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The paper is concerned with singular Hamiltonian systems of arbitrary order with arbitrary equal defect indices. It is proved that
the minimal operator generated by the Hamiltonian system is simple. As a consequence, a sufficient condition is obtained for the
continuous spectrum of every self-adjoint extension of the minimal operator to be empty in some interval and for the spectrum to
be nowhere dense in this interval in terms of the numbers of linearly independent square integrable solutions.

1. Introduction

Consider the following Hamiltonian differential system of
arbitrary order 𝑛:

L (𝑦) (𝑡) := 𝐽𝑦
󸀠

(𝑡) − 𝑃 (𝑡) 𝑦 (𝑡) = 𝜆𝑊 (𝑡) 𝑦 (𝑡) ,

𝑡 ∈ [𝑎, 𝑏) ,

(1)

where 𝑎 is a regular point, while 𝑏 is singular, that is, 𝑏 = +∞,
or 𝑊 or 𝑃 is not integrable near 𝑏; 𝑊(𝑡) and 𝑃(𝑡) are 𝑛 × 𝑛
Hermitian matrices and locally integrable on [𝑎, 𝑏); 𝐽 is an
𝑛 × 𝑛 constant nonsingular matrix satisfying 𝐽∗ = −𝐽 = 𝐽

−1

(𝐽∗ denotes the complex conjugate transpose of 𝐽);𝑊(𝑡) ≥ 0

is a weight function; and 𝜆 is a complex parameter. System
(1) includes higher-order symmetric differential expressions
of both even-order and odd-order (cf. [1, 2]).

Introduce the following space:

𝐿
2

𝑊
(𝑎, 𝑏)

:={measurable𝑓:(𝑎,𝑏) 󳨀→ C𝑛 :∫
𝑏

𝑎

𝑓
∗

(𝑡)𝑊(𝑡) 𝑓(𝑡)𝑑𝑡<+∞},

(2)

with inner product

⟨𝑓, 𝑔⟩
𝑊
= ∫

𝑏

𝑎

𝑔
∗

(𝑡)𝑊 (𝑡) 𝑓 (𝑡) 𝑑𝑡, (3)

for 𝑓, 𝑔 ∈ 𝐿
2

𝑊
(𝑎, 𝑏). Set ‖𝑓‖

𝑊
= ⟨𝑓, 𝑓⟩

1/2

𝑊
for 𝑓 ∈ 𝐿

2

𝑊
(𝑎, 𝑏).

We remark that if𝑊 is singular, then 𝐿2
𝑊
(𝑎, 𝑏) is a quotient

space in the sense that 𝑦 = 𝑧 if ‖𝑦 − 𝑧‖
𝑊
= 0. In this case,

𝐿
2

𝑊
(𝑎, 𝑏) is a Hilbert space.
Let AC

𝑙
(𝐼) denote the set of functions which are locally

and absolutely continuous on an interval 𝐼. In order to ensure
the Hamiltonian operators generated by (1) to be single-
valued, it is always assumed that

𝑦 ∈ AC
𝑙
((𝑎, 𝑏)) , 𝑓 ∈ 𝐿

2

𝑊
(𝑎, 𝑏) , 𝐽𝑦

󸀠
− 𝑃𝑦 = 𝑊𝑓,

𝑊𝑦 = 0 󳨐⇒ 𝑦 (𝑡) = 0 for 𝑡 ∈ [𝑎, 𝑏) .
(A)

Clearly, assumption (A) implies theAtkinson definiteness
condition (see [3, Page 253]): for all 𝜆 ∈ C and for
all nontrivial solutions 𝑦(𝑡) of system (1), the following
inequality always holds:

∫

𝑏

𝑎

𝑦
∗

(𝑠)𝑊 (𝑠) 𝑦 (𝑠) 𝑑𝑠 > 0. (4)
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The maximal and preminimal operators 𝐻 and 𝐻
00

corresponding to system (1) are defined by

𝐷(𝐻) := {𝑦 ∈ 𝐿
2

𝑊
(𝑎, 𝑏) : 𝑦 ∈ AC

𝑙
([𝑎, 𝑏))

and there exists 𝑓 ∈ 𝐿2
𝑊
(𝑎, 𝑏)

such that L (𝑦) (𝑡) = 𝑊 (𝑡) 𝑓 (𝑡) ,

𝑡 ∈ [𝑎, 𝑏) }

𝐻𝑦 := 𝑓,

(5)

𝐷(𝐻
00
)

:= {𝑦 ∈ 𝐷 (𝐻) : 𝑦 has a compact support in (𝑎, 𝑏)} ,

𝐻
00
𝑦 := 𝐻𝑦.

(6)

It can be easily verified that𝐻 is single-valued under assump-
tion (A). The operator 𝐻

0
:= 𝐻

00
is called the minimal

operator corresponding to system (1).
Spectra of operators have been studied by many authors

using various theories such as the oscillation theory, asymp-
totic analysis, singular sequences, and square-integrable solu-
tions for real values of the spectral parameter (cf., e.g., [4–
13]). Among these methods, the last one has attracted lots of
attention because it takes advantage of using numerous tools
available in the fundamental theory of differential equations.
This method was first explored by Hartman and Wintner for
the Sturm-Liouville differential expression

𝜏 (𝑥) (𝑡) = −(𝑝 (𝑡) 𝑥
󸀠

(𝑡))

󸀠

+ 𝑞 (𝑡) 𝑥 (𝑡) = 𝜆𝑥 (𝑡) ,

𝑡 ∈ [0,∞) ,

(7)

and a series of results were given (cf. [14–16]). The following
is one of them (cf. [15]).

Theorem 1. If 𝜏𝑥 = 𝜆𝑥 has exactly one linearly independent
square integrable solution for all 𝜆 in an interval 𝐼, then for
every self-adjoint realization, one has the following:

(1) the intersection of continuous spectrum and 𝐼 is empty;
(2) the point spectrum is nowhere dense in 𝐼.

It is well-known that 𝜏 can be classified into the limit point
case and the limit circle case at the singular endpoint 𝑡 =
∞, and it is only needed to consider the former case since
every self-adjoint realization corresponding to 𝜏 has only a
pure discrete spectrum in the limit circle case at 𝑡 = ∞.
However, for higher-order differential expressions, there are
some intermediate limit cases at 𝑡 = ∞ besides the above
two cases (cf. [17]). Weidmann’s monograph [13] proved that
Theorem 1 holds for higher-order differential equations in the
limit point case. This result of [13] was further extended to
the case of arbitrary equal defect indices in [8, 12]. Simple
operators in Hilbert spaces have their special properties and
have been studied (cf., e.g., [18]). It has been shown that
the minimal operators generated by higher-order symmetric

differential equations with a regular endpoint are simple
(cf., [10, 19]). Recently, Mogilevskii [20] considered simple
symmetric operators in Hilbert spaces with equal defect
indices and derived that the continuous spectrum of every
self-adjoint extension of such an operator is empty in some
interval 𝐼 under the assumption that the number 𝑟(𝜆) of
linearly independent solutions of an abstract equation is
equal to the defect index of the corresponding operator for
all 𝜆 ∈ 𝐼 except an at most countable set 𝑋 ⊂ 𝐼 and
that the spectrum of every self-adjoint extension of such
an operator is nowhere dense in this interval 𝐼 under the
same assumption (see Lemma 4). In addition, these abstract
results were applied to higher-order differential operators
over arbitrary interval in [20].

In this paper, we will prove that 𝐻
0
with arbitrary equal

defect indices is simple inspired by the method in [19] and
then apply the above results in [20] to 𝐻

0
. As a direct

consequence, similar spectral properties of every self-adjoint
extension of 𝐻

0
are obtained. Note that we use Mogilevskii’s

results of [20] to get spectral properties in this paper.Then the
method in this paper for the proof of the results on spectral
properties of all self-adjoint extensions of𝐻

0
is different from

those used in [8, 12].
The rest of this present paper is organized as follows.

In Section 2, some basic concepts and results about linear
operators in Hilbert spaces are introduced. In Section 3, the
simplicity of𝐻

0
is proved, the results on spectral properties of

every self-adjoint extension of𝐻
0
is given, and two examples

are presented.

2. Basic Concepts and Results about Linear
Operators in Hilbert Spaces

Let H be a Hilbert space over C with inner product ⟨⋅, ⋅⟩.
The norm ‖ ⋅ ‖ is ‖𝑓‖ = ⟨𝑓, 𝑓⟩

1/2 for 𝑓 ∈ H. Let 𝑇 be a
(linear) operator inH. We denote by 𝐷(𝑇), 𝑅(𝑇), and𝑁(𝑇)
the domain, the range, and the kernel of 𝑇, respectively, and
by 𝑇∗ the adjoint of a densely defined operator 𝑇. For a
densely defined operator 𝑇, it is called to be symmetric if
𝑇 ⊂ 𝑇

∗ and self-adjoint if 𝑇 = 𝑇
∗. An operator 𝑆 is called

a self-adjoint extension of a symmetric operator 𝑇 if 𝑆 is self-
adjoint,𝐷(𝑇) ⊂ 𝐷(𝑆), and 𝑇𝑓 = 𝑆𝑓 for 𝑓 ∈ 𝐷(𝑇).

Let 𝑇 be an operator inH. If there exists some nontrivial
𝑦 ∈ 𝐷(𝑇) such that 𝑇𝑦 = 𝜆𝑦, then 𝜆 is called an eigenvalue
of 𝑇, while 𝑦 is called an eigenvector of 𝑇 associated with 𝜆,
and 𝑛(𝑇, 𝜆) = dim𝑁(𝜆−𝑇) is called the multiplicity of 𝜆. We
denote by 𝜎

𝑝
(𝑇) the set of all eigenvalues of 𝑇, where 𝜎

𝑝
(𝑇)

is called the point spectrum of 𝑇. Let 𝑅(𝜆, 𝑇) := (𝜆 − 𝑇)
−1.

Then, the set

𝜌 (𝑇) := {𝜆 ∈ C : 𝑅 (𝜆, 𝑇)

is a bounded linear operator defined on H}

(8)

is called the resolvent set of 𝑇, and the set 𝜎(𝑇) := C \ 𝜌(𝑇) is
called the spectrum of 𝑇. When 𝑇 is a self-adjoint operator, it
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is known in [21, Page 209] that the spectrum 𝜎(𝑇) of𝑇 admits
the representation

𝜎 (𝑇) = 𝜎
𝑝
(𝑇) ∪ 𝜎

𝑐
(𝑇) , (9)

where 𝜎
𝑐
(𝑇) is called the continuous spectrum of 𝑇.

For an operator 𝑇, the subspace 𝑅(𝜆 − 𝑇)⊥ is called the
defect space of 𝜆 and𝑇, and the number 𝛽(𝜆, 𝑇) := dim𝑅(𝜆−

𝑇)
⊥ is called the defect index of 𝜆 and 𝑇. By [21, Theorem

8.1], for a symmetric operator 𝑇, the defect index 𝛽(𝜆, 𝑇) is
constant in the upper and lower half-planes, respectively, and
hence

𝑑
+
(𝑇) := 𝛽 (−𝑖, 𝑇) , 𝑑

−
(𝑇) := 𝛽 (𝑖, 𝑇) (10)

are called the positive and negative defect indices of 𝑇. From
[21, Theorem 4.13],

𝑅(𝜆 − 𝑇)
⊥
= 𝑁(𝜆 − 𝑇

∗
) . (11)

Hence, 𝑑
±
(𝑇) = dim𝑁(𝑖±𝑇

∗
). Furthermore, by [21,Theorem

8.6], a symmetric operator 𝑇 has a self-adjoint extension if
and only if

𝑑
+

(𝑇) = 𝑑
−

(𝑇) =: 𝑑 (𝑇) . (12)

For a self-adjoint operator, the following is the well-
known spectral decomposition theorem.

Lemma 2 (see [21, Page 191]). For every self-adjoint operator
𝑇 in H, there exists exactly one spectral family {𝐸(𝑡)}

𝑡∈R such
that 𝑇 = ∫R 𝑡 𝑑𝐸(𝑡). Conversely, the spectral family {𝐸(𝑡)}

𝑡∈R is
given by

⟨𝑔, (𝐸 (𝑡
2
) − 𝐸 (𝑡

1
)) 𝑓⟩

= (2𝜋𝑖)
−1 lim
𝛿→0+

lim
𝜖→0+

∫

𝑡
2
+𝛿

𝑡
1
+𝛿

⟨𝑔, (𝑅 (𝜎 − 𝑖𝜖, 𝑇)

−𝑅 (𝜎 + 𝑖𝜖, 𝑇)) 𝑓⟩ 𝑑𝜎

(13)

for all 𝑓, 𝑔 ∈H and −∞ < 𝑡
1
≤ 𝑡
2
< ∞.

Finally, we recall two results for simple symmetric oper-
ators in H. A symmetric operator 𝑇 in H is called simple
if there is not an orthogonal decomposition 𝑇 = 𝑇

1
⊕ 𝑇
2

with a self-adjoint operator𝑇
1
acting in a nontrivial subspace

H
1
⊂ H (cf., [18]). For a simple symmetric operator, the

result below holds.

Lemma 3 (see [19]). A symmetric operator 𝑇 is simple if and
only if 𝑓 ⊥ 𝑁(𝜆 − 𝑇∗) for all 𝜆 ∈ C \ R implies that 𝑓 = 0.

Let 𝑇 be symmetric and (12) holds. Set

𝜌 (𝑇) = {𝜆 ∈ R : dim𝑁(𝜆 − 𝑇
∗
) = 𝑑 (𝑇)} . (14)

Then, the following result was given.

Lemma 4 (see [20]). Assume that 𝑇 is a simple symmetric
operator inH and (12) holds with 𝑑(𝑇) < ∞. Let 𝐼 = (𝜇

1
, 𝜇
2
),

−∞ ≤ 𝜇
1
< 𝜇
2
≤ ∞, be an interval such that 𝐼 \ 𝜌(𝑇)is an at

most countable set. Then, for every self-adjoint extension 𝑆 of
𝑇, 𝜎
𝑐
(𝑆) ∩ 𝐼 is empty and 𝜎(𝑆) ∩ 𝐼 is nowhere dense in 𝐼.

3. Main Results

With a similar argument to that of [13, Theorem 3.9], the
minimal operator 𝐻

0
is symmetric and 𝐻∗

0
= 𝐻. Then, it

must have self-adjoint extensions if

𝑑
+
(𝐻
0
) = 𝑑
−
(𝐻
0
) =: 𝑑. (15)

In this section, we will prove that 𝐻
0
is simple under

condition (15) and then get results about the spectrum of
every self-adjoint extension of𝐻

0
using Mogilevskii’s results

in [20]. First, we present the following lemma.

Lemma 5. Assume that (A) holds and 𝜆 ∈ C \ R. Then, there
exists an 𝑛 × 𝑛matrix-valued function 𝐺(𝑡, 𝑠, 𝜆) satisfying

(1) 𝐺(𝑡, 𝑠, 𝜆) is continuous and has first derivative with
respect to 𝑡 on 𝑎 < 𝑡 ≤ 𝑠 < 𝑏 and 𝑎 < 𝑠 ≤ 𝑡 < 𝑏;

(2) lim
𝑡→ 𝑠−0

𝐺(𝑡, 𝑠, 𝜆) − lim
𝑡→ 𝑠+0

𝐺(𝑡, 𝑠, 𝜆) = 𝐽;
(3) 𝐺 satisfies thatL𝐺 = 𝜆𝑊𝐺 (as a function of 𝑡) for 𝑡 ̸= 𝑠;
(4) 𝐺(𝑡, 𝑠, 𝜆) = 𝐺∗(𝑠, 𝑡, 𝜆) for 𝑡 ̸= 𝑠;
(5) 𝐺(⋅, 𝑠, 𝜆) ∈ 𝐿

2

𝑊
(𝑎, 𝑏), and for 𝑓 ∈ 𝐿

2

𝑊
(𝑎, 𝑏), the

function

(G (𝜆) 𝑓) (𝑡) := ∫

𝑏

𝑎

𝐺 (𝑡, 𝑠, 𝜆)𝑊 (𝑠) 𝑓 (𝑠) 𝑑𝑠 (16)

is in𝐷(𝐻) and satisfies that (L − 𝜆𝑊)G(𝜆)𝑓 = 𝑊𝑓.

Proof. This lemma holds by [22, Formulae (3.23) and (3.24),
Lemma 3.8, and Proposition 3.11].

Theorem 6. Assume that (15) holds. Then𝐻
0
is simple.

Proof. Since (15) holds,𝐻
0
must have a self-adjoint extension

𝐻
1
. Let 𝜆 ∈ C \ R. Then, 𝑅(𝜆,𝐻

1
) is a bounded operator on

𝐿
2

𝑊
(𝑎, 𝑏) and for 𝑓 ∈ 𝐿2

𝑊
(𝑎, 𝑏),

(𝜆 − 𝐻
1
) 𝑅 (𝜆,𝐻

1
) 𝑓 = 𝑓. (17)

Hence, for each 𝑓 ∈ 𝐿
2

𝑊
(𝑎, 𝑏), 𝑅(𝜆,𝐻

1
)𝑓 ∈ 𝐿

2

𝑊
(𝑎, 𝑏), and by

(5) of Lemma 5,

(L − 𝜆𝑊) (𝑅 (𝜆,𝐻
1
) 𝑓 +G (𝜆) 𝑓) = −𝑊𝑓 +𝑊𝑓 = 0, (18)

which, togetherwithG(𝜆)𝑓 ∈ 𝐷(𝐻), implies that𝑅(𝜆,𝐻
1
)𝑓+

G(𝜆)𝑓 ∈ 𝑁(𝜆 −𝐻). Let {𝜃
𝑗
(𝑡, 𝜆)}

𝑑

𝑗=1
be an orthonormal basis

for𝑁(𝜆 − 𝐻). Then

𝑅 (𝜆,𝐻
1
) 𝑓 +G (𝜆) 𝑓 =

𝑑

∑

𝑗=1

𝑎
𝑗
(𝜆, 𝑓) 𝜃

𝑗
(𝑡, 𝜆) , (19)

where 𝑎
𝑗
(𝜆, 𝑓) is a constant dependent on 𝜆 and 𝑓 only. It

is evident that 𝑅∗(𝜆,𝐻
1
) = 𝑅(𝜆,𝐻

1
) by the self-adjointness

of 𝐻
1
. Furthermore, G(𝜆) is an integral operator defined on

𝐿
2

𝑊
(𝑎, 𝑏) satisfying G∗(𝜆) = G(𝜆) by [22, (iii) of Proposition

3.11]. Then, (19) implies that for 𝑗 = 𝑗 = 1, . . . , 𝑑,

𝑎
𝑗
(𝜆, 𝑓) = ⟨𝑅 (𝜆,𝐻

1
) 𝑓 +G (𝜆) 𝑓, 𝜃

𝑗
⟩
𝑊

= ⟨𝑓, 𝑅 (𝜆,𝐻
1
) 𝜃
𝑗
+G (𝜆) 𝜃

𝑗
⟩
𝑊
,

(20)
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while

(L − 𝜆𝑊) (𝑅 (𝜆,𝐻
1
) 𝜃
𝑗
+G (𝜆) 𝜃

𝑗
) = −𝑊𝜃

𝑗
+𝑊𝜃
𝑗
= 0.

(21)

Hence,

(𝑅 (𝜆,𝐻
1
) +G (𝜆)) 𝜃

𝑗
∈ 𝑁(𝜆 − 𝐻) . (22)

Let {̃𝜃
𝑗
(𝑡, 𝜆)}

𝑑

𝑗=1
be an orthonormal basis for𝑁(𝜆−𝐻). Then,

there exist constants 𝑐
𝑘𝑗
(𝜆) dependent on 𝜆 such that

(𝑅 (𝜆,𝐻
1
) +G (𝜆)) 𝜃

𝑗
=

𝑑

∑

𝑘=1

𝑐
𝑘𝑗
(𝜆)

̃
𝜃
𝑘
, 𝑗 = 1, . . . , 𝑑. (23)

Inserting (23) into (20), we get 𝑎
𝑗
(𝜆, 𝑓) =

∑
𝑑

𝑘=1
𝑐
𝑘𝑗
(𝜆)⟨𝑓,

̃
𝜃
𝑘
⟩
𝑊
, and then (19) yields that

𝑅 (𝜆,𝐻
1
) 𝑓 (𝑡) = − ∫

𝑏

𝑎

𝐺 (𝑡, 𝑠, 𝜆)𝑊 (𝑠) 𝑓 (𝑠) 𝑑𝑠

+

𝑑

∑

𝑗=1

𝑑

∑

𝑘=1

𝑐
𝑘𝑗
(𝜆) ⟨𝑓,

̃
𝜃
𝑘
⟩
𝑊
𝜃
𝑗
(𝑡, 𝜆) .

(24)

Now, let Φ(𝑡, 𝜆) and Φ(𝑡, 𝜆) be fundamental solution
matrices for (1) and (1) with 𝜆 being replaced by 𝜆 satisfying
Φ(𝑎, 𝜆) = Φ(𝑎, 𝜆) = 𝐼

𝑛
, respectively, where 𝐼

𝑛
is the 𝑛 × 𝑛 unit

matrix. Then,

Φ
∗
(𝑡, 𝜆) 𝐽Φ (𝑡, 𝜆) = 𝐽 = −𝐽

−1
, (25)

which implies thatΦ(𝑡, 𝜆)𝐽Φ∗(𝑡, 𝜆) = 𝐽. We define

𝐺
1
(𝑡, 𝑠, 𝜆) := 𝐺 (𝑡, 𝑠, 𝜆) + 2

−1
Φ (𝑡, 𝜆) 𝐽Φ

∗
(𝑠, 𝜆)

+

{

{

{

2
−1
Φ (𝑡, 𝜆) 𝐽Φ

∗
(𝑠, 𝜆) , 𝑎 < 𝑠 ≤ 𝑡 < 𝑏;

−2
−1
Φ (𝑡, 𝜆) 𝐽Φ

∗
(𝑠, 𝜆) , 𝑎 < 𝑡 < 𝑠 < 𝑏.

(26)

ThenL𝐺
1
= 𝜆𝑊𝐺

1
(as a function of 𝑡) for 𝑡 ̸= 𝑠, and

𝐺 (𝑡, 𝑠, 𝜆) = 𝐺
1
(𝑡, 𝑠, 𝜆)

−{

Φ (𝑡, 𝜆) 𝐽Φ
∗
(𝑠, 𝜆) , 𝑎 < 𝑠 ≤ 𝑡 < 𝑏;

0, 𝑎 < 𝑡 < 𝑠 < 𝑏.

(27)

Clearly,

lim
𝑠→ 𝑡−0

𝐺
∗

1
(𝑡, 𝑠, 𝜆) = lim

𝑠→ 𝑡+0

𝐺
∗

1
(𝑡, 𝑠, 𝜆) ; (28)

by (2) of Lemma 5.Therefore,𝐺∗
1
(𝑡, ⋅, 𝜆) ∈ AC

𝑙
((𝑎, 𝑏)) for any

fixed 𝑡 ∈ (𝑎, 𝑏). On the other hand, 𝐺∗
1
(𝑡, 𝑠, 𝜆) = 𝐺

∗
(𝑡, 𝑠, 𝜆)

for 𝑎 < 𝑡 < 𝑠 < 𝑏 by (27), which, together with (4) and (5)
of Lemma 5, implies that 𝐺∗

1
(𝑡, ⋅, 𝜆) ∈ 𝐿

2

𝑊
(𝑐, 𝑏) for some 𝑐 ∈

(𝑎, 𝑏). Furthermore,

𝐺
∗

1
(𝑡, 𝑠, 𝜆) = 𝐺

∗

(𝑡, 𝑠, 𝜆) + Φ (𝑠, 𝜆) 𝐽Φ
∗

(𝑡, 𝜆) , (29)

for 𝑎 < 𝑠 ≤ 𝑡 < 𝑏, which, together with Φ(⋅, 𝜆) ∈ 𝐿
2

𝑊
(𝑎, 𝑐)

by the regularity of the endpoint 𝑎, implies that 𝐺∗
1
(𝑡, ⋅, 𝜆) ∈

𝐿
2

𝑊
(𝑎, 𝑐). Thus, 𝐺∗

1
(𝑡, ⋅, 𝜆) ∈ 𝐿

2

𝑊
(𝑎, 𝑏) for every 𝜆 ∈ C \ R. In

addition, it can be verified that, as a function of 𝑠,

(L − 𝜆𝑊)𝐺
∗

1
(𝑡, 𝑠, 𝜆) = 0, (30)

for any fixed 𝑡 ∈ (𝑎, 𝑏). Consequently, 𝐺∗
1
(𝑡, ⋅, 𝜆) ∈ 𝑁(𝜆 − 𝐻).

Therefore, from (24), (27), and ̃𝜃
𝑗
∈ 𝑁(𝜆 − 𝐻), we get that if

𝑓 ∈ 𝑁(𝜆 − 𝐻)
⊥ for all 𝜆 ∈ C \ R, then

𝑅 (𝜆,𝐻
1
) 𝑓 (𝑡) = Φ (𝑡, 𝜆) 𝐽 ∫

𝑡

𝑎

Φ
∗
(𝑠, 𝜆)𝑊 (𝑠) 𝑓 (𝑠) 𝑑𝑠. (31)

This implies that for 𝑓 ∈ 𝐿2
𝑊
(𝑎, 𝑏), 𝑅(𝜆,𝐻

1
)𝑓 is a continuous

function in (𝑡, 𝜆) for 𝑎 < 𝑡 < 𝑏 and all 𝜆 ∈ C since 𝑎 is regular.
LetC

0
be a set of 𝑔 ∈ 𝐿2

𝑊
(𝑎, 𝑏) which has a compact support

in (𝑎, 𝑏). Then, for 𝑔 ∈ C
0
, the function

⟨𝑅 (𝜆,𝐻
1
) 𝑓, 𝑔⟩

𝑊
= ∫

𝑏

𝑎

𝑔
∗

(𝑡)𝑊 (𝑡) 𝑅 (𝜆,𝐻
1
) 𝑓 (𝑡) 𝑑𝑡 (32)

admits an extension to the continuous function in C. This,
together with Lemma 2, gives that

⟨𝑔, (𝐸 (𝑡
2
) − 𝐸 (𝑡

1
)) 𝑓⟩
𝑊

= (2𝜋𝑖)
−1 lim
𝛿→0+

lim
𝜖→0+

∫

𝑡
2
+𝛿

𝑡
1
+𝛿

⟨𝑔, (𝑅 (𝜎 + 𝑖𝜖,𝐻
1
)

−𝑅 (𝜎 − 𝑖𝜖,𝐻
1
)) 𝑓⟩
𝑊
𝑑𝜎

= 0.

(33)

Then, letting 𝑡
2

→ +∞ and 𝑡
1

→ −∞, we have
⟨𝑔, 𝑓⟩

𝑊
= 0, and hence 𝑓 = 0 since C

0
is dense in 𝐿2

𝑊
(𝑎, 𝑏).

From Lemma 3,𝐻
0
is simple. This completes the proof.

Let 𝑟(𝜆) be the number of linearly independent solutions
of (1) in 𝐿

2

𝑊
(𝑎, 𝑏) and (15) holds. Then, we can get the

following from𝐻 = 𝐻
∗

0
, Lemma 4, andTheorem 6.

Theorem7. Assume that (15) holds.Moreover, let 𝐼 = (𝜇
1
, 𝜇
2
),

−∞ ≤ 𝜇
1
< 𝜇
2
≤ ∞, be an interval such that 𝑟(𝜆) = 𝑑 for all

𝜆 ∈ 𝐼except an at most countable set 𝑋 ⊂ 𝐼. Then, for any self-
adjoint extension𝐻

1
of𝐻
0
, 𝜎
𝑐
(𝐻
1
) ∩ 𝐼 is empty and 𝜎(𝐻

1
) ∩ 𝐼

is nowhere dense in 𝐼.

Example 8. Consider (1) on [1,∞) with𝑚 = 2, and

𝐽 = (

0 −1

1 0
) , 𝑃 (𝑡) = (

−𝑐 0

0

𝑏

𝑡
2

) ,

𝑊 (𝑡) = (

1 0

0

1

𝑡
2

) ,

(34)
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where 𝑏 and 𝑐 are real numbers.Then, (1) satisfies assumption
(A) since𝑊(𝑡) > 0 for 𝑡 ∈ [1,∞). Let 𝜆 ∈ R.Then, the system
has two linearly independent solutions

𝑦
1
(𝑡) = (

(𝑏 + 𝜆) 𝑡
𝜔
1

𝜔
1
𝑡
𝜔
1
+1 ) , 𝑦

2
(𝑡) = (

(𝑏 + 𝜆) 𝑡
𝜔
2

𝜔
2
𝑡
𝜔
2
+1 ) , (35)

where 𝜔
1,2

are roots of the algebraic equation 𝜔2 + 𝜔 − (𝑏 +
𝜆)(𝑐 − 𝜆) = 0, that is,

𝜔
1,2
= −2
−1
(1 ± √Δ) , Δ = 1 + 4 (𝑏 + 𝜆) (𝑐 − 𝜆) . (36)

Let 𝜆
1,2

be the roots of Δ = 0, that is,

𝜆
1,2
= 2
−1
(𝑐 − 𝑏 ± √(𝑏 + 𝑐)

2
+ 1) . (37)

Then, 𝜆
1
> 𝜆
2
andΔ > 0 if 𝜆 ∈ (𝜆

2
, 𝜆
1
). It can be verified that

Δ > 0 yields that 𝑦
1
∈ 𝐿
2

𝑊
[1,∞) and 𝑦

2
∉ 𝐿
2

𝑊
[1,∞). Thus, if

𝜆 ∈ (𝜆
2
, 𝜆
1
), then 𝑟(𝜆) = 1. In addition, (15) holds since the

coefficients of (1) are real-valued in this case. Furthermore,
1 ≤ 𝑑 ≤ 2 by [17,Theorem 3.3]. If 𝑑 = 2, then for all 𝜆 ∈ C, all
the solutions of (1) are in 𝐿2

𝑊
[1,∞) by [3,Theorem 9.11.2] in

this case. This is a contradiction. Therefore, 𝑑 = 1, and then
by Theorem 6, for every self-adjoint extension 𝐻

1
of 𝐻
0
and

𝐼 = (𝜆
2
, 𝜆
1
), 𝜎
𝑐
(𝐻
1
) ∩ 𝐼 is empty and 𝜎(𝐻

1
) ∩ 𝐼 is nowhere

dense in 𝐼.
Consider the 2 × 2Hamiltonian system

𝐽𝑦
󸀠

(𝑡) + 𝑄 (𝑥, 𝜆) 𝑦 (𝑡) = 0, 𝑡 ∈ (𝑡
0
, 𝑏] , (38)

where 𝐽 = −𝐽 with 𝐽 given in Example 8, 𝑄(𝑡, 𝜆) = 𝑟(𝑡)𝐴 +

𝐵(𝑡, 𝜆) in which 𝜆 ∈ R, 𝐴 is a constant 2 × 2matrix such that
𝐴 = 𝐴

∗ and det𝐴 < 0,

lim
𝑡→ 𝑡
0

∫

𝑏

𝑡

𝑟 (𝑠) 𝑑𝑠 = −∞, ∫

𝐼
0

𝑟 (𝑠) 𝑑𝑠 ≤ 𝜌
0

(39)

on any subinterval 𝐼
0
⊂ (𝑡
0
, 𝑏]with some constant 𝜌

0
> 0, and

𝐵(⋅, 𝜆) is a 2 × 2 matrix-valued integrable function on (𝑡
0
, 𝑏]

satisfying that

∫

𝑏

𝑡
0

󵄨
󵄨
󵄨
󵄨
𝐵 (𝑡, 𝜇) − 𝐵 (𝑡, 𝜆)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 󳨀→ 0, 𝜇 󳨀→ 𝜆. (40)

Then, by [23, Theorem 3.1], for every 𝜆 ∈ R, system (1) has
two linearly independent solutions

𝑦
1
(𝑡) = (

ℎ
11
(𝑡, 𝜆)

ℎ
12
(𝑡, 𝜆)

) 𝑒
𝑠(𝑡)
, 𝑦

2
(𝑡) = (

ℎ
21
(𝑡, 𝜆)

ℎ
22
(𝑡, 𝜆)

) 𝑒
−𝑠(𝑡)

,

(41)

where 𝑠(𝑡) = 𝜎 − 𝛼∫

𝑏

𝑡
𝑟(𝜏)𝑑𝜏 for some constant 𝜎, 𝛼 =

√− det𝐴, and lim
𝑡→ 𝑡
0

ℎ
𝑖𝑗
(𝑡, 𝜆) (𝑖, 𝑗 = 1, 2) exist and are finite

for any given 𝜆 ∈ R.

Example 9. Consider (1) on (𝑡
0
, 𝑏] with𝑚 = 2, and

𝐽 = (

0 −1

1 0
) , 𝑃 (𝑡) = (

−(𝑡 − 𝑡
0
)
−2

0

0 (𝑡 − 𝑡
0
)
−2) ,

𝑊 (𝑡) = diag {1, 0} .

(42)

It can be easily verified that (1) satisfies assumption (A) under
the conditions (42). Furthermore, in this case system (1) can
be rewritten as (38) with 𝑄(𝑡, 𝜆) = 𝑟(𝑡)𝐴 + 𝐵(𝑡, 𝜆), 𝑟(𝑡) =
−(𝑡 − 𝑡

0
)
−2, 𝐴 = diag{1, −1}, and 𝐵(𝑡, 𝜆) = diag{𝜆, 0}. It is

clear that (39) and (40) hold and det𝐴 = −1 < 0. Therefore,
the system has two linearly independent solutions given by
(41) with 𝛼 = 1. Clearly, 𝑦

1
∉ 𝐿
2

𝑊
(𝑡
0
, 𝑏) and 𝑦

2
∈ 𝐿
2

𝑊
(𝑡
0
, 𝑏)

for all 𝜆 ∈ R. Thus, if 𝜆 ∈ R, then 𝑟(𝜆) = 1. Here, let 𝐻
0

be the minimal operator corresponding to this case. With a
similar argument to Example 8, it can be obtained that the
positive and negative indices of 𝐻

0
are equal to 1. Note that

the corresponding results toTheorem 7 hold for the case that
𝑎 is singular and 𝑏 is regular. Then, for every self-adjoint
extension 𝐻

1
of 𝐻
0
, 𝜎
𝑐
(𝐻
1
) ∩ R is empty and 𝜎(𝐻

1
) ∩ R is

nowhere dense in R.
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