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A common fixed point theorem for a pair of maps satisfying condition (C) is proved under certain conditions. We extend the well-
knownDeMarr’s fixed point theorem to the case of noncommuting family of maps satisfying condition (C). As for an application,
an invariant approximation theorem is also derived.

1. Introduction

Jungck [1] initiated the systematic study of finding a common
fixed point of a pair of commuting maps. This problem of
finding a common fixed point has been of significant interest
in the area of fixed point theory and has been studied bymany
authors such as in [2–6]. At the first time, the commutativity
for two maps was always assumed to find a common fixed
point. Later, it was found that the two maps were not
necessarily commutative at each point, and then weaker
forms of commutativity were defined to obtain a common
fixed point for maps on a metric space. For example, the
notions of weakly commutative maps [2], compatible maps
(weakly compatible maps) [7], biased maps [8], 𝑅-subweakly
commutingmaps [4], and occasionally weakly compatible [9]
have been introduced and used to find common fixed points
of maps.

Recently, Chen and Li [5] introduced the class of Banach
operator pairs and, in [10], they investigated the common
fixed point problem for nonexpansive maps where (𝐼, 𝑇) is
a Banach operator pair. Also, they extended the well-known
De Marr’s fixed point theorem to the noncommuting case.

More recently, Suzuki [11] introduced a condition on
maps, called condition (C) (maps satisfying condition (C)
are also known as Suzuki-generalized nonexpansive maps),

and obtained some fixed point theorems and convergence
theorems for such maps. Dhompongsa et al. [12] and Dhom-
pongsa and Kaewcharoen [13] made significant contribution
to fixed point theory for maps satisfying condition (C). For
more results see [14].

In this paper, we discuss a common fixed point problem
for a Banach operator pair satisfying condition (C). A family
of maps satisfying condition (C) is also investigated. As for an
application, an invariant approximation theorem is obtained.

2. Preliminaries

Let 𝐸 be a Banach space. 𝐸 is said to be

(i) strictly convex if ‖𝑥 + 𝑦‖ < 2 for all 𝑥,𝑦 ∈ 𝐸 with
‖𝑥‖ = ‖𝑦‖ = 1 and 𝑥 ̸= 𝑦,

(ii) uniformly convex in every direction (UCED) if, for
𝜀 ∈ (0, 2] and 𝑧 ∈ 𝐸with ‖𝑧‖ = 1, there exists 𝛿(𝜀, 𝑧) >
0 such that

𝑥 + 𝑦
 ≤ 2 (1 − 𝛿 (𝜀, 𝑧)) (1)

for all 𝑥,𝑦 ∈ 𝐸 with ‖𝑥‖ ≤ 1, ‖𝑦‖ ≤ 1 and 𝑥 − 𝑦 ∈ {𝑡𝑧 :
𝑡 ∈ [−2, −𝜀] ∪ [+𝜀, +2]}.

It is obvious that being UCED implies strict convexity.
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Let 𝐾 be a nonempty subset of 𝐸 and let 𝑇 be a self-map
of 𝐾. We denote by 𝐹(𝑇) the set of fixed points of 𝑇; that is,
𝐹(𝑇) = {𝑥 ∈ 𝐾 : 𝑇𝑥 = 𝑥}. Also, if 𝐼 and 𝑇 are self-maps of 𝐾,
we denote by 𝐹(𝐼, 𝑇) the set of common fixed points of 𝐼 and
𝑇; that is,𝐹(𝐼, 𝑇) = {𝑥 ∈ 𝐾 : 𝐼𝑥 = 𝑇𝑥 = 𝑥}. If𝐻 is a nonempty
family of self-maps of𝐸, a point 𝑥 ∈ 𝐸 is called common fixed
point of𝐻 if it is the fixed point of each member of𝐻.

The map 𝑇 is called

(i) nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐾, (2)

(ii) quasi-nonexpansive if 𝐹(𝑇) ̸= 𝜙 and
𝑇𝑥 − 𝑝

 ≤
𝑥 − 𝑝

 , for 𝑥 ∈ 𝐾 , 𝑝 ∈ 𝐹 (𝑇) . (3)

Suzuki [11] introduced a condition on maps, called
condition (C), which is weaker than nonexpansiveness and
stronger than quasi-nonexpansiveness.

Definition 1 (see [11]). A self-map 𝑇 of 𝐾 is said to satisfy
condition (𝐶) if

1

2
‖𝑥 − 𝑇𝑥‖ ≤

𝑥 − 𝑦
 implies 𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦


(4)

for all 𝑥, 𝑦 ∈ 𝐾.

Example 2 (see [13]). Define a map 𝑇 on [0, 3(1/2)] by

𝑇𝑥 =

{{{{{

{{{{{

{

0 if 𝑥 ∈ [0, 3]
4𝑥 − 12 if 𝑥 ∈ [3, 31

4
]

−4𝑥 + 14 if 𝑥 ∈ [31
4
, 3
1

2
] .

(5)

Then 𝑇 is a continuous map satisfying condition (C) and 𝑇 is
not nonexpansive.

Proposition 3 (see [11]). Let 𝐾 be a nonempty subset of a
Banach space 𝐸. Assume that 𝑇 : 𝐾 → 𝐾 is a nonexpansive
map. Then 𝑇 satisfies condition (𝐶).

Proposition 4 (see [11]). Let 𝐾 be a nonempty subset of a
Banach space 𝐸. Assume that a map 𝑇 : 𝐾 → 𝐾 satisfies
condition (𝐶) and has a fixed point. Then 𝑇 is a quasi-
nonexpansive map.

Chen and Li [5] introduced the class of Banach operator
pairs.

Definition 5 (see [5]). Let (𝑋, 𝑑) be a metric space; the pair
(𝐼, 𝑇) of two self-maps 𝐼 and 𝑇 of 𝑋 is called a Banach
operator pair if the set 𝐹(𝑇) of fixed points of𝑇 is 𝐼-invariant;
that is, 𝐼(𝐹(𝑇)) ⊆ 𝐹(𝑇).

A Banach operator pair (𝐼, 𝑇) depends on the order of 𝐼
and 𝑇; that is, if (𝐼, 𝑇) is a Banach operator pair, (𝑇, 𝐼) need
not be such a pair. It is well known that for two self-maps 𝐼
and 𝑇 of a metric space 𝑋, the pair (𝐼, 𝑇) is a Banach pair if
and only if 𝐼 and 𝑇 commute on the set 𝐹(𝑇) [5].

Example 6 (see [5]). Let 𝑓 and 𝑔 be two self-maps of𝑋 = R2

defined by

𝑓 (𝑠, 𝑡) = (𝑠
2
+ 𝑡
2
+ 𝑠 − 1, 𝑠

2
+ 𝑡
2
+ 𝑡 − 1) ,

𝑔 (𝑠, 𝑡) = ((𝑠 − 𝑡)
2
+ 2𝑠 − 𝑡, (𝑠 − 𝑡)

2
+ 𝑠)

(6)

for (𝑠, 𝑡) ∈ R2. Directly, we have

𝐹 (𝑓) = {(𝑠, 𝑡) ∈ R
2
: 𝑠
2
+ 𝑡
2
− 1 = 0} ,

𝐹 (𝑔) = {(𝑠, 𝑡) ∈ R
2
: 𝑠 − 𝑡 = 0 or 𝑠 − 𝑡 + 1 = 0} .

(7)

The following assertions can be verified:
(i) 𝑓(𝐹(𝑔)) ⊆ 𝐹(𝑔), and hence (𝑓, 𝑔) is a Banach operator

pair onR2; equivalently, 𝑓 and 𝑔 commute on the set
𝐹(𝑔).

(ii) (𝑔, 𝑓) is not a Banach operator pair, since for (1, 0) ∈
𝐹(𝑓), 𝑔(1, 0) = (3, 2) is not in 𝐹(𝑓).

The following proposition for Banach operator pairs can
be found in [10].

Proposition 7. If𝐹(𝑇) is a 𝑞-star shaped set (i.e., 𝑡𝑥+(1−𝑡)𝑞 ∈
𝐹(𝑇) for any 𝑥 ∈ 𝐹(𝑇) and 0 ≤ 𝑡 ≤ 1) with 𝑞 ∈ 𝐹(𝑇), then
(𝐼, 𝑇) is a Banach operator pair if and only if the pairs (𝐼

𝑘
, 𝑇)
s

are Banach operator pairs for all 𝑘 ∈ [0, 1], where 𝐼
𝑘
𝑥 = (1 −

𝑘)𝐼𝑥 + 𝑘𝑞.

Definition 8 (see [10]). Let 𝑇 and 𝐼 be two self-maps of a
metric space 𝑋. The pair (𝐼, 𝑇) is called symmetric Banach
operator pair if both (𝑇, 𝐼) and (𝐼, 𝑇) are Banach operator
pairs; that is, 𝑇(𝐹(𝐼)) ⊂ 𝐹(𝐼) and 𝐼(𝐹(𝑇)) ⊂ 𝐹(𝑇).

The pair (𝐼, 𝑇) is a symmetric Banach operator pair if and
only if 𝑇 and 𝐼 are commuting on 𝐹(𝑇)∪𝐹(𝐼). It is easy to see
that a Banach operator pair may not be a symmetric Banach
operator pair; see [10].

Definition 9 (see [10]). Let 𝐻 be a nonempty family of self-
maps of a metric space 𝑋. 𝐻 is called a Banach operator
family if for all 𝐼,𝑇 ∈ 𝐻, (𝐼, 𝑇) is a symmetrical Banach
operator pair.

In 1963, DeMarr [15] stated the following well-known
fixed point theorem for a family of commuting nonexpansive
maps.

Theorem 10 (DeMarr [15]). If 𝐾 is a nonempty compact
convex subset of a Banach space𝑋 and𝐻 is a nonempty family
of commuting nonexpansive maps of 𝐾 into itself, then the
family𝐻 has a common fixed point in 𝐾.

Recently Chen and Li [10] extended DeMarr’s theorem to
the noncommuting case.

Theorem 11 (see [10]). Let 𝐾 be a nonempty closed convex
subset of a normed space 𝐸 and let𝐻 be a nonempty family of
nonexpansive maps of 𝐾 into itself. If 𝐻 is a Banach operator
family and there exists a 𝑇 ∈ 𝐻 such that 𝑇(𝐾) is compact,
then𝐻 has a common fixed point in 𝐾.
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We now collect some results about condition (C) which
will be used in the sequel.

Lemma 12 (see [11]). Let 𝐾 be a nonempty closed subset of a
Banach space 𝐸. Assume that 𝑇 : 𝐾 → 𝐾 satisfies condition
(C). Then 𝐹(𝑇) is closed. Moreover, if 𝐸 is strictly convex and
𝐾 is convex, then 𝐹(𝑇) is also convex.

Theorem 13 (see [14]). Let 𝐾 be a closed bounded convex
subset of a Banach space 𝐸. Assume that 𝑇 : 𝐾 → 𝐾 is a
map satisfying condition (𝐶) and that 𝑇(𝐾) is compact. Then
𝑇 has a fixed point.

Lemma 14 (see [11]). Let𝐾 be a nonempty subset of a Banach
space 𝐸. Assume that𝑇 : 𝐾 → 𝐾 is a map satisfying condition
(C). Then for 𝑥, 𝑦 ∈ 𝐾, the following hold:

(i) ‖𝑇𝑥 − 𝑇2𝑥‖ ≤ ‖𝑥 − 𝑇𝑥‖,

(ii) either 1
2
‖𝑥−𝑇𝑥‖ ≤ ‖𝑥−𝑦‖ or 1

2
‖𝑇𝑥−𝑇

2
𝑥‖ ≤ ‖𝑇𝑥−𝑦‖

holds,
(iii) either ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ or ‖𝑇2𝑥 − 𝑇𝑦‖ ≤ ‖𝑇𝑥 − 𝑦‖

holds.

3. Main Results

Lemma 15 (see [16] or [15]). Let𝑀 be a nonempty compact
subset of a Banach space𝐸. Let 𝛿 be the diameter of𝑀. If 𝛿 > 0,
then there exists an element 𝑢 ∈ 𝑐𝑜𝑀 such that

sup {‖𝑥 − 𝑢‖ : 𝑥 ∈ 𝑀} < 𝛿, (8)

where 𝑐𝑜𝑀 is the smallest closed convex set containing𝑀.

Following [15], we are able to prove the following lemma.

Lemma 16. Let 𝐾 be a nonempty closed convex subset of a
Banach space 𝐸. Suppose that 𝑇 : 𝐾 → 𝐾 satisfies condition
(𝐶) such that there exists a compact set𝑀 ⊂ 𝐹(𝑇) not reduced
to a point. Then there exists a nonempty closed convex set 𝐾

1

such that
(1) 𝐾
1
⊂ 𝐾 and 𝑇(𝐾

1
) ⊂ 𝐾
1
,

(2) 𝑀∩ (𝐾
1
)
𝑐
̸= 0.

Proof. Let 𝛿 be the diameter of 𝑀. Since 𝑀 is not reduced
to a point, we have 𝛿 > 0. According to Lemma 15, there is
𝑢 ∈ 𝑐𝑜𝑀 such that

𝛿
1
= sup {‖𝑥 − 𝑢‖ : 𝑥 ∈ 𝑀} < 𝛿. (9)

For each 𝑥 ∈ 𝑀, define

𝑈 (𝑥) = {𝑦 :
𝑦 − 𝑥

 ≤ 𝛿1} . (10)

Since 𝑢 ∈ 𝑈(𝑥) for each 𝑥 ∈ 𝑀, it follows that 𝐾
0
=

⋂
𝑥∈𝑀

𝑈(𝑥) ̸= 0. It is easy to check that 𝐾
0
is closed and

convex. Let𝐾
1
= 𝐾
0
∩𝐾. Then𝐾

1
is not empty since 𝑢 ∈ 𝐾

1
.

For any 𝑥 ∈ 𝐾
1
and any 𝑧 ∈ 𝑀, we have 𝑥 ∈ 𝑈(𝑧); that is,

‖𝑥 − 𝑧‖ ≤ 𝛿
1
. Since

1

2
‖𝑧 − 𝑇𝑧‖ = 0 ≤ ‖𝑧 − 𝑥‖ , (11)

we obtain that

‖𝑧 − 𝑇 (𝑥)‖ = ‖𝑇 (𝑧) − 𝑇 (𝑥)‖ ≤ ‖𝑧 − 𝑥‖ ≤ 𝛿1. (12)

That is, 𝑇(𝑥) ∈ 𝑈(𝑧). This is true for any 𝑧 ∈ 𝑀; thus 𝑇(𝑥) ∈
𝐾
1
.This shows that𝑇(𝑥) ∈ 𝐾

1
for all𝑥 ∈ 𝐾

1
. Recalling that𝑀

is compact, therefore, there exist 𝑥
0
, 𝑥
1
∈ 𝑀 such that ‖𝑥

0
−

𝑥
1
‖ = 𝛿 > 𝛿

1
. Thus, 𝑥

1
∉ 𝑈(𝑥

0
) ⊃ 𝐾

1
; that is, 𝑥

1
∈ 𝑀 ∩

(𝐾
1
)
𝑐
̸= 0.

Theorem 17. Let 𝐾 be a nonempty closed bounded convex
subset of a Banach space 𝐸. Suppose that 𝑇 and 𝐼 are two
self-maps on 𝐾 satisfying condition (𝐶). If (𝐼, 𝑇) is a Banach
operator pair, 𝐼 is nonexpansive, and 𝑇(𝐾) is compact, then
𝐹(𝐼, 𝑇) ̸= 0.

Proof. Let Γ be the set of all nonempty closed bounded convex
subsets 𝐴 of 𝐾 such that 𝑇(𝐴) ⊂ 𝐴 and 𝐼(𝐴) ⊂ 𝐴 and 𝑇(𝐴)
is compact. Since𝐾 ∈ Γ, then Γ is nonempty. Define a partial
order “≤” by set inclusion on the set Γ; that is, 𝐴

𝑖
≤ 𝐴
𝑗

whenever 𝐴
𝑖
⊆ 𝐴
𝑗
.

Let Γ
0
be any total ordering subset of Γ and 𝐴 ∈ Γ

0
. Since

𝐴 is closed, we have 𝑇(𝐴) ⊂ 𝐴, and since 𝑇(𝐴) is compact, it
follows that

0 ̸= ⋂

𝐴∈Γ0

𝑇 (𝐴) ⊂ ⋂

𝐴∈Γ0

𝐴 = 𝐴
0
. (13)

It is clear that 𝐴
0
∈ Γ. By Zorn’s lemma, Γ has a minimal set

𝐾
0
.
Since 𝑇 satisfies condition (C) and 𝑇(𝐾

0
) is compact,

then, byTheorem 13,𝑇 has a nonempty fixed point set𝐹(𝑇) ⊂
𝐾
0
. It follows that 𝐹(𝑇) is a closed subset of 𝑇(𝐾

0
) and thus

is compact. On the other hand, we have 𝑇(𝐹(𝑇)) = 𝐹(𝑇),
and since (𝐼, 𝑇) is a Banach operator pair, it implies that
𝐼(𝐹(𝑇)) ⊂ 𝐹(𝑇). Using Zorn’s lemma again, there exists a
minimal nonempty compact subset𝑀 of𝐹(𝑇)which satisfies
𝑇(𝑀) = 𝑀 and 𝐼(𝑀) ⊆ 𝑀 (𝑀 is not necessarily convex).

Next, we show 𝐼(𝑀) = 𝑀. If 𝐼(𝑀) ̸=𝑀, then we have
𝐼(𝐼(𝑀)) ⊂ 𝐼(𝑀), and 𝐼(𝑀) is compact because 𝐼 is continu-
ous. Also, we have 𝑇(𝐼(𝑀)) = 𝐼(𝑀) since 𝐼(𝑀) ⊂ 𝑀 ⊂ 𝐹(𝑇).
This contradicts the minimality of𝑀.

If 𝑀 has only one point, the proof is finished. Suppose
that 𝑀 has at least two points. By Lemma 16 there exists a
set 𝐾

1
satisfying 𝑇(𝐾

1
) ⊂ 𝐾

1
and𝑀 ∩ (𝐾

1
)
𝑐
̸= 0. Since 𝐼 is

nonexpansive and 𝐼(𝑀) = 𝑀, it follows that 𝐾
1
∈ Γ which

implies that 𝐾
1
is a proper subset of 𝐾

0
and this contradicts

the minimality of𝐾
0
. This completes the proof.

Theorem 18. Let 𝐾 be a nonempty closed bounded convex
subset of a strictly convex space𝐸. Suppose that𝑇 and 𝐼 are two
self-maps on 𝐾 satisfying condition (𝐶). If (𝐼, 𝑇) is a Banach
operator pair and 𝑇(𝐾) is compact, then 𝐹(𝐼, 𝑇) ̸= 0.
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Proof. By Theorem 13 and Lemma 12, 𝐹(𝑇) is a nonempty
closed bounded convex set. It is compact since 𝑇(𝐾) is
compact. Since 𝐼(𝐹(𝑇)) ⊂ 𝐹(𝑇), again byTheorem 13, 𝐼 has a
fixed point in 𝐹(𝑇); that is, 𝐹(𝑇) ∩ 𝐹(𝐼) ̸= 0.

Corollary 19. Let 𝐾 be a nonempty closed bounded convex
subset of an UCED Banach space 𝐸. Suppose that 𝑇 and 𝐼
are two self-maps on 𝐾 satisfying condition (C). If (𝐼, 𝑇) is a
Banach operator pair and 𝑇(𝐾) is compact, then 𝐹(𝐼, 𝑇) ̸= 0.

Example 20. Consider R with the usual metric and let 𝐾 =

[0, 3(1/2)]. Define a map 𝑇 on𝐾 by

𝑇𝑥 =

{{{{{

{{{{{

{

0 if 𝑥 ∈ [0, 3]
4𝑥 − 12 if 𝑥 ∈ [3, 31

4
]

−4𝑥 + 14 if 𝑥 ∈ [31
4
, 3
1

2
]

(14)

and define amap 𝐼 on𝐾 by 𝐼𝑥 = 𝑥2/7.Then𝑇 is a continuous
map satisfying condition (𝐶) and 𝑇 is not nonexpansive (see
[13]) and 𝐼 is nonexpansive and hence satisfies condition (𝐶).
Also (𝐼, 𝑇) is a Banach operator pair.Therefore, all conditions
ofTheorem 17 (andTheorem 18) are satisfied and 𝐼 and𝑇have
a common fixed point. Note thatTheorem 2.1 in Chen and Li
[10] is not applicable here.

Next, we show a common fixed point theorem of a
countable family of maps satisfying condition (C). We need
first the following proposition which shows that for a given
map 𝐼 there are a lot of maps 𝑇 such that (𝐼, 𝑇) is a symmetric
Banach operator pair.

Proposition 21 (see [10]). Let 𝐼 be a self-map on a convex
subset 𝐾 of a normed space 𝐸 and let 𝛼 be a map from 𝐾 to
[0, 1] such that the set {𝑥 ∈ 𝑋 : 𝛼(𝑥) = 0} is 𝐼-invariant; that
is, 𝛼(𝐼𝑥) = 0, ∀𝑥 ∈ {𝑥 ∈ 𝑋 : 𝛼(𝑥) = 0}. Define

𝑇
𝛼
𝑥 = 𝛼 (𝑥) 𝐼𝑥 + (1 − 𝛼 (𝑥)) 𝑥. (15)

Then (𝐼, 𝑇
𝛼
) is a symmetric Banach operator pair.

Theorem 22. Let 𝐾 be a nonempty closed bounded convex
subset of a Banach space 𝐸. Suppose that 𝐻 is a nonempty
family of self-maps on 𝐾 satisfying condition (C). If 𝐻 is a
Banach operator family and there exists a 𝑇

1
∈ 𝐻 such that

𝑇
1
(𝐾) is compact and every 𝑇

𝑗
(except 𝑇

1
) in the family 𝐻 is

nonexpansive, then𝐻 has a common fixed point in 𝐾.

Proof. Let 𝑇
1
, 𝑇
2
and 𝑇

3
∈ 𝐻 and let Γ be the set of all

nonempty closed bounded convex subsets 𝐴 of 𝐾 such that
𝑇
1
(𝐴) ⊂ 𝐴, 𝑇

2
(𝐴) ⊂ 𝐴, and 𝑇

3
(𝐴) ⊂ 𝐴 and 𝑇

1
(𝐴) is compact.

On the set Γ, define a partial order by set inclusion; then we
can find a minimal set 𝐾

0
∈ Γ.

As in the proof ofTheorem 17,𝑇
1
and𝑇
2
have a nonempty

compact common fixed point set 𝐹 = 𝐹(𝑇
1
, 𝑇
2
) in 𝐾

0

satisfying 𝑇
1
(𝐹) = 𝐹 and 𝑇

2
(𝐹) = 𝐹. Since (𝑇

3
, 𝑇
1
) and

(𝑇
3
, 𝑇
2
) are Banach operator pairs, we have 𝑇

3
(𝐹) ⊂ 𝐹. Using

Zorn’s lemma, there exists a minimal nonempty compact

subset 𝑀 of 𝐾
0
which satisfies 𝑇

1
(𝑀) = 𝑀, 𝑇

2
(𝑀) =

𝑀, and 𝑇
3
(𝑀) ⊂ 𝑀. Using an argument similar to that

in Theorem 17, we can show that 𝑇
3
(𝑀) = 𝑀. If 𝑀

reduces to a point, then 𝐹(𝑇
1
, 𝑇
2
, 𝑇
3
) ̸= 0. If 𝑀 has at least

two different points, then, by Lemma 16, this contradicts the
minimality of 𝐾

0
. Therefore we obtain that 𝐾

0
is a singleton

and 𝐹(𝑇
1
, 𝑇
2
, 𝑇
3
) ̸= 0.

For any finite maps 𝑇
𝑗
∈ 𝐻, 𝑗 = 1, 2, . . . , 𝑛, we have

by induction that 𝐹(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
) ̸= 0. We now let 𝜃 =

{𝐹(𝑇
1
, 𝑇) : 𝑇 ∈ 𝐻}. Thus for any 𝑇 ∈ 𝐻, 𝐹(𝑇

1
, 𝑇) is a

nonempty compact set, and for each 𝑇
𝑗
∈ 𝐻, 𝑗 = 2, . . . , 𝑛,

we have
𝑛

⋂

𝑗=2

𝐹 (𝑇
1
, 𝑇
𝑗
) = 𝐹 (𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑛
) ̸= 0. (16)

This implies that the set family 𝜃 has the finite intersect
property. Thus,

⋂

𝑇∈𝐻

𝐹 (𝑇
1
, 𝑇) ̸= 0. (17)

Therefore the family𝐻 has a common fixed point in𝐾.

4. Applications

Let 𝐾 be a subset of the normed space 𝐸 and 𝑥 ∈ 𝐸; then the
distance of a point 𝑥 to the subset 𝐾 is defined by

dist (𝑥, 𝐾) = inf {𝑦 − 𝑥
 : 𝑦 ∈ 𝐾} . (18)

The set of best approximants of a point 𝑥 in 𝐾 is denoted by
𝑃
𝐾
(𝑥) and defined by

𝑃
𝐾
(𝑥) = {𝑦 ∈ 𝐾 :

𝑦 − 𝑥
 = dist (𝑥, 𝐾)} . (19)

It is well known that 𝑃
𝐾
(𝑥) is always a bounded subset of 𝐾

and is a closed and convex set if𝐾 is so. Also, if𝐾 is compact,
then 𝑃

𝐾
(𝑥) is nonempty. For more details, we refer to [17].

Let Ω
0
denote the class of closed convex subsets of 𝐸

containing 0. For𝐾 ∈ Ω
0
and 𝑥 ∈ 𝐸, let

𝐾
𝑥
= {𝑥 ∈ 𝐾 : ‖𝑥‖ ≤ 2 ‖𝑥‖} . (20)

It is clear that 𝑃
𝐾
(𝑥) ⊂ 𝐾

𝑥
∈ Ω
0
.

The following result provides a partial solution of an
existence problem of approximation theory in the following
result (see also [14]).

Theorem 23. Let 𝐸 be a Banach space and let 𝑇 be a self-map
of 𝐸with 𝑥 ∈ 𝐹(𝑇) and 𝐾 ∈ Ω

0
such that𝑇(𝐾

𝑥
) ⊂ 𝐾. Assume

that𝑇 satisfies condition (C) on𝐾
𝑥
∪{𝑥} and𝑇(𝐾

𝑥
) is compact.

Then the set of best approximations 𝑃
𝐾
(𝑥) is nonempty.

Proof. Without loss of generality we may assume that 𝑥 ∈ 𝐸 \
𝐾. If 𝑥 ∈ 𝐾 \ 𝐾

𝑥
, then

‖𝑥 − 𝑥‖ ≥ ‖𝑥‖ − ‖𝑥‖

> 2 ‖𝑥‖ − ‖𝑥‖

= ‖𝑥‖
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≥ dist (𝑥, 𝐾
𝑥
)

≥ dist (𝑥, 𝐾) .

(21)

As a result

dist (𝑥, 𝐾
𝑥
) = dist (𝑥, 𝐾) . (22)

Since 𝑇(𝐾
𝑥
) is compact, we can find 𝑦 ∈ 𝑇(𝐾

𝑥
) such that

dist (𝑥, 𝑇 (𝐾
𝑥
)) =

𝑦 − 𝑥
 , (23)

and so by Lemma 14,

dist (𝑥, 𝐾
𝑥
) = dist (𝑥, 𝐾)

≤ dist (𝑥, 𝑇 (𝐾
𝑥
))

≤ ‖𝑇𝑥 − 𝑇𝑥‖

≤ ‖𝑥 − 𝑥‖

(24)

for all 𝑥 ∈ 𝐾
𝑥
. Hence

dist (𝑥, 𝐾) = dist (𝑥, 𝐾
𝑥
) = dist (𝑥, 𝑇 (𝐾

𝑥
)) =

𝑦 − 𝑥
 (25)

and thus 𝑦 ∈ 𝑃
𝐾
(𝑥).

The following is an application ofTheorem 17 to invariant
approximations for convex sets.

Theorem 24. Let 𝐸 be a Banach space, 𝐼 and 𝑇 self-maps of 𝐸
with𝑥 ∈ 𝐹(𝐼, 𝑇), and𝐾 ∈ Ω

0
with 𝐼(𝐾

𝑥
) ⊂ 𝐾 and𝑇(𝐾

𝑥
) ⊂ 𝐾.

If (𝐼, 𝑇) is a Banach operator pair on𝐾
𝑥
, both 𝐼 and𝑇 aremaps

satisfying condition (C) on 𝐾
𝑥
∪ {𝑥}, 𝐼 is nonexpansive, and

𝑇(𝐾
𝑥
) is compact, then 𝐹(𝐼, 𝑇) ∩ 𝑃

𝐾
(𝑥) ̸= 0.

Proof. ByTheorem 23,𝑃
𝐾
(𝑥) is a nonempty. Since𝐾 is closed

and convex, then 𝑃
𝐾
(𝑥) is a closed convex set. We now show

that 𝑃
𝐾
(𝑥) is 𝑇-invariant. Let 𝑦 ∈ 𝑃

𝐾
(𝑥). Then ‖𝑦 − 𝑥‖ =

dist(𝑥, 𝐾). Since 𝑇 satisfies condition (C) on 𝐾
𝑥
∪ {𝑥}, by

Lemma 14, we obtain that
𝑇 (𝑦) − 𝑥

 =
𝑇 (𝑦) − 𝑇 (𝑥)

 ≤
𝑦 − 𝑥

 , (26)

and so

dist (𝑥, 𝐾) ≤ 𝑇 (𝑦) − 𝑥
 ≤

𝑦 − 𝑥
 = dist (𝑥, 𝐾) . (27)

This implies that 𝑇(𝑦) ∈ 𝑃
𝐾
(𝑥). Consequently, we have

𝑇(𝑃
𝐾
(𝑥)) ⊂ 𝑃

𝐾
(𝑥), and, similarly, we can prove that 𝐼(𝑃

𝐾
(𝑥))

⊂ 𝑃
𝐾
(𝑥). Since 𝑇(𝑃

𝐾
(𝑥)) ⊂ 𝑇(𝐾

𝑥
) and 𝑇(𝐾

𝑥
) is compact, we

have that 𝑇(𝑃
𝐾
(𝑥)) is compact. Now, Theorem 17 guarantees

that 𝐹(𝐼, 𝑇) ∩ 𝑃
𝐾
(𝑥) ̸= 0.
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