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We describe the use of conformalmappings as amathematicalmechanism to obtain exact solutions of the Einstein field equations in
general relativity. The behaviour of the spacetime geometry quantities is given under a conformal transformation, and the Einstein
field equations are exhibited for a perfect fluid distribution matter configuration. The field equations are simplified and then exact
static and nonstatic solutions are found. We investigate the solutions as candidates to represent realistic distributions of matter.
In particular, we consider the positive definiteness of the energy density and pressure and the causality criterion, as well as the
existence of a vanishing pressure hypersurface to mark the boundary of the astrophysical fluid.

1. Introduction

The gravitational evolution of celestial bodies may be mod-
eled by the Einstein field equations. These are a system of
ten highly coupled partial differential equations expressing
an equivalence between matter and geometry. The equations
are extremely difficult to solve in general and so simpler cases
have to be treated to gain an understanding into how certain
types ofmatter behave under the influence of the gravitational
field. For example, the most studied configuration of a matter
distribution is that of a static spherically symmetric perfect
fluid. The assumption of spherical symmetry has the effect of
reducing the field equations to a system of three equations in
four unknowns if the matter is neutral. While this is a severe,
but reasonable, restriction, even in this case not all solutions
to the system of field equations have been found. Work on
this problem has been ongoing since the first exact solution
appeared in 1916 when Karl Schwarzschild published his
solution for a vacuum (matter free), and, to the present, this
exterior solution continues to be used to model phenomena
such as black holes. This solution is unique, and, moreover,
Birkhoff [1] showed that the solution is independent of
whether the sphere is static or not. In other words, the
Schwarzschild exterior solution [2] is simply a consequence
of the spherical geometry. From this theorem also follows
the conclusion that pulsating fluid spheres do not generate
gravitational waves.

By considering the case of a uniform density sphere,
Schwarzschild [3] found a unique interior solution. However,
the problemof finding all possible solutions for a nonconstant
energy density is still an open problem. Since the system of
field equations is underdetermined, one of the geometric or
dynamical variables must be specified at the outset.This free-
dom of choice renders it impractical to determine all possible
solutions. A comprehensive review of the static spherically
symmetric fluid sphere has been compiled by Delgaty and
Lake [4]. Recent work by Fodor [5], Martin and Visser [6],
Lake [7], Boonserm et al. [8], and Rahman and Visser [9],
which resuscitated an idea first proposed by Wyman [10],
reported algorithms for finding all possible exact solutions.
However, each prescription required an integration or two
which may be intractable in practice given that a certain
variable had to be selected in some ad hoc fortuitous way.
In any event, even if solutions to the field equations are
found, they have to satisfy certain physical requirements to
be considered candidates for realistic matter. Finch and Skea
[11] studied over 100 exact solutions and have found that only
about 16 satisfy the most elementary physical requirements.
It should be remarked that the importance of some of the
so called requirements for physical plausibility is debatable
given that the gravitational processes inside a star may not be
accurately determined.

If spherical symmetry is maintained and if, in addition,
the matter distribution contained charge, then the Einstein
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field equationsmust be supplemented byMaxwell’s equations
which incorporate the effects of the electromagnetic field.
These Einstein-Maxwell equations constitute a set of six field
equations in four unknowns. In this case, the problem is
simpler as now two of the matter or geometrical quantities
must be chosen at the beginning and the remaining four
will follow from the integration of the field equations. A
detailed collection of the two-variable choices that have been
considered has been achieved by Ivanov [12]. The caveat is
that, although there is an extra degree of freedom, finding
physically palatable solutions is extremely rare. Addition-
ally, it is required that the exact solution for the interior
be matched with the unique exterior solution for charged
spheres according to Reissner [13] and Nordstrom [14]. The
solution of Hansraj and Maharaj [15] in the form of Bessel
functions of half integer order was shown to satisfy ele-
mentary physical requirements. Other matter configurations
include radiation and rotation. In each case a unique exterior
solution has been found—the exterior metric for a radiating
star is credited to Vaidya [16], while an exterior metric for
a rotating sphere was constructed by Kerr [17]. While in the
case of radiating spheres many interior solutions have been
found, this is not the case for a rotating sphere. The problem
of finding a solution to the Einstein field equations that
incorporate rotations is still unsolved problem in classical
general relativity.

The mathematical approach described earlier often relies
on choosing functional forms for some of the variables that
eventually allow for the integration of the entire system of
differential equations. Fortunately, the analysis is simplified
by the fact that a single master equation holds the key to
unlocking the whole system. This master equation may be
interpreted as a second-order linear differential equation
(see Duorah and Ray [18], Durgapal and Bannerji [19], and
Finch and Skea [20]) or as a first-order Ricatti equation
(for example, see Lake [7] and Fodor [5]). Once a solution
is found, then the physical and geometric quantities must
be established and checked for physical plausibility. An
alternative approach is to impose some physical constraints a
priori, for example, to prescribe an equation of state relating
the pressure and energy density. However, the drawback of
this approach is that the field equations may not be solvable.
Only a few solutions of this kind have been reported in the
literature. Interestingly, the charged analogue of the Finch-
Skea [20] stars reported by Hansraj and Maharaj [15] turned
out to possess a barotropic equation of state.This is a desirable
feature of physically reasonable perfect fluids.

The situation when considering nonstatic (that is, time
dependent) matter configurations introduces another level of
complexity into the problem. The partial differential equa-
tions are now in terms of the spatial and temporal coordi-
nates. Finding exact solutions usually amounts to prescribing
relationships between the geometric quantities in order to
solve the field equations completely.Therefore, in view of this
difficulty, we consider an alternative mathematical approach.
We employ conformal mappings on existing (possibly defec-
tive) solutions possessing Killing algebras (see Table 1) with
the intention of solving the now conformally related Einstein
field equations. The reason for the potential success of this

Table 1

(1) 𝜓 = 0 X is a Killing vector
(2) 𝜓
;𝑎
= 0 ̸= 𝜓 X is a homothetic Killing vector

(3) 𝜓
;𝑎𝑏

= 0 ̸= 𝜓
;𝑎

X is a special conformal Killing vector
(4) 𝜓
;𝑎𝑏

̸= 0 X is a nonspecial conformal Killing vector

approach has to do with the fact that the existence of confor-
mal Killing vectors is known to simplify the field equations—
in other words, they involve a geometric constraint.This is in
opposition to an algebraic constraint which may be imposed,
for example, by demanding that the eigenvectors of the Weyl
tensor have certain preferred alignments.This gives rise to the
Petrov [21] classification scheme which in reality is a result in
pure mathematics applicable to any Lorentzian manifold. In
our approach, the procedure is aided by the Defrise-Carter
[22] theorem which specifies how conformal Killing vectors
become Killing vectors under conformal transformations.
The theorem states the following: suppose that a manifold
(𝑀, g) is neither conformally flat nor conformally related to
a generalised plane wave. Then, a Lie algebra of conformal
Killing vectors on 𝑀 with respect to g can be regarded as a
Lie algebra of Killing vectors with regard to some metric on
𝑀 conformally related to g [23].

The benefit of utilising this approach is that wemay utilise
a known exact solution of the Einstein field equations and
then solve the associated conformally related equations. This
is because the conformal Einstein tensor splits neatly into the
original Einstein tensor and a conformally related part. So,
for example, if one begins with a vacuum seed solution, then
it is known that the Einstein tensor is zero and so only the
conformal part must now be considered in conjunction with
a perfect fluid energy momentum tensor. Such solutions are
referred to as conformally Ricci-flat spacetimes. This scheme
has yielded useful results. A pioneering work on this method
was conducted by van den Bergh [24, 25], and, recently
Castejón-Amenedo and Coley [26] and Hansraj et al. [27]
found new classes of exact solutions that were nonstatic. In
fact, the fluid congruences were found to be accelerating,
shearing, and expanding, which is a category of solution types
that is rare. Hansraj [28] analysed the conjecture of van den
Bergh [24] that perfect fluid spacetimes can be found by using
the nonconformally flat Schwarzschild exterior solution. It
was proved that all such spacetimes are necessarily static,
and a class of exact solutions were reported. In Hansraj
et al. [27], use was made of a nonvacuum seed solution
however, no physical analysis of the resulting solutions was
carried out. Govinder and Hansraj [29] completely analysed
the most general set of field equations with the help of Lie
group analysis methods and found new exact solutions. As
the solutions were four dimensional, it was not possible to
provide a full physical analysis. We consider these aspects in
the current paper.

2. Differential Geometry

A brief consideration of the mathematical framework for this
problem will be in order. We consider a spacetime (𝑀, 𝑔),
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where 𝑀 is a 4-dimensional differentiable manifold with
respect to a symmetric, nonsingular metric field 𝑔. Points in
𝑀 are labelled by real coordinates, three of which are space-
like and one is timelike. The points are represented as (𝑥𝑎) =
(𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
), where 𝑥0 is timelike and 𝑥

1, 𝑥2, and 𝑥
3 are

spacelike.
The invariant distance between neighbouring points of a

curve in𝑀 is defined by the fundamental metric form

𝑑𝑠
2

= 𝑔
𝑎𝑏
𝑑𝑥
𝑎

𝑑𝑥
𝑏

, (1)

where 𝑔
𝑎𝑏

is referred to as the metric tensor. It is symmetric
and possesses an inverse 𝑔𝑎𝑏 = 1/𝑔

𝑎𝑏
. The Christoffel symbol

Γ is a metric connection that preserves inner products under
parallel transport. The coefficients of Γ are calculated by

Γ
𝑎

𝑏𝑐
=
1

2
𝑔
𝑎𝑑

(𝑔
𝑐𝑑,𝑏

+ 𝑔
𝑑𝑏,𝑐

− 𝑔
𝑏𝑐,𝑑

) , (2)

where commas denote partial differentiation.
The Riemann curvature tensor (also known as Riemann-

Christoffel tensor) is a (1, 3) tensor field whose coordinate
components are given in terms of the coordinate components
of the connection as follows:

𝑅
𝑎

𝑏𝑐𝑑
= Γ
𝑎

𝑏𝑑,𝑐
− Γ
𝑎

𝑏𝑐,𝑑
+ Γ
𝑎

𝑒𝑐
Γ
𝑒

𝑏𝑑
− Γ
𝑎

𝑒𝑑
Γ
𝑒

𝑏𝑐
. (3)

The Ricci tensor 𝑅
𝑎𝑏
, obtained by contraction of the Riemann

curvature tensor, is given by

𝑅
𝑎𝑏
= Γ
𝑑

𝑎𝑏,𝑑
− Γ
𝑑

𝑎𝑑,𝑏
+ Γ
𝑒

𝑎𝑏
Γ
𝑑

𝑒𝑑
− Γ
𝑒

𝑎𝑑
Γ
𝑑

𝑒𝑏
. (4)

Upon contraction of the Ricci tensor, we obtain the Ricci
scalar 𝑅, given by

𝑅 = 𝑔
𝑎𝑏

𝑅
𝑎𝑏
. (5)

The Einstein tensor𝐺
𝑎𝑏
is obtained from the Ricci tensor and

the Ricci scalar in the following way:

𝐺
𝑎𝑏
= 𝑅
𝑎𝑏
−
1

2
𝑅𝑔
𝑎𝑏
. (6)

For matter in its neutral state, the energy-momentum tensor
𝑇
𝑎𝑏
is given by

𝑇
𝑎𝑏
= (𝜇 + 𝑝) 𝑢

𝑎
𝑢
𝑏
+ 𝑝𝑔
𝑎𝑏
+ 𝑞
𝑎
𝑢
𝑏
+ 𝑞
𝑏
𝑢
𝑎
+ 𝜋
𝑎𝑏
, (7)

where 𝜇 is the energy density, 𝑝 is the isotropic pressure, 𝑞
𝑎

is the heat flow vector, 𝜋
𝑎𝑏

is the stress tensor and 𝑢
𝑎
is the

velocity field vector.
For a perfect fluid, the energy-momentum tensor, reduces

to

𝑇
𝑎𝑏
= (𝜇 + 𝑝) 𝑢

𝑎
𝑢
𝑏
+ 𝑝𝑔
𝑎𝑏
. (8)

The energy-momentum tensor (8) and the Einstein tensor (6)
are related via the Einstein field equations in the following
way:

𝐺
𝑎𝑏
= 𝑇
𝑎𝑏
. (9)

This is a system of 10 partial differential equations which are
highly nonlinear and hence difficult to integrate in general.

It is also of importance to our work to mention the Weyl
conformal tensor which has physical relevance in expressing
the tidal force a body experiences when moving along a
geodesic. In fact, the Weyl tensor is the traceless component
of the Riemann tensor and is given by

𝐶
𝑎𝑏𝑐𝑑

= 𝑅
𝑎𝑏𝑐𝑑

+
1

(𝑛 − 1) (𝑛 − 2)
𝑅 (𝑔
𝑎𝑐
𝑔
𝑏𝑑
− 𝑔
𝑎𝑑
𝑔
𝑏𝑐
)

−
1

𝑛 − 2
(𝑔
𝑎𝑐
𝑅
𝑏𝑑
− 𝑔
𝑏𝑐
𝑅
𝑎𝑑
+ 𝑔
𝑏𝑑
𝑅
𝑎𝑐
− 𝑔
𝑎𝑑
𝑅
𝑏𝑐
) .

(10)

3. Conformal Geometry

A variety of symmetries may be defined on the manifold
by the action of LX on the metric tensor and associated
quantities [30, 31]. Of the various symmetries that are pos-
sible, we are primarily concerned with conformal motions. A
conformal Killing vector X is defined by the action ofLX on
the metric tensor field g so that

LX𝑔𝑎𝑏 = 2𝜓𝑔
𝑎𝑏
, (11)

where 𝜓(𝑥𝑎) is the conformal factor. There are four special
cases associated with (11), namely.

The spanning set {X
𝐴
} = {X

1
,X
2
, . . . ,X

𝑟
} of all the

conformal Killing vectors of a spacetime generates a Lie
algebra. The elements of this basis are related by

[X
𝐴
,X
𝐵
] = X

𝐴
X
𝐵
− X
𝐵
X
𝐴

= 𝐶
𝐷

𝐴𝐵
X
𝐷
,

(12)

where the quantities 𝐶𝐷
𝐴𝐵

are the structure constants of the
group. The structure constants have the property of being
independent of the coordinate system but do depend on
the choice of the basis. The structure constants are skew
symmetric so that

𝐶
𝐷

𝐴𝐵
= −𝐶
𝐷

𝐵𝐴
(13)

and satisfy the identity

𝐶
𝐸

𝐴𝐷
𝐶
𝐷

𝐵𝐶
+ 𝐶
𝐸

𝐵𝐷
𝐶
𝐷

𝐶𝐴
+ 𝐶
𝐸

𝐶𝐷
𝐶
𝐷

𝐴𝐵
= 0. (14)

The integrability condition for the existence of a conformal
symmetry is given by

LX𝐶
𝑎

𝑏𝑐𝑑
= 0. (15)

Suppose that we are given a spacetime (𝑀, g) with line
element

𝑑𝑠
2

= 𝑔
𝑎𝑏
𝑑𝑥
𝑎

𝑑𝑥
𝑏 (16)

and a related spacetime (𝑀, g) with the line element

𝑑𝑠
2

= 𝑔
𝑎𝑏
𝑑𝑥
𝑎

𝑑𝑥
𝑏

. (17)
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Then, the previous two line elements are said to be confor-
mally related if

𝑔
𝑎𝑏
= 𝑒
2𝑈

𝑔
𝑎𝑏
, 𝑔

𝑎𝑏

= 𝑒
−2𝑈

𝑔
𝑎𝑏

, (18)

where𝑈(𝑥𝑐) is a nonzero, real-valued function of the coordi-
nates on𝑀. This transformation between g and g is called a
conformal transformation and is a special type of mapping
between metric spaces given by dilatation (or contraction)
of all lengths by a common factor which varies from point
to point. If X is a conformal Killing vector in the (𝑀, g)
spacetime so that (11) holds, that is,

LX𝑔𝑎𝑏 = 2𝜓𝑔
𝑎𝑏
, (19)

then X is also a conformal Killing vector in the related
spacetime (𝑀, g), and we have

LX𝑔𝑎𝑏 = 2𝜎𝑔
𝑎𝑏
. (20)

With the help of (11), (18), and (20), we can show that the
factors 𝜎 and 𝜓 are related by

𝜎 = [
LX (𝑒

2𝑈
)

2𝑒2𝑈
+ 𝜓] . (21)

From this, we can conclude that conformal transformations
map conformal Killing vectors to conformal Killing vec-
tors, with the conformal factors being different. However,
conformal transformations do not map Killing vectors or
homothetic Killing vectors to their respective counterparts
in the conformally related spacetime. Note that, in the trivial
case where 𝑒2𝑈 is constant, we have 𝜎 = 𝜓. However, it is
important to note that the converse does not hold. If 𝜎 = 𝜓,
then (21) implies that LX(𝑒

2𝑈
) = 0. This means that 𝑈 is

constant along the integral curves of the vector X, but it may
vary elsewhere on the manifold.

It should be noted that the connection coefficients,
Riemann curvature tensor, Ricci tensor, and Ricci scalar for
the metric 𝑔

𝑎𝑏
are related to those of the metric 𝑔

𝑎𝑏
= 𝑒
2𝑈
𝑔
𝑎𝑏

by the following formulae which are given in de Felice and
Clarke [32]:

Γ
𝑎

𝑏𝑐
= Γ
𝑎

𝑏𝑐
+
1

2
[𝛿
𝑎

𝑏
𝜙
𝑐
+ 𝛿
𝑎

𝑐
𝜙
𝑏
− 𝑔
𝑏𝑐
𝜙
𝑎

] ,

𝑅
𝑎

𝑏𝑐𝑑
= 𝑅
𝑎

𝑏𝑐𝑑
+ 𝛿
𝑎

[𝑑
∇
𝑐]
𝜙
𝑏
+ 𝑔
𝑏[𝑐
∇
𝑑]
𝜙
𝑎

+
1

2
𝛿
𝑎

[𝑐
𝜙
𝑑]
𝜙
𝑏
−
1

2
𝑔
𝑏[𝑐
𝜙
𝑑]
𝜙
𝑎

−
1

2
𝛿
𝑎

[𝑐
𝑔
𝑑]𝑏
𝜙
𝑒

𝜙
𝑒
,

𝑅
𝑏𝑑
= 𝑅
𝑏𝑑
−
1

2
[2𝜙
𝑏;𝑑

− 𝜙
𝑎
𝜙
𝑏
+ 𝑔
𝑎𝑏
𝜙
𝑒

𝜙
𝑒
]

−
1

2
𝑔
𝑏𝑑
𝜙
𝑎

;𝑎
,

𝑅 =
1

Ω
[𝑅 − 3𝜙

𝑒

;𝑒
−
3

2
𝜙
𝑒
𝜙
𝑒

] ,

(22)

where we have defined 𝜙
𝑎
= 𝜕
𝑎
(lnΩ) and Ω = 𝑒

2𝑈. Addi-
tionally, the conformal Einstein tensor G is given by

𝐺
𝑎𝑏
= 𝐺
𝑎𝑏
+ 2 (𝑈

𝑎
𝑈
𝑏
−
1

2
𝑈
𝑐

𝑈
𝑐
𝑔
𝑎𝑏
)

+ 2 (𝑈
𝑐

;𝑐
+ 𝑈
𝑐

𝑈
𝑐
) 𝑔
𝑎𝑏
− 2𝑈
𝑎;𝑏
,

(23)

where the covariant derivatives and contractions are calcu-
lated on the original metric 𝑔

𝑎𝑏
. Note that we may also write

the conformal Einstein tensor (23) as

𝐺
𝑎𝑏
= 𝐺
𝑎𝑏
− 2𝑈
𝑎
𝑈
𝑏
− 2𝑈
𝑎;𝑏

+ (2𝑈
𝑐

;𝑐
− 𝑈
𝑐

𝑈
𝑐
) 𝑔
𝑎𝑏
,

(24)

where the geometric quantities are now evaluated using the
conformally related metric 𝑔

𝑎𝑏
[33].

An important characteristic of conformal mappings is
that the Weyl tensor 𝐶 is invariant under the transformation;
that is,

𝐶
𝑎𝑏𝑐𝑑

= 𝐶
𝑎𝑏𝑐𝑑

, (25)

and consequently a conformal transformation is sometimes
referred to as a Weyl rescaling in the literature. A necessary
and sufficient condition that a spacetime is conformally flat is
that the Weyl tensor C vanishes.

The covariant derivative of the timelike fluid 4-vector field
u can be decomposed as follows

𝑢
𝑎;𝑏

= 𝜎
𝑎𝑏
+
1

3
Θℎ
𝑎𝑏
− 𝑢̇
𝑎
𝑢
𝑏
+ 𝜔
𝑎𝑏
, (26)

where ℎ
𝑎𝑏

= 𝑔
𝑎𝑏

+ 𝑢
𝑎
𝑢
𝑏
is the projection tensor. In the

previous, we have defined

𝑢̇
𝑎
= 𝑢
𝑎;𝑏
𝑢
𝑏

,

𝜔
𝑎𝑏
= 𝑢
[𝑎;𝑏]

+ 𝑢̇
[𝑎
𝑢
𝑏]
,

𝜎
𝑎𝑏
= 𝑢
(𝑎;𝑏)

+ 𝑢̇
(𝑎
𝑢
𝑏)
−
1

3
Θℎ
𝑎𝑏
,

Θ = 𝑢
𝑎

;𝑎
,

(27)

where 𝑢̇
𝑎
is the acceleration vector (𝑢̇𝑎𝑢

𝑎
= 0), 𝜔

𝑎𝑏
is the

skew-symmetric vorticity tensor (𝜔
𝑎𝑏
𝑢
𝑎

= 0), 𝜎
𝑎𝑏

is the
symmetric shear tensor (𝜎

𝑎𝑏
𝑢
𝑏
= 0 = 𝜎

𝑎

𝑎
), and Θ is the rate

of expansion.
Under a conformal transformation 𝑔

𝑎𝑏
= 𝑒
2𝑈
𝑔
𝑎𝑏
, the

world lines are the same and the velocity field transforms as

𝑢
𝑎
= 𝑒
𝑈

𝑢
𝑎

(28)

and we obtain

𝑢̇
𝑎
= 𝑒
𝑈

(𝑢̇
𝑎
+ 𝑢
𝑎
𝑢
𝑏
𝑈
,𝑏

+ 𝑈
,𝑎
) ,

Θ = 𝑒
−𝑈

Θ − 3𝑢
𝑎

(𝑒
−𝑈

)
,𝑎

,

𝜔
𝑎𝑏
= 𝑒
𝑈

𝜔
𝑎𝑏
,

𝜎
𝑎𝑏
= 𝑒
𝑈

𝜎
𝑎𝑏

(29)
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for the transformed kinematical quantities listed in (27).
The quantities, (29) will be useful in studying the physical
behaviour of the models generated by a conformal transfor-
mation [27].

4. Einstein Field Equations

We consider the metric

𝑑𝑠
2

= −𝑑𝑡
2

+ 𝑑𝑥
2

+ 𝑒
2](𝑦,𝑧)

(𝑑𝑦
2

+ 𝑑𝑧
2

) , (30)

which is of Petrov type D. Solving (11) for this metric reveals
that (30) admits three Killing vectors, namely,

𝑋
1
= 𝜕
𝑡
,

𝑋
2
= 𝜕
𝑥
,

𝑋
3
= 𝑥𝜕
𝑡
+ 𝑡𝜕
𝑥

(31)

with the Lie bracket relations

[𝑋
1
, 𝑋
2
] = 0,

[𝑋
1
, 𝑋
3
] = 𝑋

2
,

[𝑋
2
, 𝑋
3
] = 𝑋

1
.

(32)

The conformally related analogue is given by

𝑑𝑠
2

= 𝑒
2𝑈(𝑡,𝑥,𝑦,𝑧)

[−𝑑𝑡
2

+ 𝑑𝑥
2

+ 𝑒
2](𝑦,𝑧)

(𝑑𝑦
2

+ 𝑑𝑧
2

)] . (33)

By the Defrise-Carter [22] theorem, the previous Killing
vectors are now conformal Killing vectors, given by

𝑌
1
= 𝑈
𝑡
,

𝑌
2
= 𝑈
𝑥
,

𝑌
3
= 𝑥𝑈
𝑡
+ 𝑡𝑈
𝑥
.

(34)

To determine the perfect fluid energy-momentum tensor,
we select a fluid 4-velocity vectoru that is noncomoving of the
form

𝑢
𝑎

= 𝑒
−𝑈

(cosh V𝛿𝑎
0
+ sinh V𝛿𝑎

1
) , (35)

where V = V(𝑡, 𝑥). Note that utilising a comoving velocity field
would also lead to conformal flatness, and this case is not of
immense interest as explained previously.

The coupling of the conformal Einstein tensor and the
transformed energy momentum tensor yields the Einstein
field equations given by

𝑈
𝑡
𝑈
𝑦
− 𝑈
𝑡𝑦
= 0, (36)

𝑈
𝑡
𝑈
𝑧
− 𝑈
𝑡𝑧
= 0, (37)

𝑈
𝑥
𝑈
𝑦
− 𝑈
𝑥𝑦
= 0, (38)

𝑈
𝑥
𝑈
𝑧
− 𝑈
𝑥𝑧
= 0, (39)

𝑈
𝑡
𝑈
𝑥
− 𝑈
𝑡𝑥
= −

1

4
(𝜇 + 𝑝) 𝑒

2𝑈 sinh 2V, (40)

𝑈
𝑦
𝑈
𝑧
− 𝑈
𝑦𝑧
+ ]
𝑧
𝑈
𝑦
+ ]
𝑦
𝑈
𝑧
= 0, (41)

− 2𝑈
𝑥𝑥
− 𝑈
2

𝑥
+ 3𝑈
2

𝑡

− 𝑒
−2]

(2𝑈
𝑦𝑦
+ 2𝑈
𝑧𝑧
+ 𝑈
2

𝑦
+ 𝑈
2

𝑧
+ ]
𝑦𝑦
+ ]
𝑧𝑧
)

= (𝜇 + 𝑝) 𝑒
2𝑈cosh2V − 𝑝𝑒2𝑈,

(42)

− 2𝑈
𝑡𝑡
− 𝑈
2

𝑡
+ 3𝑈
2

𝑥

+ 𝑒
−2]

(2𝑈
𝑦𝑦
+ 2𝑈
𝑧𝑧
+ 𝑈
2

𝑦
+ 𝑈
2

𝑧
+ ]
𝑦𝑦
+ ]
𝑧𝑧
)

= (𝜇 + 𝑝) 𝑒
2𝑈sinh2V + 𝑝𝑒2𝑈,

(43)

2𝑈
𝑧𝑧
+ 𝑈
2

𝑧
+ 3𝑈
2

𝑦
+ 2]
𝑦
𝑈
𝑦
− 2]
𝑧
𝑈
𝑧

+ 𝑒
2]
(2𝑈
𝑥𝑥
− 2𝑈
𝑡𝑡
+ 𝑈
2

𝑥
− 𝑈
2

𝑡
) = 𝑝𝑒

2]+2𝑈
,

(44)

2𝑈
𝑦𝑦
+ 𝑈
2

𝑦
+ 3𝑈
2

𝑧
− 2]
𝑦
𝑈
𝑦
+ 2]
𝑧
𝑈
𝑧

+ 𝑒
2]
(2𝑈
𝑥𝑥
− 2𝑈
𝑡𝑡
+ 𝑈
2

𝑥
− 𝑈
2

𝑡
) = 𝑝𝑒

2]+2𝑈
(45)

for the line element (33).
The field equations may be reduced to a simpler form by

observing that an immediate consequence of (36)–(39) is the
functional form

𝑒
−𝑈

= 𝑓 (𝑡, 𝑥) + ℎ (𝑦, 𝑧) , (46)

where 𝑓 and ℎ are arbitrary functions and 𝑈 = 𝑈(𝑡, 𝑥, 𝑦, 𝑧).
After a series of arduous calculations, it may be shown that
(36)–(45) reduce to the simpler set of equations

𝜇 = 3 (𝑓
2

𝑡
− 𝑓
2

𝑥
) + (𝑓 + ℎ) (4𝑘𝑓 − 2𝑘ℎ + 3𝛼)

− 3𝑒
−2]

(ℎ
2

𝑦
+ ℎ
2

𝑧
) ,

(47)

𝑝 = −3 (𝑓
2

𝑡
− 𝑓
2

𝑥
) + (𝑓 + ℎ) (2𝑓

𝑡𝑡
− 2𝑓
𝑥𝑥
+ 2𝑘ℎ − 𝛼)

+ 3𝑒
−2]

(ℎ
2

𝑦
+ ℎ
2

𝑧
) ,

(48)

tanh2V =
2𝑓
𝑥𝑥
− 2𝑘𝑓 − 𝛼

2𝑓
𝑡𝑡
+ 2𝑘𝑓 + 𝛼

, (49)

𝑓
2

𝑡𝑥
=
1

4
(2𝑓
𝑥𝑥
− 2𝑘𝑓 − 𝛼) (2𝑓

𝑡𝑡
+ 2𝑘𝑓 + 𝛼) , (50)
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ℎ
𝑦𝑧
= ]
𝑧
ℎ
𝑦
+ ]
𝑦
ℎ
𝑧
, (51)

ℎ
𝑦𝑦
− ℎ
𝑧𝑧
= 2]
𝑦
ℎ
𝑦
+ 2]
𝑧
ℎ
𝑧
, (52)

where 𝛼 is a separation constant and we have set ]
𝑦𝑦
+ ]
𝑧𝑧
=

−2𝑘𝑒
2], 𝑘 being a constant. Note that the expression ]

𝑦𝑦
+ ]
𝑧𝑧

is nonzero. If this expression was zero, theWeyl tensor would
vanish leading to conformally flat solutions. Such solutions
have already been fully determined as Stephani [34] stars in
the case of expansion or generalised Schwarzschild metrics
for no expansion. The set of (47)–(52) has been discussed in
general by Govinder andHansraj [29] with the help of the Lie
group analysis approach. New exact solutions were reported;
however, the difficulty of working with such solutions is that
they are 4 dimensional and therefore it is not transparent
whether the solutions could represent physically acceptable
matter configurations. For this reason, we elect to study some
physical properties by neglecting the 𝑦 and 𝑧 directional
contributions—that is, we set ℎ = 0 ala Castejón-Amenedo
and Coley [26].

5. The Static Case

As a first step, it is of interest to analyse the behaviour of our
model when it is time independent. That is, we consider the
conformal factor in the form 𝑈 = 𝑈(𝑥). The system of field
equations (47)–(52) reduces to

𝜇 = −3𝑓
2

𝑥
+ 𝑓 (4𝑘𝑓 + 3𝛼) , (53)

𝑝 = 3𝑓
2

𝑥
− 𝑓 (2𝑓

𝑥𝑥
+ 𝛼) , (54)

tanh2V =
2𝑓
𝑥𝑥
− 2𝑘𝑓 − 𝛼

2𝑘𝑓 + 𝛼
, (55)

0 = (2𝑓
𝑥𝑥
− 2𝑘𝑓 − 𝛼) (2𝑘𝑓 + 𝛼) , (56)

where it should be recalled that 𝛼 is a separation constant
(effectively an integration constant) and 𝑘 is an arbitrary
constant. Equation (56) leads to 𝑓 = −𝛼/2𝑘 which in turn
implies a constant conformal factor. This is trivial. However,
another consequence of (56) is the equation

2𝑓
𝑥𝑥
− 2𝑘𝑓 − 𝛼 = 0. (57)

Equation (57) is a standard second-order differential equation
with constant coefficients and its solution may be categorised
as follows (note in what follows that we take the coupling
constant 𝛼 to be positive without loss of generality:

𝑓 (𝑥) =

{{{{{

{{{{{

{

𝛼

4
𝑥
2
+ 𝐶
1
𝑥 + 𝐶

2
, 𝑘 = 0,

−
𝛼

2𝑘
+ 𝐶
1
cosh√𝑘𝑥 + 𝐶

2
sinh√𝑘𝑥, 𝑘 > 0,

𝛼

2𝑘
+ 𝐶
1
cos√−𝑘𝑥 + 𝐶

2
sin√−𝑘𝑥, 𝑘 < 0,

(58)

where 𝐶
1
and 𝐶

2
are integration constants.

5.1. The Case 𝑘 = 0. This case is not particularly interesting
because 𝑘 = 0 results in a metric that is conformally flat.

Such metrics have been found up to integration in general.
However, in this case, we are able to provide the explicit forms
for the kinematic and dynamical variables. When 𝑘 = 0, the
complete solution of the conformally related Einstein field
equations is given by

𝑒
−𝑈(𝑥)

=
𝛼

4
𝑥
2

+ 𝐶
1
𝑥 + 𝐶

2
,

𝜌 =
1

4
𝑘𝛼
2

𝑥
4

+ 2𝑘𝛼𝐶
1
𝑥
3

+ 2𝑘 (𝛼𝐶
2
+ 2𝐶
1

1
) 𝑥
2

+ 8𝑘𝐶
1
𝐶
2
𝑥 + (4𝑘𝐶

2

2
+ 3𝐶
2
− 3𝐶
2

1
) ,

𝑝 =
1

4
𝛼
2

𝑥
2

− 𝛼𝐶
1
𝑥 + (3𝐶

2

1
− 2𝛼𝐶

2
) ,

tanh V = 0.

(59)

Note that the vanishing of the tilting angle V in the
velocity vector also corroborates the conformal flatness of the
spacetime geometry for 𝑘 = 0.

5.2.The Case 𝑘 > 0. The energy density, pressure, and sound-
speed parameter have the forms

𝜇 = −3𝑘𝑔
2

+ 3𝛼 (
−𝛼

2𝑘
+ 𝑔) + 4𝑘(

−𝛼

2𝑘
+ 𝑔)

2

,

𝑝 = 3𝑘𝑔
2

− (
−𝛼

2𝑘
+ 𝑔) (𝛼 + 2𝑘𝑔) ,

𝑑𝑝

𝑑𝜇
= 1 −

𝛼

2𝑘𝑔
,

(60)

respectively, and we have made the redefinitions 𝑔 =

𝐶
1
cosh√𝑘𝑥 + 𝐶

2
sinh√𝑘𝑥 and 𝑔 = 𝐶

2
cosh√𝑘𝑥 +

𝐶
1
sinh√𝑘𝑥. In order to satisfy the weak, strong, and domi-

nant energy conditions, we require that each of

𝜇 − 𝑝 = −6𝑘𝑔
2

+ 2 (
−𝛼

2𝑘
+ 𝑔) (𝛼 + 4𝑔) ,

𝜇 + 𝑝 = 2𝑘𝑔 (
−𝛼

2𝑘
+ 𝑔) ,

𝜇 + 3𝑝 = 6𝑘𝑔
2

+
(𝛼 + 𝑘𝑔) (𝛼 − 2𝑘𝑔)

𝑘

(61)

be positive.
Now, it remains to select suitable values of the four

constants in the problem in order to generate an astrophys-
ical model that satisfies elementary conditions for physical
reality. In order to reduce the arbitrariness in selecting these
constants, we may consider the behaviour of the dynamical
variables at the central axis corresponding to 𝑥 = 0—with
the idea being that the constants should be compatible with
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a regular centre in the first place. Using the subscript 0 to
denote central values, we obtain

𝜌
0
=
6𝑘
2
𝐶
2

2
− 8𝑘
2
𝐶
2

1
+ 2𝛼𝑘𝐶

1
+ 𝛼
2

𝑘
≤ 0, (62)

𝑝
0
=
6𝑘
2
𝐶
2

2
− 4𝑘
2
𝐶
2

1
− 𝛼
2

𝑘
≥ 0, (63)

0 < (
𝑑𝑝

𝑑𝜌
)

0

= 1 −
𝛼

2𝑘𝐶
1

< 1, (64)

where it must be recalled that 𝛼 and 𝑘 are positive. The right-
most inequality of (64) implies that 𝐶

1
> 0, and the left

inequality requires that 𝐶
1
> 𝛼/2𝑘. In addition, (62) and

(63) lead to 𝛼
2
+ 4𝑘
2
𝐶
2

1
≤ 6𝑘
2
𝐶
2

2
≤ 8𝑘
2
𝐶
2

1
+ 2𝛼𝑘𝐶

1
+ 𝛼
2,

which places a constraint on 𝐶
2
. Empirical testing with these

constraints in mind results in the prescription 𝑘 = 1, 𝛼 = 2,
𝐶
1
= 12/5, and 𝐶

2
= −2 which produces pleasing physical

properties. Graphical representations of the dynamical and
energy profiles are shown in Figures 1 and 2, respectively.

From Figure 1, we observe that both the energy and
pressure are positive definite and monotonically decreasing
functions of the space variable 𝑥. Importantly, there exists
a pressure-free hypersurface at 𝑥 = 0, 11458 which iden-
tifies a boundary for the distribution of the perfect fluid.
Therefore, this model may succeed in modeling astrophysical
phenomena. In addition, it can be seen that the adiabatic
sound-speed index 𝑑𝑝/𝑑𝜇 remains constrained between 0

and 1 throughout the interior of this fluid configuration.
This is an indication that the sound speed is subluminal;
that is, the sound speed never exceeds the speed of light,
which is a fundamental postulate of the Einstein theory of the
gravitational field. Figure 2 reveals that the weak, strong, and
dominant energy conditions (𝜇 − 𝑝 > 0, 𝜇 + 𝑝 > 0 and 𝜇 +

3𝑝 > 0, resp.) are all satisfied throughout the fluid.

5.3. The Case 𝑘 < 0. In this case, the energy density, pressure
and sound-speed index are given by

𝜇 = 3𝑘𝑗
2

+ (
−𝛼

2𝑘
+ 𝑗) (𝛼 + 4𝑘𝑗) ,

𝑝 = −3𝑘𝑗
2

− (
−𝛼

2𝑘
+ 𝑗) (𝛼 + 2𝑘𝑗) ,

𝑑𝑝

𝑑𝜇
= 1 −

𝛼

2𝑘𝑗
,

(65)

where we have defined 𝑗 = 𝐶
1
cos√−𝑘𝑥 + 𝐶

2
sin√−𝑘𝑥 and

𝑗 = 𝐶
2
cos√−𝑘𝑥 − 𝐶

1
√−𝑘𝑥. The quantities

𝜇 − 𝑝 = 6𝑘𝑗
2

+
(−𝛼 + 2𝑘𝑗) (𝛼 + 3𝑘𝑗)

𝑘
, (66)

𝜇 + 𝑝 =
𝑘𝑗 (−𝛼 + 𝑘𝑗)

𝑘
, (67)

𝜇 + 3𝑝 = −6𝑘𝑗
2

−
(−𝛼 + 2𝑘𝑗) (𝛼 + 𝑘𝑗)

𝑘
(68)

will assist in studying the energy conditions.
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Figure 1: Graph of energy density (𝜇), pressure (𝑝) and sound-speed
index (𝑑𝑝/𝑑𝜇).
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Figure 2: Graph of 𝜇 − 𝑝, 𝜇 + 𝑝, and 𝜇 + 3𝑝.

As above we now need to find suitable constants in order
to create a viable fluid model. Again we examine the above
quantities at the central axis 𝑥 = 0. We obtain

𝜌
0
=
6𝑘
2
𝐶
2

2
+ (−𝛼 + 2𝑘𝐶

1
) (𝛼 + 4𝑘𝐶

1
)

2𝑘
> 0, (69)

𝑝
0
=
−6𝑘
2
𝐶
2

2
− (−𝛼 + 2𝑘𝐶

1
) (𝛼 + 2𝑘𝐶

1
)

2𝑘
≥ 0, (70)

0 ≤
𝑑𝑝

𝑑𝜇
= 1 −

𝛼

2𝑘𝐶
1

< 1 (71)

as constraints on the constants. Now, from (71), we infer that
𝑟 < 0 and also that 𝛼 < 2𝑘𝐶

1
recalling that 𝛼 > 0 and 𝑘 < 0 in

this case. Furthermore, reconciling (69) and (70), we obtain
the relations 𝛼2 − 4𝑘

2
𝐶
2

1
< 6𝑘
2
𝐶
2

2
< 𝛼
2
+ 2𝛼𝑘𝐶

1
− 8𝑘
2
𝐶
2

1
.

Disregarding the middle term in this inequality, we derive
that 𝛼 > 2𝑘𝐶

1
which contradicts our earlier conclusion.

Therefore, it is impossible to satisfy the three most important
physical requirements 𝜌 > 0, 𝑝 ≥ 0, and 0 < 𝑑𝑝/𝑑𝜇 < 1

with any combination of the constants in the problem. In
other words, the case 𝑘 < 0 cannot represent a realistic fluid.
Therefore, we do not pursue any further consideration of this
case.
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6. Nonstatic Solutions

Finding nonstatic exact solutions of the Einstein equations for
a particular configuration ofmatter is nontrivial.Themethod
of conformal transformations gives us the ability to construct
non-static solutions from known static metrics. In the case
under investigation, we suppose that the conformal factor has
the simple form 𝑈 = 𝑈(𝑡). The field equations then have the
familiar form

𝜇 = 3𝑓
2

𝑡
+ 𝑓 (4𝑘𝑓 + 3𝛼) ,

𝑝 = −3𝑓
2

𝑡
+ 𝑓 (2𝑓

𝑡𝑡
− 𝛼) ,

tanh V =
− (2𝑘𝑓 + 𝛼)

2𝑓
𝑡𝑡
+ 2𝑘𝑓 + 𝛼

,

0 = (2𝑘𝑓 + 𝛼) (2𝑓
𝑡𝑡
+ 2𝑘𝑓 + 𝛼) ,

(72)

where now 𝑓 = 𝑓(𝑡) only. Once again, the conclusion
𝑓(𝑡) = 𝛼/2𝑘 leads to a trivial constant conformal factor, so
we disregard it. We examine the other possibility

2𝑓
𝑡𝑡
+ 2𝑘𝑓 + 𝛼 = 0 (73)

more closely. Equation (73) is a simple second-order differen-
tial equation and is solved by

𝑓 (𝑥) =

{{{{{{

{{{{{{

{

−
𝛼

4
𝑡
2
+ 𝐶
1
𝑡 + 𝐶
2
, 𝑘 = 0,

−
𝛼

2𝑘
+ 𝐶
1
cos√𝑘𝑡 + 𝐶

2
sin√𝑘𝑡, 𝑘 > 0,

𝛼

2𝑘
+ 𝐶
1
cosh√−𝑘𝑡 + 𝐶

2
sinh√−𝑘𝑡, 𝑘 < 0,

(74)

where 𝐶
1
and 𝐶

2
are integration constants. Let us examine

each case in turn.

6.1. The Case 𝑘 = 0. This case degenerates into a conformal
flat metric and so it is not worthy of further attention as such
metrics have already been discovered.

6.2. The Case 𝑘 > 0. If we make the change of variables 𝑙 =
𝐶
1
cos√𝑘𝑡+𝐶

2
sin√𝑘𝑡, and 𝑙̃ = 𝐶

2
cos√𝑘𝑡−𝐶

1
sin√𝑘𝑡 then

the relevant dynamical quantities have the following forms:

𝜇 = −3𝑘𝑙̃
2

−
1

2𝑘
(𝛼 − 2𝑘𝑙) (𝛼 + 4𝑘𝑙) ,

𝑝 = 3𝑘𝑙̃
2

+
1

2𝑘
(𝛼 − 2𝑘𝑙)

2

,

𝑑𝑝

𝑑𝜇
=

𝛼 − 14𝑘𝑙

2 (𝛼 + 𝑘𝑙)
.

(75)

It is pleasing to note that the positive definiteness of pressure
criterion is valid everywhere for this case 𝑘 > 0. We also
expect all physical constraints to be satisfied at the initial

condition 𝑡 = 0. Denoting initial values with the subscript
0, we have that the following inequalities must be satisfied:

𝜇
0
=
−6𝑘
2
𝐶
2

2
− 𝛼
2
− 2𝛼𝑘𝐶

1
+ 8𝑘
2
𝐶
2

1

2𝑘
> 0, (76)

𝑝
0
=
6𝑘
2
𝐶
2

2
+ 𝛼
2
− 4𝛼𝑘𝐶

1
+ 4𝑘
2
𝐶
2

1

2𝑘
≥ 0, (77)

0 < (
𝑑𝑝

𝑑𝜇
)

0

=
𝛼 − 14𝑘𝐶

1

2 (𝛼 + 𝑘𝐶
1
)
< 1. (78)

The first two relationships constrain 𝑘 as

− 𝛼
2

+ 4𝛼𝑘𝐶
1
− 4𝑘
2

𝐶
2

1

≤ 6𝑘
2

𝐶
2

2
< −𝛼
2

− 2𝛼𝑘𝐶
1
+ 8𝑘
2

𝐶
2

1
,

(79)

and the outer two expressions must satisfy 𝐶
1
< 0 or 𝐶

1
>

𝛼/2𝑘. The adiabatic sound-speed criterion (78) forces the
value of 𝐶

1
as −𝛼/16𝑘 < 𝐶

1
< 𝛼/14𝑘 since 𝛼 > 0 and

𝑘 > 0. An additional constraint on 𝐶
1
is implied by requiring

the positivity of the right hand side of (79). This is satisfied
provided that 𝐶

1
< −𝛼/4𝑘 or 𝐶

1
> 𝛼/2𝑘. Now, it can

immediately be seen that these inequalities are never satisfied
simultaneously for any value of 𝐶

1
. Accordingly, we deduce

that no physical reasonable model will result from this case.
That is, positivity of pressure and energy density as well as a
subluminal sound speed cannot all be achieved for any value
of the constant𝐶

1
.There is little value in considering the value

of 𝐶
2
in view of the nonsatisfaction of these requirements.

6.3. The Case 𝑘 < 0. In this case, the energy density, pressure,
and sound-speed index are given, respectively, by

𝜇 =
6𝑘 ∗ Ṽ2 + 5𝛼2 + 14𝛼𝑘V + 8𝑘2V2

2𝑘
,

𝑝 =
−6𝑘Ṽ2 − 𝛼2 + 4𝑘2V2

2𝑘
,

𝑑𝑝

𝑑𝜇
= −7 (

𝛼

2𝑘V
+ 1) ,

(80)

where we have again redefined V = 𝐶
1
cosh√−𝑘𝑡 +

𝐶
2
sinh√−𝑘𝑡 and Ṽ𝐶

2
cosh√−𝑘𝑡 + 𝐶

1
sinh√−𝑘𝑡. Reasoning

as before togetherwith empirical testing corroborates that it is
not possible to achieve simultaneously a positive pressure and
energy density. Additionally, the sound-speed index is always
found to be negative. Therefore, this model cannot model a
realistic distribution of stellar fluid.

7. A Spacetime Foliation 𝑈=𝑈(𝑡, 𝑥)

The Lie group analysis method has proved successful in gen-
erating broader classes of solutions than the ones discussed
previously. The functional forms for 𝑓(𝑡, 𝑥) for ℎ = 0 were
previously obtained byHansraj et al. [27] using group analysis
techniques. We now take these solutions and substitute
into expressions (47) and (48) to establish the dynamical



Journal of Applied Mathematics 9

quantities, energy density (𝜇) and pressure (𝑝).Thereafter, we
verify that the pressure and density profiles satisfy conditions
for physical acceptability. A rigorous analytical treatment
is prohibitive for general 𝑓(𝑡, 𝑥) and ℎ(𝑦, 𝑧), in view of
the complexity of the resultant expressions. Therefore, for
graphical purposes, it is necessary to consider a simplified
situation such as foliations of the distribution in terms of the
temporal and one space variable. It is not possible to visually
represent the complete 4-dimensional solution spacetime.
We accordingly select the particular solution

𝑓 (𝑥, 𝑡) = 𝐴 sinh√𝑘 (𝑡2 − 𝑥2) + 𝐵 cosh√𝑘 (𝑡2 − 𝑥2) (81)

presented by Hansraj et al. [27] together with that obtained
from 𝑍

1
. The conformally related metric (33) may now be

given by

𝑑𝑠
2

= (−𝑑𝑡
2

+ 𝑑𝑥
2

+ 𝑐
1
𝑒
𝑧
2
/8𝑦
2

(
𝑧

𝑦
)

3/4

×(
𝑧
2

𝑦2
− 1)

1/2

(𝑑𝑦
2

+ 𝑑𝑧
2

))

× ((𝑒
𝑐
1
+𝑧
2
/8𝑦
2

𝑦
3/4

𝑧
1/4

+ 𝐵 cosh [√𝑘 (𝑡2 − 𝑥2)]

+𝐴 sinh [√𝑘 (𝑡2 − 𝑥2)])
2

)

−1

,

(82)

and the energy density takes the form

𝜇 = − 3(𝑐
1
𝑒
𝑧
2
/8𝑦
2

(
𝑧

𝑦
)

3/4

(
𝑧
2

𝑦2
− 1)

1/2

)

−1

× ((
𝑒
𝑐
1
+𝑧
2
/8𝑦
2

𝑦
3/4

4𝑧3/4
+
𝑒
𝑐
1
+𝑧
2
/8𝑦
2

𝑧
5/4

4𝑦5/4
)

2

+(
3𝑒
𝑐
1
+𝑧
2
/8𝑦
2

𝑧
1/4

4𝑦1/4
−
𝑒
𝑐
1
+𝑧
2
/8𝑦
2

𝑧
9/4

4𝑦9/4
)

2

)

+ (𝑒
𝑐
1
+𝑧
2
/8𝑦
2

𝑦
3/4

𝑧
1/4

+ 𝐵 cosh [√𝑘 (𝑡2 − 𝑥2)]

+𝐴 sinh [√𝑘 (𝑡2 − 𝑥2)])

× (−2𝑒
𝑐
1
+𝑧
2
/8𝑦
2

𝑘𝑦
3/4

𝑧
1/4

− 3𝛼

+ 4𝑘 (𝐵 cosh [√𝑘 (𝑡2 − 𝑥2)]

+𝐴 sinh [√𝑘 (𝑡2 − 𝑥2)]))

+ 3((

𝐴𝑘𝑡 cosh [√𝑘 (𝑡2 − 𝑥2)]

√𝑘 (𝑡2 − 𝑥2)

+

𝐵𝑘𝑡 sinh [√𝑘 (𝑡2 − 𝑥2)]

√𝑘 (𝑡2 − 𝑥2)

)

2

−(−

𝐴𝑘𝑥 cosh [√𝑘 (𝑡2 − 𝑥2)]

√𝑘 (𝑡2 − 𝑥2)

−

𝐵𝑘𝑥 sinh [√𝑘 (𝑡2 − 𝑥2)]

√𝑘 (𝑡2 − 𝑥2)

)

2

),

(83)

while the pressure is given by

𝑝 = 3(𝑐
1
𝑒
𝑧
2
/8𝑦
2

(
𝑧

𝑦
)

3/4

(
𝑧
2

𝑦2
− 1)

1/2

)

−1

× ((
𝑒
𝑐
1
+𝑧
2
/8𝑦
2

𝑦
3/4

4𝑧3/4
+
𝑒
𝑐
1
+𝑧
2
/8𝑦
2

𝑧
5/4

4𝑦5/4
)

2

+(
3𝑒
𝑐
1
+𝑧
2
/8𝑦
2

𝑧
1/4

4𝑦1/4
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𝑒
𝑐
1
+𝑧
2
/8𝑦
2

𝑧
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4𝑦9/4
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2

)

−
𝑘 (3𝑡
2
+ 𝑥
2
)

(𝑡2 − 𝑥2)
(𝐴 cosh [√𝑘 (𝑡2 − 𝑥2)]

+𝐵 sinh [√𝑘 (𝑡2 − 𝑥2)])
2

+ (𝑒
𝑐
1
+𝑧
2
/8𝑦
2

𝑦
3/4

𝑧
1/4

+ 𝐵 cosh [√𝑘 (𝑡2 − 𝑥2)]
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𝑐
1
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2
/8𝑦
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𝑘
2
𝑡
2 cosh [√𝑘 (𝑡2 − 𝑥2)]
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3/2
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+

𝑘 cosh [√𝑘 (𝑡2 − 𝑥2)]

√𝑘 (𝑡2 − 𝑥2)

+

𝑘𝑡
2 sinh [√𝑘 (𝑡2 − 𝑥2)]

𝑡2 − 𝑥2
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𝑘
2
𝑥
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))).

(84)

In order to obtain an indication of the model’s feasibility
to represent a realistic distribution, we elect to make a
graphical study of this solution. The energy density and
pressure are given by

𝜇 = 4𝑘 (𝐵 cosh [√𝑘 (𝑡2 − 𝑥2)]

+𝐴 sinh [√𝑘 (𝑡2 − 𝑥2)])
2

− 3((

𝐴𝑘𝑡 cosh [√𝑘 (𝑡2 − 𝑥2)]
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)

2
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𝐵𝑘𝑥 sinh [√𝑘 (𝑡2 − 𝑥2)]

√𝑘 (𝑡2 − 𝑥2)

)

2

),

𝑝 = 2 (𝐵 cosh [√𝑘 (𝑡2 − 𝑥2)] + 𝐴 sinh [√𝑘 (𝑡2 − 𝑥2)])
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2
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)

− 𝐴(

−𝑘
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+ 𝐵(

𝑘𝑡
2 cosh [√𝑘 (𝑡2 − 𝑥2)]
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−
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2
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−
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+ 𝑥
2
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2

,

(85)

We need to select appropriate values for the parameters
𝐴, 𝐵, and 𝑘 to finalise the model. It should be observed at
this stage that, in many situations, it is possible to obtain
bounds for the constants by examining the central conditions
𝑝(𝑡, 0, 0, 0) and 𝜇(𝑡, 0, 0, 0). We then require that all the
physical conditions are satisfied at the centre. This is not
fruitful in the present context. Furthermore, the approach
in fixing integration constants in most problems in general
relativity involves matching of the perfect fluid solution
with its corresponding vacuum solution. For example, if
we were devising a model of a static neutral sphere, then
integration constants can be fixed by demanding continuity
of the potentials at the boundary hypersurface. In addition,
for such solutions, the pressure vanishes at the boundary,
and this determines the size of the sphere. In the case of
radiating spheres, this pressure-free interface does not exist,
and this condition is modified to include the effects of
radiation, and the junction conditions must be established
via other means. The difficulty in our analysis is that we have
no known vacuum solution. Consequently, our selection of
the constants is completely random. We are fortunate that
the available computing technology is able to quickly check
the efficacy of our choices for the integration constants (see
Figures 3 and 4).

These plots, generated viaMathematica [35], demonstrate
many pleasing features. For example, it is evident that, in
the region chosen, the pressure and energy density are both
positive. These are the most basic requirements for models
to serve as candidates for realistic celestial phenomena.
Therefore, it is possible for this solution to model a realistic
configuration of perfect fluid.

8. Conclusion

Wehave demonstrated that new static and nonstatic solutions
of the Einstein field equations may be constructed from
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Figure 3: Plot of pressure versus 𝑡 and 𝑥 with 𝐴 = 1, 𝐵 = 10, and
𝑘 = 0.1.
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Figure 4: Plot of energy density versus 𝑡 and 𝑥 with 𝐴 = 1, 𝐵 =

10, and 𝑘 = 0.1.

known solutions through the use of conformal mappings.
Even solutions that are considered as defective may serve
as seeds for new solutions which are physically reasonable.
The reason for the success of this approach is that the
seed solution is already a solution of the possibly vacuum
Einstein field equations. The Einstein tensor splits up neatly
into a part containing the original Einstein tensor and an
expression involving the conformal factor. It is this latter part
that must be coupled to an appropriate perfect fluid. The
mathematical reason for this behaviour is that the conformal
Killing vectors of the original seed metric become Killing
vectors of the new metric. This generates symmetries which
have the effect of simplifying the resultant field equations.
While 4-dimensional solutions to the field equations have
already been reported, solutions had not been analysed
for physical plausibility. We have endeavoured to construct
explicit models by considering cases where the conformal
factor is a function of a space variable 𝑈 = 𝑈(𝑥), a function
of the temporal coordinate 𝑈 = 𝑈(𝑡) only and finally the
case of the conformal factor as a function of space and time
𝑈 = 𝑈(𝑡, 𝑥). Analyses of each case show that it is possible to
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generate physically reasonable models through this method
of conformal transformations.
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[3] K. Schwarzschild, “Über das Gravitationsfeld einer Kugel aus
inkompressibler Flüssigkeit,” Sitzungsberichte Der Preussischen
Akademie DerWissenschaften, Physikalisch-Mathematische, vol.
K1, p. 424, 1916.

[4] M. S. R. Delgaty and K. Lake, “Physical acceptability of isolated,
static, spherically symmetric, perfect fluid solutions of Einstein’s
equations,” Computer Physics Communications, vol. 115, no. 2-3,
pp. 395–415, 1998.

[5] G. Fodor, “Generating spherically symmetric static perfect fluid
solutions,” http://arxiv.org/abs/gr-qc/0011040.

[6] D. Martin and M. Visser, “Algorithmic construction of static
perfect fluid spheres,” Physical Review D, vol. 69, no. 10, Article
ID 104028, 2004.

[7] K. Lake, “All static spherically symmetric perfect-fluid solutions
of Einstein’s equations,” Physical ReviewD, vol. 67, no. 10, Article
ID 104015, 2003.

[8] P. Boonserm,M.Visser, and S.Weinfurtner, “Generating perfect
fluid spheres in general relativity,” Physical Review D, vol. 71, no.
12, Article ID 124037, 2005.

[9] S. Rahman and M. Visser, “Spacetime geometry of static fluid
spheres,” Classical and Quantum Gravity, vol. 19, no. 5, pp. 935–
952, 2002.

[10] M.Wyman, “Radially symmetric distributions of matter,” Phys-
ical Review, vol. 75, pp. 1930–1936, 1949.

[11] M. R. Finch and J. E. F. Skea, 1998, http://www.dft.if.uerj.br/
usuarios/JimSkea/papers/pfrev.ps.

[12] B. V. Ivanov, “Static charged perfect fluid spheres in general
relativity,” Physical Review D, vol. 65, no. 10, Article ID 104001,
2002.
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