—u) >0 forall
v € C}. Then one have the following:
(i) o is single valued and f is firmly nonexpansive,

(ii) EP(p, C) is closed and convex and EP(p, C) = Fix(f,).
Lemma 3 (see [23]). Let C be a nonempty closed convex subset
of a real Hilbert space H. For x € H, let the mapping f, be the
same as in Lemma 2. Then for u,v > 0 and x € H, one has
p—v

U

(Fu () = Fy (%), F () = x) .
(7)

Lemma 4 (see [24]). Let {u,} and {v,} be two bounded
sequences in a Banach space E, and let {k,} be a sequence
in [0, 1] satisfying 0 < liminf,_ x, < limsup,_,  k, <
1. Suppose u,,, = (1 — x,)v, + k,u, foral n > 0
and limsup, _, . (Iv,+;

= vl = Nl — u,ll) < 0. Then,
limnﬂoo"”n - Vn" =0.

IFu ) = F, ) <

Lemma 55 (see [25]). Let C be a nonempty closed convex subset
of a real Hilbert space H. Let S : C — C be a nonexpansive
mapping with Fix(S) # 0. Then S is demiclosed on C.

Lemma 6 (see [26]). Let {a,} C [0, 00) be a sequence. Assume
that a,.;, < (1 - y,a, + 6,y,, where {y,} is a sequence in
(0,1), and {8,} is a sequence satisfying ¥ .°,y, = 0o and
limsup,,_, .8, < 0 (or X2, 18,y,| < 00). Then lim,,_, . a, =
0.

n— 00

4. Main Results

In this section, we firstly present our problem and algorithm
constructed. Consequently, we give the convergence analysis
of the presented algorithm.

Problem 7. Let C be a nonempty closed convex subset of a real
Hilbert space H. Assume that

() ¥ : C — C is a weakly continuous and {-strongly
monotone mapping such that R(¥) = C;

(2) A : C — H is an ¢-inverse strongly ¥-monotone
mapping;

(3) 0 : CxC — Risa bifunction satisfying conditions
(F1)-(F4) in Lemma 2.

Our objective is to
find x* € VI(A,¥) such that ¥ (xu) €EP(p,C). (8)

We use Y to denote the set of solutions of (8). In
the following, we assume that Y is nonempty. For solving
Problem 7, we introduce the following algorithm.

Algorithm 8.
Step 0 (initialization). Let

u, € C. 9)
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Step 1. For given {u,}, let the sequence {v,} be generated
iteratively by
Vp = prOjC (\P (un) - MnAMn) , nz0, (10)

where proj. is the metric projection and {y,,} is a real number
sequence.

Step 2. For given {v,}, find {z,} such that
VyeC,

(1)

where {®,} ¢ (0,00) and {«,} < [0, 1] are two real number
sequences.

Q(zn’y)+ (DL <)/—Zn,Zn—(1—OCn)Vn> >0,

n

Step 3. For the previous sequences {u,} and {z,}, let the (n +
1)th sequence {u,,,} be generated by

W (1) = 6, ¥ (,) + (1-%,)2,, 720,  (12)

where {x,} ¢ [0,1] is a real number sequence.

Theorem 9. Assume that the following conditions are satis-
fied:
(C1) lim,, _, o,
(C2) 0 < liminf, _, x, <limsup, , x, <1;

(C3) (Dn € (’71)’72) C (O)OO)> Mn € (EI’EZ) C (O,ZC),
and { € (0,2¢);

(C4) hmn—»oo(nl’lrﬁl - Mn) = 0 and limn—»oo((DrHI -
@,) = 0.

=0and ), a, = 00;

Then the sequence {u,} generated by Algorithm 8 converges
strongly to x* €Y.

Proof. Let X € Y. Hence X € VI(A,V¥) and ¥(x) € EP(p, C),
noting that X € VI(A, ¥) implies ¥(X) = proj(¥(x) — vAx)

for all » > 0. Hence ¥(%) = proj.(¥(X) — u,AX) for alln > 0.
Thus, from (10), we have

v, - ¥ @)’
= Iprojc (¥ (u,) - t,Au,,) = proje (¥ (%) - u, AZ)|’
< (¥ (w,) - puAw,) - (¥ (2) -, AZ)|*
= 1 () =¥ D - 2p, (A, = A% W (1,) = ¥ (%)
+ | Au, - AZ|’
< ¥ (w,) - ¥ @)
201, | A, = AZ|” + 47| A, - AX|*

< "\P (un) -¥ ("2)"2 + Uy (Mn - ZC) ||Aun - A"lez'
(13)

Condition (C3) and (13) imply that
b-v @ <) - ¥ @] 0

From Lemma 2 and (11), we get z, = £, (1 — «,)v, for all
n > 0. Since ¥(x) € EP(p, C), from Lemma 2 we deduce that
¥(x) = Fp, ¥ (%) for alln > 0. So,

|z, =¥ (2]

= “F(Dn (1 - ‘xn) Vi = Fa)n\{, (56)"

< “(1 - ‘Xn) Y~ \P(‘S&)"

(15)
<(1-a,) v, =¥ @] + e, ¥ &)
by (14)
<(1-a) ¥ () - ¥ @) +a, ¥ @)
It follows that
¥ (t441) = ¥ (0
<, ¥ (w,) =¥ RN + (1 - x,) |2, =¥ (D)
<, | (u,) = ¥ ()
+ (1 - Kn) (1 - (xn) “\P (un) - ‘P(}Z’)“
+(1-x,) o, [¥ ()
= [1 - (1 - Kn) (Xn] “\Ij (un) - \P("E)“
+ (1 - xn)ocn IV ()] -
(16)
By induction
W (u4,) = ¥ (%) < max {|¥ () =¥ @), IV (@)}
(17)

Hence, {¥(u,,)} is bounded. Since ¥ is {-strongly monotone,
we can get (flu, — %] < [[¥(y,) — Y. So, |u, — x| <
(L/OI¥(w,) = Y@ < (1/0) max{['¥(ug) — ¥, ¥}
This implies that {u,} is bounded. Next, we show [u, ., —
u,| — 0.Fromz, = r, (1 - a,)v,, we have

||Zn+1 - Zn"

= ”F&)Ml (1 - ‘Xn+1) Vut1 ~ Fa, (1 - “n) Vn"

< “F@M (1 - (xn+1) Va1 — l[:(Dn+1 (1 - (xn) Y
(18)

+ “F«D,ﬁl (1 - “n) Vi~ Fa, (1 - (xn) Vn”
< ||(1 - ‘Xn+1) Vie1 — (1 - ‘Xn) Vn"

+ “F@m (1 - (Xn) Yu~ Fa, (1 - “n) Vn” :



Using Lemma 3, we obtain

“F&),,H (1 - ‘Xn) Yu~ Fa, (1 - ‘xn) Vn”Z
< Opy1 —

@

@

n

1
% (Fo,., (1-a,) v,
~Fa, (1= &,) Vo Fo,,, (1 =0t v,
- (1-a,)v,)

|(Dn+1 - ‘Dn|
< Il nl
B )

Fo,,, (1 - an) Vu = Fo, (1 - ‘xn) Vn”

n+1

X"F@ (1—0(”)1/”—(1—06")1/” .

n+1

(19)
Then
“F‘Dnu (1 - (xn) Yn~ Fa, (1 - “n) Vn”

|(Dn+1 - (Dn|
< . Rl
B ()

Fa,. (1 N (Xﬂ) Y~ (1 - ‘xn) Vﬂ" ’
(20)

n+1

By condition (C3), we have @,, > 7, > 0. So,

||Zn+1 - Zn"
< ||(1 - ‘Xn+1) Vi+1 — (1 - “n) Vn"

+ Ia)n+1 - a)n|
(Dn+1

x “F(D,,“ (1 - ‘Xn) Vi = (1 - ‘xn) Vn” (21)
= (1 - ‘xn+1) ||Vn+1 - Vn“

o, ;—®
et = o+ 2=
M
x “F&),M (1 - (Xn) Y — (1 - “n) Vn” :
From (10), we have

1Vivs1 = vl
= |lproje (¥ (1) = o1 Athay)
—proje (¥ (u,) = ppAu,) |
<Y () = s Athyy
= (¥ (1) = s A + [thsr = ] | A (10,)]

< "\P (un+1) -¥ (un)" + |Mn+1 - .l’ln| ||A (un)" .
(22)
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Therefore,
lzns = zall < (1= 1) [ (1) =¥ (1)
+ |(Xn+1 - “n| ”Vn" + |Mn+1 - [’ln| ”A (un)"
1
+ a |a)n+1 - wn' ||FLD,,,H (1 - “n) Vn — (1 - (Xn) Vn" :
(23)
It follows that
lzns = zall = ¥ () = ¥ ()]
< |0‘n+1 - ‘xn| "Vn“ + |[’4n+1 - Aun| "A (un)”
1
+ a |a)n+1 - a)nl “F&),Hl (1 - an) Y — (1 - “n) Vn” :

(24)

n— oo 0, limn—voo(,l’ln+1 - Mn) = 0, and
lim,, _, (@, —®,) = 0 and the sequences {¥ ()}, {z,}, {v,.},
and {Au,,} are bounded, we deduce that

Since lim o, =

lim sup (|21 = 2, = ¥ () =¥ ()[) 0. (25)
Applying Lemma 4, we obtain
dim {1z, =¥ ()] = 0. (26)

Thus,

nll,néo "\Ij (un+l) -¥ (un)” = nh—{%o (1 - Kn) ”Zn -¥ (un)" = 0.
(27)

This together with the {-strong monotonicity of ¥ implies
that

lim ||u,,q — u,| = 0. (28)

n—00

From (13) and (16), we derive

19 () =¥ O
= Kn"\P (un) -¥ ("2)”2 + (1 - Kn) ”Zn -v (56)"2
<l () - Y @I+ (1-x,)

x[(1=a) v, =¥ @I + ¥ F)I]



Abstract and Applied Analysis

< (1-x,)
< [(1 = (¥ (11,) = puAus) -
o, 1 ()] + 1, ¥ () -
+(1-x,) (1 - a,)
x (¥ () =¥ @) + p, (1

+ ot ¥ ()]

(¥ (%) -, AR)|
¥ (%)’

<, |¥ (u

2) | Aw, - AZ|)

<[ (w,) - ¥ @)

+(1-x,)(1-

+ ot [ ()]

(Xn) Un (.Mn - ZC) ||Aun - A56”2

(29)
Hence,
(1=16,) (1= ) (26 = ) [ Mg, = AZ[
<9 () =¥ @I - ¥ (1) - ¥ @)
+ o, | W () (30)
< (I () =¥ @) + ¥ (00) =¥ O
X ¥ (t401) = ¥ ()] + I (RN

Since o, — 0, ¥ (u,,,;) —¥Y(u,)ll — 0,and liminf,
x,)(1 — o), (26 — u,,) > 0, we obtain

n—»oo(

nleréo ||Aun - Ai” =0. (31)

Set y, = ¥(u,) — u,Au, — (¥(X) — 4,AX) for all n. By using
the firm nonexpansivity of projection, we get

v, - ¥ @I

= Iprojc (¥ (u,) - t,Au,,)’

- proje (¥ (%) - u,A%)|”
< W Ve = ¥ (X))

1 . _
= Al + v =¥ G =y - v+ ¥ O}

< A{l¥ @) -y @I + v, - ¥ @
_"\I] (un) — Vi~ Un (Aun - A"E)”z}

= {I¥ ()

- ”\P (un) - Vn"2

l\)l>—‘

) =¥ @ + v, — ¥ @)

NI'—'

- iy | Au, - AZ]

+2u, (¥ (u,) - v,, Au,, — AX) } .
(32)

5
It follows that
v =¥ @I < 1 (w,) =¥ @I - ¥ (u,) -, )
+ 201, ¥ () = v, | A, — AZ] .
From (29) and (32), we have
1 (t4,01) - ¥ @)
< 6, |W (u,) - ¥ ®| + (1 -x,)
x [(1=a,) v, — ¥ @ + a,l¥ @I
<, ¥ (1) = ¥ O + (1= at,) (1-15,)
X (1) = ¥ @I = (1= 5,) |¥ () =
+(1-x,) ¥ @) +2u, (1-x,)
x| () = v, | Aw, - AZ]
<[ () - @I - (1) ¥ (1) = v
+ 20, ¥ () = v, [ A, = AZ] + a1, ¥ (O
(34)
Then, we obtain
(1= ) ¥ () = v,
< (¥ (,) =¥ @ + ¥ (1) - ¥ F)) 9
X | (t401) = ¥ (x,)

+ 24, ¥ (4,) = v, || | Auty, — AZ| + o, I ()11

Since lim,, _, . &, = 0, lim,, _, . [I¥(u,,,1)
lim |Awu, — Ax|| = 0, we deduce that

- ¥(u,)|l = 0, and

n— 00

Jim ¥ () = v, | = 0. (36)
Next, we prove limsup, _, . (¥(x*),v, — ¥(x*)) > 0, where
x* satisfies (GVI): (¥(x*),¥(x) — ¥(x*)) > 0, forallx € Y
(note that W is { -strongly monotone; we can easily deduce that
the solution of (GVI) is unique). We take a subsequence {v,, }
of {v,} such that

li’?lsolép (¥ (x"),v, - ¥ (x"))
= lim (¥ (x"),v, —¥(x")) (37)
—llingo<‘1’ ),‘{’(uni)—‘l’(x*».

By the boundedness of {u, }, we can choose a subsequence

{u } of {u, } such that U, >z weakly. For the convenience,

we may assume thatu, — z This implies that ¥ (u,, ) ¥Y(z)
due to the weak contmulty of ¥. Now, we show z € Y. We
firstly show ¥(z) € EP(p, C).



Note that @, € (#,,7,). Then we choose a subsequence
{@, } of {@,} such that lim; , ,,®@, = @ € (1;,7,). From (26)
and (36), we deduce that ||z, v, || = ||/:(D (I-a,)v,—v,l — 0.
Thus, ||zi v ,-" = ||Fw,,_(1 o ,)V, v 1|| — 0.From Lemma 2,
we know that £ is ﬂonexpansive. By demiclosed principle
(Lemma 5), we get immediately that W(z) € Fix(r,) =
EP(p, C).

Next we prove z € VI(A, V). Set

Ry = {AV+NC(V), v eC, (38)

0, v¢C.

By [27], we know that R is maximal ¥-monotone. Let (v, w) €
G(R). Since w — Av € Np(v) and u,, € C, we have (¥(v) —
W¥(u,), w - Av) > 0. Noting that v, = proj-(¥(u,,) — u,Au,,),
we get

(¥ W) = Vv, — (¥ (1) -, Arsy)) 0. (39)
It follows that

<\1f W) = v, %(”) + Aun> > 0. (40)
Then,

(P 0) - () )

> <\I’ v)y-V¥ (“n,-) , Av>

> (¥ (v)-¥(u,),Av)

. <\F(V)_an,w>
' Ha,

- <‘I’(v) = Vo Auni>
= <\1/ ) -
+ <\I’ v)-¥ (”n,-) , Auni>

— <\I’(V) v, V”i -¥ (u“i) >
' Ha,

- <\I’ v) - V> Auni>

v (uni) »Av — Au,, (1)

N <\P (u”i) N V”i’ Au"li> :

Since ”‘F(”n,-) Yy, | — 0and \P(”n,-) — ¥(z), we deduce that
(¥Y(v)-¥(z),w) > 0bytakingi — ooin (41). Thus,z € R0
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by the maximal W-monotonicity of R. Hence, z € VI(A, V).
Therefore, z € Y. From (37), we obtain

limsup (¥ (x*),v, - ¥ (x"))

= Jlim (¥ () () - ¥ (<)) 4D
= (¥(x"), ¥ () - ¥ (x") 2 0.
From (12), we have
P () =¥ ()
<o () =¥ (<)
+ (L) [ =) v, ~¥ ()
< ¥ () =¥ () + (1 x,)
<[ =) v, ~¥ ()
-2, (1) (¥ (), 1, - ¥ ()

+ag ¥ ()]

< 16| () =¥ (") + (1 - ,)
x[(1-a,) ¥ (u,) =¥ (x° J(1-a,)
X (¥ (x"),v, = ¥ (x7)) + o (x")]]
= [1= (1= r) o] W (1) = ¥ ()] + (1 - )

x{2(1-a,) (-¥(x7), v,

+ o, | ¥ (x*)”z} .

- ¥ (x"))

(43)
Using Lemma 6, we conclude that ¥(u,) — ¥(x"), and
hence u,, — x". This completes the proof. O
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