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We introduce impulsive cellular neural network models with piecewise alternately advanced and retarded argument (in short
IDEPCA).Themodel with the advanced argument is systemwith strong anticipation. Some sufficient conditions are established for
the existence and global exponential stability of a unique equilibrium.The approaches are based on employing Banach’s fixed point
theorem and a new IDEPCA integral inequality of Gronwall type. The criteria given are easily verifiable, possess many adjustable
parameters, and depend on impulses and piecewise constant argument deviations, which provides exibility for the design and
analysis of cellular neural network models. Several numerical examples and simulations are also given to show the feasibility and
effectiveness of our results.

1. Introduction

Chua and Yang [1] proposed a novel class of information-
processing systems called cellular neural networks (CNNs)
in 1988. Like neural networks, it is a large-scale nonlin-
ear analog circuit which processes signals in real time.
Like cellular automata [2] it is made of a massive aggre-
gate of regularly spaced circuit clones, called cells, which
communicate with each other directly only through its
nearest neighbors. Each cell is made of a linear capacitor,
a nonlinear voltage-controlled current source, and a few
resistive linear circuit elements. The key features of neural
networks are asynchronous parallel processing and global
interaction of network elements. Impressive applications of
neural networks have been proposed for various fields such as
optimization, linear and nonlinear programming, associative
memory, pattern recognition, and computer vision. For the
circuit diagram and connection pattern implementing the
CNN, one can refer to [1]. The CNN can be applied in
signal processing and can also be used to solve some image
processing and pattern recognition problems [3]. However,
it is necessary to solve some dynamic image processing and

pattern recognition problems by using delayed cellular neural
networks (DCNN) [4–6]. The study of the stability of CNN
and DCNN is known to be an important problem in theory
and applications.

On the other hand, in real world, many evolutionary
processes are characterized by abrupt changes at certain
time. These changes are known to be impulsive phenomena,
which are included in many fields such as physics, chemistry,
population dynamics, and optimal control. Fundamental
theory of impulsive differential equations has been developed
in [7]. Furthermore, researches of impulsive differential
equations have been receivedmuch interesting in recent years
[8–18]. Meanwhile, several kinds of neural networks with
impulse have been investigated. In particular, Xu and Yang
established the delay differential inequalities with impulsive
initial conditions; some new sufficient conditions for global
exponential stability of impulsive delay model were obtained
[15, 16].

Most neural networks can be classified into two types,
continuous or discrete. However, many real-world systems
and natural processes cannot be categorized into one of them.
They display characteristics both continuous and discrete
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styles. For instance, some biological neural networks in
biology, bursting rhythm models in pathology, and optimal
control models in economics are characterized by abrupt
changes of state.These are the familiar impulsive phenomena.

It is well known that applications of CNN depend cru-
cially on the dynamical behavior of the networks. In these
applications, stability and convergence of neural networks are
prerequisites. However, in the design of neural networks one
is interested not only in the uniform asymptotic stability but
also in the global exponential stability, which guarantees a
neural network to converge fast enough in order to achieve
fast response. In addition, in the analysis of dynamical
neural networks for parallel computation and optimization,
to increase the rate of convergence to the equilibrium point
of the networks and reduce the neural computing time, it
is necessary to ensure a desired exponential convergence
rate of the networks’ trajectories, starting from arbitrary
initial states to the equilibrium point which corresponds
to the optimal solution. Thus, from the mathematical and
engineering points of view, it is required that the neural
networks have a unique equilibrium point which is globally
exponentially stable. Therefore, the problem of stability anal-
ysis has received great attention and many results on this
topic have been reported in the literature. See, for instance,
[4, 9, 13, 19–27] and references cited therein.

1.1. Piecewise Constant Impulsive Systems. Differential equa-
tions with piecewise constant argument (in short DEPCA)
are first considered by Shah and Wiener [28] and Cooke
and Wiener [29] in the 80s and have been developed by
many authors. Applications of DEPCAs are discussed in
[30]. Theory and practice of DEPCA of general type, have
been discussed extensively in [31–37]. Piecewise constant
systems exist in widely expanded areas such as biomedicine,
chemistry, mechanical engineering, and physics. The sys-
tematical studies with mathematical models involving piece-
wise constant arguments were initiated for solving some
biomedical problems. These kinds of equations are similar
in structure to those found in certain sequential-continuous
models of disease dynamics. In [38], the following system
of equations describing the dynamics of the disease for
generation 𝑛 = 1, 2, . . . is investigated:

𝑑𝐼
(𝑛)

𝑑𝑡

(𝑡) = −𝑐 (𝑡) 𝐼
(𝑛)
(𝑡) + 𝑘 (𝑡) 𝑆

(𝑛)
(𝑡) 𝐼
(𝑛)
(𝑡) ,

𝑛 < 𝑡 ≤ 𝑛 + 1,

𝑑𝑆
(𝑛)

𝑑𝑡

(𝑡) = −𝑐 (𝑡) 𝑆
(𝑛)
(𝑡) − 𝑘 (𝑡) 𝑆

(𝑛)
(𝑡) 𝐼
(𝑛)
(𝑡) ,

𝑛 < 𝑡 ≤ 𝑛 + 1,

(1)

while

𝐼
(1)
(1) = 𝐼0, 𝑆

(1)
(1) = 𝑆0, (2)

where 𝑐 is the death rate and 𝑘 is the horizontal transmission
factor. These types of models are special cases of the general
form

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝐹 (𝑡, 𝑥𝑡) , [𝑡] < 𝑡 ≤ [𝑡] + 1, 𝑥[𝑡] = 𝜙[𝑡],

𝜙[𝑡] = 𝐺 ([𝑡] , 𝑥[𝑡]) , [𝑡] ≥ 2, 𝜙1 = 𝐻,

(3)

which arise naturally in a number of models of epidemic.
DEPCAs usually describe hybrid dynamical systems (a
combination of continuous and discrete) and so combine
properties of both differential and difference equations.

Impulsive differential equations with discontinuous argu-
ment are proposed as an open problem by Wiener [30] in
1994, namely, the impulsive differential equations with piece-
wise constant argument: IDEPCA. As we know, impulsive
differential equations with piecewise constant arguments (in
short IDEPCA) are studied in a few papers [8, 39, 40].

1.2. Model Description. First, let us give a general description
of the mathematical model of ICNNs with piecewise alter-
nately advanced and retarded argument:

𝑑𝑥𝑖 (𝑡)

𝑑𝑡

= −𝑎𝑖𝑥𝑖 (𝑡)

+

𝑛

∑

𝑗=1

{𝑏𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡)) + 𝑐𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑚[

𝑡 + 𝑙

𝑚

]))}

+ 𝑑𝑖, 𝑡 ̸=𝑚𝑘 − 𝑙,

(4a)

Δ𝑥𝑖
󵄨
󵄨
󵄨
󵄨𝑡=𝑚𝑘−𝑙

= 𝐽𝑖𝑘 (𝑥𝑖 (𝑚𝑘 − 𝑙
−
)) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ N,

(4b)

where [⋅] signifies the greatest integer function, 𝑙 and 𝑚 are
positive real numbers such that 𝑙 < 𝑚, 𝑡, 𝑥𝑖 ∈ R+, 𝑖 =

1, 2, . . . , 𝑛, Δ𝑥𝑖(𝑚𝑘 − 𝑙) = 𝑥𝑖(𝑚𝑘 − 𝑙) − 𝑥𝑖(𝑚𝑘 − 𝑙
−
), and

𝑥𝑖(𝑚𝑘 − 𝑙
−
) = limℎ→0− 𝑥𝑖(𝑚𝑘 − 𝑙 + ℎ). Moreover, 𝑛 denotes

the number of neurons in the network, 𝑥𝑖(𝑡) corresponds to
the state of the 𝑖th unit at time 𝑡, 𝑓𝑗(𝑥𝑗(𝑡)) and 𝑔𝑗(𝑥𝑗(𝑚[(𝑡 +
𝑙)/𝑚])) denote, respectively, the measures of activation to its
incoming potentials of the unit 𝑗 at time 𝑡 and discrete-time
𝑚[(𝑡 + 𝑙)/𝑚], 𝑎𝑖 denotes the rate with which the unit 𝑖 resets
its potential to the resting state when isolated from other
units and inputs, 𝑏𝑖𝑗 denotes the synaptic connection weight
of the unit 𝑗 on the unit 𝑖 at time 𝑡, 𝑐𝑖𝑗 denotes the synaptic
connection weight of the unit 𝑗 on the unit 𝑖 at discrete-time
𝑚[(𝑡 + 𝑙)/𝑚], and 𝑑𝑖 is the input from outside the network
to the unit 𝑖. The numbers 𝑥𝑖(𝑚𝑘 − 𝑙

−
) and 𝑥𝑖(𝑚𝑘 − 𝑙) are,

respectively, the states of the 𝑖th unit before and after impulse
perturbation at the moment𝑚𝑘 − 𝑙, 𝑘 ∈ N, and represent the
abrupt change of the state 𝐽𝑖𝑘(𝑥𝑖(𝑚𝑘 − 𝑙

−
)) at the impulsive

moment𝑚𝑘 − 𝑙.
Let us clarify why the IDEPCA (4a)-(4b) is of alternately

advanced and retarded type; that is, the argument can change
its deviation character during the motion. The argument
is deviated if it is advanced or retarded. Fix 𝑘 ∈ N,
and consider the IDEPCA on the interval 𝐼𝑘 = [𝑚𝑘 −
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𝑙, 𝑚(𝑘 + 1) − 𝑙). Then, the identification function𝑚[(𝑡 + 𝑙)/𝑚]
is equal to 𝑚𝑘. If 𝑡 ∈ 𝐼

+
𝑘 = [𝑚𝑘 − 𝑙,𝑚𝑘), then 𝑚[(𝑡 +

𝑙)/𝑚] ≥ 𝑡 and IDEPCA (4a)-(4b) is an equation with
advanced argument. Similarly, if 𝑡 ∈ 𝐼

−
𝑘 = (𝑚𝑘,𝑚(𝑘 +

1) − 𝑙) then 𝑚[(𝑡 + 𝑙)/𝑚] < 𝑡 and IDEPCA (4a)-(4b) is
an equation with retarded argument. Consequently, IDEPCA
(4a)-(4b) changes the type of deviation of the argument
during the process. In other words, the IDEPCA (4a)-(4b) is
of alternately advanced and retarded type.

For any solution 𝑥(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑛(𝑡))
𝑇 of IDEPCA

(4a)-(4b), the model can be summarized as follows:

𝑑𝑥 (𝑡)

𝑑𝑡

= −𝐴𝑥 (𝑡) + 𝐵𝑓 (𝑥 (𝑡)) + 𝐶𝑔(𝑥(𝑚[

𝑡 + 𝑙

𝑚

])) + 𝐷,

𝑡 ̸=𝑚𝑘 − 𝑙,

(5a)

Δ𝑥|𝑡=𝑚𝑘−𝑙 = 𝐽𝑘 (𝑥 (𝑚𝑘 − 𝑙
−
)) , 𝑘 ∈ N, (5b)

where 𝐴 = diag(𝑎1, . . . , 𝑎𝑛), 𝐵 = (𝑏𝑖𝑗)𝑛×𝑛, and 𝐶 = (𝑐𝑖𝑗)𝑛×𝑛 are
constant matrices and 𝐷 = (𝑑1, . . . , 𝑑𝑛) is a constant vector.
Moreover, the functions 𝑓 : R𝑛 󳨃→ R𝑛, 𝑔 : R𝑛 󳨃→ R𝑛 satisfy
(𝜕𝑓𝑖/𝜕𝑥𝑗) = (𝜕𝑔𝑖/𝜕𝑥𝑗) = 0 when 𝑖 ̸= 𝑗.

To the best of our knowledge, cellular neural network
with piecewise constant argument has been developed by few
authors, for example, Huang et al. Reference [41] considered
first the following cellular neural network with piecewise
constant delay:

𝑑𝑥𝑖 (𝑡)

𝑑𝑡

=−𝑎𝑖 ([𝑡]) 𝑥𝑖 (𝑡) +

𝑛

∑

𝑗=1

{𝑐𝑖𝑗 ([𝑡]) 𝑔𝑗 (𝑥𝑗 ([𝑡]))} + 𝑑𝑖 ([𝑡]),

(6)

where [⋅] signifies the greatest integer function. Some suf-
ficient conditions of existence and attractivity of almost
periodic sequence solution were given for the corresponding
discrete-time analogue:

𝑥𝑖 (𝑘 + 1) = 𝑥𝑖 (𝑘) 𝑒
−𝑎
𝑖

(𝑘)
+

1 − 𝑒
−𝑎
𝑖

(𝑘)

𝑎𝑖 (𝑘)

×

{

{

{

𝑛

∑

𝑗=1

𝑐𝑖𝑗 (𝑘) 𝑔𝑗 (𝑥𝑗 (𝑘)) + 𝑑𝑖 (𝑘)

}

}

}

.

(7)

In 2010, Akhmet and Yılmaz [8] considered first the follow-
ing impulsive neural network with only piecewise constant
retarded argument:

𝑑𝑥𝑖 (𝑡)

𝑑𝑡

= −𝑎𝑖𝑥𝑖 (𝑡) +

𝑚

∑

𝑗=1

{𝑏𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡)) + 𝑐𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝛽 (𝑡)))}

+ 𝑑𝑖, 𝑡 ̸= 𝜃𝑘,

Δ𝑥𝑖
󵄨
󵄨
󵄨
󵄨𝑡=𝜃
𝑘

= 𝐼𝑘 (𝑥𝑖 (𝜃
−

𝑘 )) , 𝑖 = 1, 2, . . . , 𝑚, 𝑘 ∈ N,

(8)

where 𝛽(𝑡) = 𝜃𝑘 if 𝜃𝑘 < 𝑡 < 𝜃𝑘+1, 𝑘 ∈ N, 𝑡 ∈ R+, is an
identification function and 𝜃𝑘 > 0, 𝑘 ∈ N, is a sequence

of real numbers. Several sufficient conditions are obtained for
the existence and stability of a unique 𝜔-periodic solution.

In this paper, we for the first time study the dynamic
behavior of impulsive cellular neural network models that
combine the properties of impulsive differential equations
and discrete-time difference equations, that is, the following
impulsive cellular neural network with piecewise alternately
advanced and retarded argument:

𝑑𝑥𝑖 (𝑡)

𝑑𝑡

= −𝑎𝑖𝑥𝑖 (𝑡)

+

𝑛

∑

𝑗=1

{𝑏𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡)) + 𝑐𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑚[

𝑡 + 𝑙

𝑚

]))}

+ 𝑑𝑖, 𝑡 ̸=𝑚𝑘 − 𝑙,

Δ𝑥𝑖
󵄨
󵄨
󵄨
󵄨𝑡=𝑚𝑘−𝑙

= 𝐽𝑖𝑘 (𝑥𝑖 (𝑚𝑘 − 𝑙
−
)) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ N.

(9)

The purpose of this paper is to derive some new and simple
sufficient conditions for the existence and uniqueness of
solutions of the ICNNswith IDEPCA system (5a)-(5b), which
is globally exponentially stable. This paper is organized as
follows. In Section 2, we establish several criteria for the
existence and uniqueness of a unique equilibrium of the
ICNNs with IDEPCA system and the equivalence lemma for
(5a)-(5b). Here, a new IDEPCA Gronwall-type inequality is
very useful. In Section 3, we derive some sufficient conditions
which ensure that a unique equilibrium of the ICNNs with
IDEPCA system (5a)-(5b) is globally exponentially stable.
In Section 4, two illustrative examples and the numerical
simulations are given to demonstrate the effectiveness of our
results. The conclusions are drawn in Section 5.

2. Existence and Uniqueness Theorems

In this section, sufficient conditions that govern the network
parameters and the activation functions are established for
the existence of a unique equilibrium state of the impulsive
cellular neural network models (5a)-(5b).

2.1. Preliminaries andDefinition. In this section, wewill focus
our attention on some preliminary results which will be used
in the existence and uniqueness of solutions of the ICNNs
with IDEPCA system (5a)-(5b).

For every 𝑡 ∈ R, let 𝑖 = 𝑖(𝑡) ∈ N be the unique integer
such that 𝑡 ∈ 𝐼𝑖 = [𝑚𝑖 − 𝑙, 𝑚(𝑖 + 1) − 𝑙).

For the sake of convenience, two of the standing assump-
tions are formulated below.

Lipschitz Condition

(L) The activation functions 𝑓𝑗 and 𝑔𝑗 with 𝑓𝑗(0) = 0,
𝑔𝑗(0) = 0 (𝑗 = 1, 2, . . . , 𝑛) satisfy the Lipschitz



4 Abstract and Applied Analysis

condition; that is, there are constants L𝑓
𝑗
, L𝑔
𝑗
> 0

such that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑓𝑗 (𝑢) − 𝑓𝑗 (V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ L
𝑓

𝑗 |
𝑢 − V| ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔𝑗 (𝑢) − 𝑔𝑗 (V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ L
𝑔

𝑗 |
𝑢 − V|

(10)

for all 𝑢, V ∈ R+.
The impulsive operator 𝐽𝑘 satisfies

󵄨
󵄨
󵄨
󵄨
󵄨
𝐽𝑗𝑘 (𝑢) − 𝐽𝑗𝑘 (V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ L
𝐽

𝑘 |
𝑢 − V| , (11)

for all 𝑢, V ∈ R+, 𝑗 = 1, . . . , 𝑛, 𝑘 ∈ N, whereL𝐽
𝑘
is a positive

Lipschitz constant.

Existence condition
(E) Consider

max
𝑖∈[1,...,𝑛]

{

{

{

1 − 𝑒
−𝑙⋅𝑎
∗

𝑎∗

(

𝑛

∑

𝑗=1

[L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
])

}

}

}

< 1, (12)

where min𝑖∈[1,...,𝑛] 𝑎𝑖 = 𝑎∗.

First, we prove the existence and uniqueness of solutions
of IDEPCA system (5a)-(5b). A natural extension of the
original definition of a solution of DEPCA [28–30, 42] allows
us to define a solution of IDEPCA system.

Definition 1. A function 𝑥 is a solution of IDEPCA system
(5a)-(5b) in R+ = [0,∞) if

(i) 𝑥(𝑡) is continuous for 𝑡 ∈ R+ with the possible
exception of the points 𝑡 = 𝑚𝑘 − 𝑙, 𝑘 ∈ N,

(ii) 𝑥(𝑡) is right continuous and has left-hand limits at the
points 𝑡 = 𝑚𝑘 − 𝑙, 𝑘 ∈ N,

(iii) 𝑥(𝑡) is differentiable and satisfies (5a) for any 𝑡 ∈ R+,
with the possible exception of the points 𝑡 = 𝑚𝑘 − 𝑙,
𝑘 ∈ N, where one-sided derivatives exist,

(iv) 𝑥(𝑛) satisfies (5b) for 𝑛 = 𝑘𝑚 − 𝑙, 𝑘 ∈ N.

To study nonlinear IDEPCA system, we will use the
approach based on the construction of an equivalent integral
equation. Let us give the following proposition.

Proposition 2. Let (𝜏, 𝑥0) ∈ R+ × R𝑛. The function 𝑥(𝑡) =
𝑥(𝑡, 𝜏, 𝑥0) is a solution on R+ of the IDEPCA system (5a)-(5b)
in the sense of Definition 1 if and only if it is a solution of the
integral equation

𝑥 (𝑡) = 𝑒
−𝐴(𝑡−𝜏)

𝑥0

+ ∫

𝑡

𝜏

𝑒
−𝐴(𝑡−𝑠)

[𝐵𝑓 (𝑥 (𝑠))

+𝐶𝑔(𝑥(𝑚[

𝑠 + 𝑙

𝑚

])) + 𝐷]𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

𝑒
−𝐴(𝑡−(𝑚𝑘−𝑙))

𝐽𝑘 (𝑥 (𝑚𝑘 − 𝑙
−
)) , 𝑡 ∈ R

+
.

(13)

In particular, one has the following integral equations: for
𝑖 = 1, . . . , 𝑛, 𝑡 ∈ R+,

𝑥𝑖 (𝑡) = 𝑒
−𝑎
𝑖

(𝑡−𝜏)
𝑥𝑖 (𝜏)

+ ∫

𝑡

𝜏

𝑒
−𝑎
𝑖

(𝑡−𝑠)
[

[

𝑛

∑

𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑠))

+

𝑛

∑

𝑗=1

𝑐𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑚[

𝑠 + 𝑙

𝑚

])) + 𝑑𝑖
]

]

𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

𝑒
−𝑎(𝑡−(𝑚𝑘−𝑙))

𝐽𝑖𝑘 (𝑥𝑖 (𝑚𝑘 − 1
−
)) .

(14)

The proof of Proposition 2 is almost identical to the
verification in [7] with slight changes which are caused by the
piecewise constant argument.

In the next, we give the following lemma about IDEPCA
integral inequality of Gronwall type, which is one of the most
important auxiliary results of the present paper.

Lemma 3. Let 𝑢 : R → [0,∞) be a function such that 𝑢 is
continuous with possible points of discontinuity of the first kind
at 𝑡 = 𝑚𝑘− 𝑙, 𝑘 ∈ N, and 𝜂1, 𝜂2 are nonnegative real constants
satisfying

𝜐 := (𝜂1 + 𝜂2) 𝑙 < 1. (15)

Suppose that for 𝑡 ≥ 𝜏 the inequality

𝑢 (𝑡) ≤ 𝑢 (𝜏) + ∫

𝑡

𝜏

(𝜂1𝑢 (𝑠) + 𝜂2𝑢(𝑚[

𝑠 + 𝑙

𝑚

]))𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

𝛽𝑘𝑢 (𝑚𝑘 − 𝑙
−
)

(16)

holds. Then for 𝑡 ≥ 𝜏,

𝑢 (𝑡) ≤ 𝑢 (𝜏)

𝑖(𝑡)

∏

𝑘=𝑖(𝜏)+1

(1 + 𝛽𝑘) exp {(𝜂1 +
𝜂2

1 − 𝜐

) (𝑡 − 𝜏)} ,

(17)

𝑢(𝑚[

𝑡 + 𝑙

𝑚

]) ≤

𝑢 (𝜏)

1 − 𝜐

𝑖(𝑡)

∏

𝑘=𝑖(𝜏)+1

(1 + 𝛽𝑘)

× exp {(𝜂1 +
𝜂2

1 − 𝜐

) (𝑡 − 𝜏)} ,

(18)

𝑢 (𝑚𝑖) ≤ (1 − 𝜐)
−1
𝑢 (𝑚𝑖 − 𝑙) , 𝑖 ∈ N. (19)

Proof. Call V(𝑡) the right member of (16). So V(𝜏) = 𝑢(𝜏),
𝑢 ≤ V, and V is a piecewise differentiable and nondecreasing
function and, by (16), it satisfies

V󸀠 (𝑡) ≤ 𝜂1V (𝑡) + 𝜂2V(𝑚[

𝑡 + 𝑙

𝑚

]) ,

V (𝑚𝑘 − 𝑙) ≤ (1 + 𝛽𝑘) V (𝑚𝑘 − 𝑙
−
) ,

(20)
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𝑘 ∈ N and for any 𝑡 ≥ 𝑟 with 𝑡, 𝑟 ∈ 𝐼𝑖

V (𝑡) − V (𝑟) ≤ ∫
𝑡

𝑟

(𝜂1V (𝑠) + 𝜂2V(𝑚[

𝑠 + 𝑙

𝑚

]))𝑑𝑠. (21)

With 𝑡 = 𝑚𝑖 and 𝑟 = 𝑚𝑖 − 𝑙 in (21) for 𝑡 ∈ 𝐼𝑖, since V is a
nondecreasing function, we get

V (𝑚𝑖) ≤ V (𝑚𝑖 − 𝑙) + ∫
𝑚𝑖

𝑚𝑖−𝑙

(𝜂1V (𝑠) + 𝜂2V (𝑚𝑖)) 𝑑𝑠

≤ V (𝑚𝑖 − 𝑙) + (𝜂1 + 𝜂2) 𝑙 ⋅ V (𝑚𝑖) .

(22)

Considering the particular case 𝜏 = 𝑡𝑖 and taking V(𝑡𝑖) = 𝑢(𝑡𝑖)
and 𝑢 ≤ V, by (15) and (22), estimate (19) follows. Take now
in (21) 𝑡 ∈ 𝐼𝑖 and 𝑟 = 𝑚𝑖 − 𝑙 to obtain

V (𝑡) ≤ V (𝑚𝑖 − 𝑙) + ∫
𝑡

𝑚𝑖−𝑙

(𝜂1V (𝑠) + 𝜂2V (𝑚𝑖)) 𝑑𝑠

≤ V (𝑚𝑖 − 𝑙) + ∫
𝑡

𝑚𝑖−𝑙

(𝜂1V (𝑠) +
𝜂2

1 − 𝜐

V (𝑚𝑖 − 𝑙)) 𝑑𝑠

≤ V (𝑚𝑖 − 𝑙) + ∫
𝑡

𝑚𝑖−𝑙

(𝜂1 +
𝜂2

1 − 𝜐

) V (𝑠) 𝑑𝑠

(23)

because V is a nondecreasing function. Now, we can apply the
classical Gronwall’s Lemma to get

V (𝑡) ≤ V (𝑚𝑖 − 𝑙) exp {(𝜂1 +
𝜂2

1 − 𝜐

) (𝑡 − (𝑚𝑖 − 𝑙))}

for 𝑡 ∈ 𝐼𝑖.
(24)

By the impulsive effect (20), we have

V (𝑚 (𝑖 + 1) − 𝑙) ≤ (1 + 𝛽𝑖+1) V (𝑚𝑖 − 𝑙)

× exp {𝑚 ⋅ (𝜂1 +
𝜂2

1 − 𝜐

)} .

(25)

From (25), recursively we obtain

𝑢 (𝑡) ≤ V (𝑡) ≤ V (𝜏)
𝑖(𝑡)

∏

𝑘=𝑖(𝜏)+1

(1 + 𝛽𝑘)

× exp {(𝜂1 +
𝜂2

1 − 𝜐

) (𝑡 − 𝜏)} ,

(26)

using V(𝜏) = 𝑢(𝜏) and (19); then we give (17) and (18). The
proof is complete. This IDEPCA inequality of Gronwall type
seems to be new.

We need to have the global unique existence of solutions
𝑥(𝑡) = 𝑥(𝑡, 𝜏, 𝑥0) on R+ of the nonlinear IDEPCA system
(5a)-(5b).

One can easily see that IDEPCA system (5a)-(5b) has the
form of DEPCA system without impulsive effect within the
intervals [𝑚𝑖 − 𝑙, 𝑚(𝑖 + 1) − 𝑙), 𝑖 ∈ N; then using the same
technique of [34, 35, 37] we have the following results.

Proposition 4. Suppose that conditions (L) and (E) hold.
For any (𝜏, 𝑥0) ∈ R+ × R𝑛 there exists a unique solution
𝑥(𝑡) = 𝑥(𝑡, 𝜏, 𝑥0) of the IDEPCA system (5a)-(5b) on [𝑚𝑖(𝜏) −
𝑙, 𝑚(𝑖(𝜏) + 1) − 𝑙).

Theorem 5. Under conditions (L) and (E), for every (𝜏, 𝑥0) ∈
R+ ×R𝑛, there exists a unique solution 𝑥(𝑡) = 𝑥(𝑡, 𝜏, 𝑥0) of the
IDEPCA system (5a)-(5b) with 𝑥(𝜏) = 𝑥0 for 𝑡 ∈ [𝜏,∞) in the
sense of Definition 1.

Proof. Fix 𝜏 ∈ R+; then 𝜏 ∈ 𝐼𝑖(𝜏) = [𝑚𝑖(𝜏) − 𝑙, 𝑚𝑖(𝜏) + 𝑚 − 𝑙).
Use Proposition 4 with 𝑥(𝜏) = 𝑥0 to obtain the unique
solution 𝑥(𝑡) = 𝑥(𝑡, 𝜏, 𝑥0) on 𝐼𝑖(𝜏). Then apply the impulse
condition to evaluate uniquely

𝑥 (𝑚𝑖 (𝜏) + 𝑚 − 𝑙, 𝜏, 𝑥0)

= 𝑥 (𝑚𝑖 (𝜏) + 𝑚 − 𝑙
−
, 𝜏, 𝑥0)

+ 𝐽𝑖(𝜏)+1 (𝑥 (𝑚𝑖 (𝜏) + 𝑚 − 𝑙
−
, 𝜏, 𝑥0)) .

(27)

Next, on the interval 𝐼𝑖(𝜏)+1 = [𝑚𝑖(𝜏) + 𝑚 − 𝑙,𝑚𝑖(𝜏) + 2𝑚 − 𝑙)

the solution satisfies the DEPCA:

𝑑𝑦𝑖 (𝑡)

𝑑𝑡

= −𝑎𝑖𝑦𝑖 (𝑡)

+

𝑛

∑

𝑗=1

{𝑏𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡)) + 𝑐𝑖𝑗𝑔𝑗 (𝑦𝑗 (𝑚[

𝑡 + 𝑙

𝑚

]))}

+ 𝑑𝑖, 𝑖 = 1, 2, . . . , 𝑛.

(28)

The IDEPCA system has a unique solution 𝑦(𝑡, 𝑚𝑖(𝜏) + 𝑚 −

𝑙, 𝑥(𝑚𝑖(𝜏) + 𝑚 − 𝑙, 𝜏, 𝑥0)). By definition of the solution of
IDEPCA system (5a)-(5b), 𝑥(𝑡, 𝜏, 𝑥0) = 𝑦(𝑡, 𝑚𝑖(𝜏) + 𝑚 −

𝑙, 𝑥(𝑚𝑖(𝜏) + 𝑚 − 𝑙, 𝜏, 𝑥0)) on 𝐼𝑖(𝜏)+1 = [𝑚𝑖(𝜏) + 𝑚 − 𝑙,𝑚𝑖(𝜏) +

2𝑚−𝑙).Themathematical induction completes the proof.

2.2. Existence and Uniqueness of Equilibrium. When impul-
sive cellular neural network models are used for the solution
of optimization problems, one of the fundamental issues in
the design of a network is concerned with the existence
of a unique globally exponentially stable equilibrium state
of network (5a)-(5b). Without requiring the boundedness,
differentiability, ormonotonicity, we establish easily verifiable
sufficient conditions for the existence of a unique equilibrium
state in this section.

Let us denote an equilibrium state of the impulsive
cellular neural network models (5a)-(5b) by the constant
vector 𝑥∗ = (𝑥

∗
1 , 𝑥
∗
2 . . . , 𝑥

∗
𝑛 )
𝑇

∈ R𝑛, where each 𝑥
∗
𝑖 is

governed by the algebraic system

0 = − 𝑎𝑖𝑥
∗

𝑖 +

𝑛

∑

𝑗=1

{𝑏𝑖𝑗𝑓𝑗 (𝑥
∗

𝑗 ) + 𝑐𝑖𝑗𝑔𝑗 (𝑥
∗

𝑗 )}

+ 𝑑𝑖, 𝑖 = 1, . . . , 𝑛.

(29)

Here, it is assumed that the impulse functions 𝐽𝑖𝑘(⋅) satisfy
𝐽𝑖𝑘(𝑥
∗
𝑖 ) = 0 for all 𝑖 = 1, . . . , 𝑛, 𝑘 ∈ N.
In the following theorem, we obtain sufficient condi-

tions for the existence of a unique equilibrium, 𝑥∗ =

(𝑥
∗
1 , 𝑥
∗
2 . . . , 𝑥

∗
𝑛 )
𝑇

∈ R𝑛, of the impulsive cellular neural
network models (5a)-(5b).
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Theorem 6. Suppose that conditions (L) and (E) hold and the
neural parameters 𝑎𝑖, 𝑏𝑖𝑗, and 𝑐𝑖𝑗 and Lipschitz constantsL

𝑓

𝑖
,

L
𝑔

𝑖
satisfy

𝑎𝑖 > L
𝑓

𝑖

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑖

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
, 𝑖, 𝑗 = 1, . . . , 𝑛. (30)

Then there exists a unique equilibrium state 𝑥∗ of the ICNNs
with IDEPCA system (5a)-(5b).

Proof. Let us consider a mapping 𝐺(𝑢) = (𝐺1(𝑢), 𝐺2(𝑢), . . .,
𝐺𝑛(𝑢))

𝑇
∈ R𝑛, where 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛)

𝑇
∈ R𝑛 and

𝐺𝑖 (𝑢) =
1

𝑎𝑖

[

[

𝑛

∑

𝑗=1

{𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗) + 𝑐𝑖𝑗𝑔𝑗 (𝑢𝑗)} + 𝑑𝑖
]

]

,

𝑖 = 1, . . . , 𝑛.

(31)

By applying the hypotheses,

max
1≤𝑖≤𝑛

󵄨
󵄨
󵄨
󵄨
𝐺𝑖 (𝑢) − 𝐺𝑖 (V)

󵄨
󵄨
󵄨
󵄨

= max
1≤𝑖≤𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑎𝑖

[

[

𝑛

∑

𝑗=1

{𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗) + 𝑐𝑖𝑗𝑔𝑗 (𝑢𝑗)} + 𝑑𝑖
]

]

−

1

𝑎𝑖

[

[

𝑛

∑

𝑗=1

{𝑏𝑖𝑗𝑓𝑗 (V𝑗) + 𝑐𝑖𝑗𝑔𝑗 (V𝑗)} + 𝑑𝑖]

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ max
1≤𝑖≤𝑛

{

{

{

1

𝑎𝑖

𝑛

∑

𝑗=1

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓𝑗 (𝑢𝑗) − 𝑓𝑗 (V𝑗)

󵄨
󵄨
󵄨
󵄨
󵄨
}

+

1

𝑎𝑖

𝑛

∑

𝑗=1

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔𝑗 (𝑢𝑗) − 𝑔𝑗 (V𝑗)

󵄨
󵄨
󵄨
󵄨
󵄨
}

}

}

}

≤ max
1≤𝑖≤𝑛

{

{

{

1

𝑎𝑖

𝑛

∑

𝑗=1

{L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢𝑗 − V𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
}

+

1

𝑎𝑖

𝑛

∑

𝑗=1

{L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢𝑗 − V𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
}

}

}

}

≤ max
1≤𝑖≤𝑛

{

{

{

1

𝑎𝑖

𝑛

∑

𝑗=1

{L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
}

}

}

}

⋅ max
1≤𝑗≤𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢𝑗 − V𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
,

(32)

where the number

𝜌 =

1

𝑎𝑖

𝑛

∑

𝑗=1

{L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
} (33)

satisfies 0 < 𝜌 < 1 by virtue of condition (30). Thus,

max
1≤𝑖≤𝑛

󵄨
󵄨
󵄨
󵄨
𝐺𝑖 (𝑢) − 𝐺𝑖 (V)

󵄨
󵄨
󵄨
󵄨
≤ 𝜌max
1≤𝑗≤𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢𝑗 − V𝑗

󵄨
󵄨
󵄨
󵄨
󵄨 (34)

for any two vectors 𝑢, V ∈ R𝑛 implying that the mapping
𝐺 : R𝑛 → R𝑛 is a global contraction on R𝑛 endowed with
the supremum norm. Hence, there is a unique fixed point
𝑥
∗
∈ R𝑛 that satisfies 𝐺(𝑥∗) = 𝑥

∗ (i.e., 𝐺𝑖(𝑥
∗
) = 𝑥

∗
𝑖 for

𝑖 = 1, . . . , 𝑛). This point defines the unique equilibrium state
of the impulsive cellular neural network models (5a)-(5b).
The proof is now complete.

3. Global Exponential Stability of Equilibrium

The existence and stability of a unique equilibrium state
are usually a requirement in the design of cellular neural
network models for various applications, particularly when
there are destabilizing agents such as retarded arguments
and impulses. However, even if the unique stable state exists,
these agentsmay affect the convergence speed of the network,
which in turn can downgrade the performance of the network
in applications that demand fast computation in real-time
mode. Thus, exponential stability is usually desirable for an
impulsive network, and sufficient conditions for the global
exponential stability of the unique equilibrium state 𝑥∗ of the
ICNNs with IDEPCA system (5a)-(5b) are obtained in this
section.

For analytical convenience, the ICNNs with IDEPCA
system (5a)-(5b) can be simplified as follows. Let

𝑧𝑖 (𝑡) = 𝑥𝑖 (𝑡) − 𝑥
∗

𝑖 ,
̂
𝑓 (𝑧𝑖 (𝑡)) = 𝑓 (𝑥𝑖 (𝑡) + 𝑥

∗

𝑖 ) − 𝑓 (𝑥
∗

𝑖 ) ,

𝑔 (𝑧𝑖 (𝑚[

𝑡 + 𝑙

𝑚

])) = 𝑔(𝑥𝑖 (𝑚[

𝑡 + 𝑙

𝑚

]) + 𝑥
∗

𝑖 ) − 𝑔 (𝑥
∗

𝑖 ) ,

𝐽𝑖𝑘 (𝑧𝑖 (𝑚𝑘 − 𝑙
−
)) = 𝐽𝑖𝑘 (𝑥𝑖 (𝑚𝑘 − 𝑙

−
) + 𝑥
∗

𝑖 ) ,

(35)

so that the ICNNs with IDEPCA system (5a)-(5b) can be
written as

𝑑𝑧 (𝑡)

𝑑𝑡

= −𝐴𝑧 (𝑡) + 𝐵
̂
𝑓 (𝑧 (𝑡))

+ 𝐶𝑔(𝑧(𝑚[

𝑡 + 𝑙

𝑚

])) , 𝑡 ̸=𝑚𝑘 − 𝑙,

Δ𝑥|𝑡=𝑚𝑘−𝑙 = 𝐽𝑘 (𝑧 (𝑚𝑘 − 𝑙
−
)) , 𝑘 ∈ N,

(36)

where ̂
𝑓(𝑧(𝑡)) = [

̂
𝑓1(𝑧1(𝑡)), . . . ,

̂
𝑓𝑛(𝑧𝑛(𝑡))]

𝑇, 𝑔(𝑧(𝑚[(𝑡 +
𝑙)/𝑚]))= [𝑔1(𝑧1(𝑚[(𝑡 + 𝑙)/𝑚])), . . ., 𝑔𝑛(𝑧𝑛(𝑚[(𝑡 + 𝑙)/𝑚]))]

𝑇

and 𝐽𝑘(𝑧(𝑚𝑘 − 𝑙
−
)) = [𝐽1𝑘(𝑥1(𝑚𝑘 − 𝑙

−
) + 𝑥
∗
1 ), . . . , 𝐽𝑛𝑘(𝑥𝑛(𝑚𝑘 −

𝑙
−
) + 𝑥
∗
𝑛 )]
𝑇.

The activation functions ̂𝑓𝑖(⋅), inheriting the properties of
𝑓𝑖(⋅), satisfy

̂
𝑓𝑖 (0) = 0,

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓𝑖 (𝑢) −

̂
𝑓𝑖 (V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ L
𝑓

𝑖 |
𝑢 − V| , (37)

the functions 𝑔𝑖(⋅) inherit the properties of 𝑔𝑖(⋅), namely,

𝑔𝑖 (0) = 0,
󵄨
󵄨
󵄨
󵄨
𝑔𝑖 (𝑢) − 𝑔𝑖 (V)

󵄨
󵄨
󵄨
󵄨
≤ L
𝑔

𝑖 |
𝑢 − V| , (38)
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and the impulsive operator 𝐽𝑖𝑘 satisfies

𝐽𝑖𝑘 (0) = 0,
󵄨
󵄨
󵄨
󵄨
󵄨
𝐽𝑖𝑘 (𝑢) − 𝐽𝑖𝑘 (V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ L
𝐽

𝑘

󵄨
󵄨
󵄨
󵄨
𝑢𝑖 − V𝑖

󵄨
󵄨
󵄨
󵄨
, (39)

for all 𝑢, V ∈ R+, 𝑖 = 1, . . . , 𝑛, 𝑘 ∈ N.
It is clear that the stability of the zero solution of (36)

is equivalent to that of the equilibrium 𝑥
∗ of the ICNNs

with IDEPCA system (4a)-(4b). Therefore, we restrict our
discussion to the stability of the zero solution of (36).

First of all, we give the following definition and lemma,
which will be used in the proof of the stability of the zero
solution for the ICNNs with IDEPCA system.

Definition 7. The equilibrium 𝑥
∗ of the ICNNs with IDEPCA

system (5a)-(5b) is said to be globally exponentially stable if
there exist positive constants 𝛼 and 𝜆 such that the estimation

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑥

∗󵄨
󵄨
󵄨
󵄨
≤ 𝛼

󵄨
󵄨
󵄨
󵄨
𝑥 (𝜏) − 𝑥

∗󵄨
󵄨
󵄨
󵄨
𝑒
−𝜆(𝑡−𝜏) (40)

is valid for all 𝑡 ≥ 𝜏.

Lemma 8. If (L) and (E) are satisfied, then the solutions 𝜑 and
𝜓 of the IDEPCA system (5a)-(5b) satisfy for all 𝑡 ≥ 𝜏 the
inequality

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑡) − 𝜓 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝜑 (𝜏) − 𝜓 (𝜏)

󵄨
󵄨
󵄨
󵄨
exp (−𝜆𝑖(𝑡) ⋅ (𝑡 − 𝜏)) , (41)

where 𝜆𝑖(𝑡) = 𝑎∗ − 𝛽
∗
− L𝑖(𝑡), 𝑎∗ = min𝑖∈[1,...,𝑛]𝑎𝑖, L𝑖(𝑡) =

max𝑖(𝜏)+1≤𝑘≤𝑖(𝑡)(ln(1 +L𝐽
𝑘
)/𝑚),

𝛽
∗
= max
𝑖∈[1,...,𝑛]

𝛽𝑖

= max
𝑖∈[1,...,𝑛]

𝑛

∑

𝑗=1

(L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − Ṽ)−1

× exp (𝑎∗ ⋅ (𝑚 − 𝑙))) ,

Ṽ = max
𝑖∈[1,...,𝑛]

(

𝑛

∑

𝑗=1

L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
exp (𝑎∗ ⋅ (𝑚 − 𝑙)))

⋅ 𝑙 < 1.

(42)

Proof. Suppose that 𝜑(𝑡) = (𝜑1, . . . , 𝜑𝑛)
𝑇 and 𝜓(𝑡) =

(𝜓1, . . . , 𝜓𝑛)
𝑇 are arbitrary solutions of the IDEPCA system

(5a)-(5b). Let 𝑦(𝑡) = 𝜑(𝑡)−𝜓(𝑡) and by (5a) and (5b) it follows
that 𝑦(⋅) satisfies

̇𝑦 (𝑡) = −𝐴𝑦 (𝑡) + 𝐵 (𝑓 (𝑦 (𝑡) + 𝜓 (𝑡)) − 𝑓 (𝜓 (𝑡)))

+ 𝐶{𝑔(𝑦(𝑚[

𝑡 + 𝑙

𝑚

]) + 𝜓(𝑚[

𝑡 + 𝑙

𝑚

]))

−𝑔(𝜓(𝑚[

𝑡 + 𝑙

𝑚

]))} ,

Δ𝑦
󵄨
󵄨
󵄨
󵄨𝑡=𝑚𝑘−𝑙

= 𝐽𝑘 (𝑦 (𝑚𝑘 − 𝑙
−
) + 𝜓 (𝑚𝑘 − 𝑙

−
))

− 𝐽𝑘 (𝜓 (𝑚𝑘 − 𝑙
−
)) , 𝑘 ∈ N.

(43)

By the variation of parameters formula, it can be proved that

𝑦 (𝑡) = 𝑒
−𝐴(𝑡−𝜏)

𝑦 (𝜏) + ∫

𝑡

𝜏

𝑒
−𝐴(𝑡−𝑠)

R (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

𝑒
−𝐴(𝑡−(𝑚𝑘−𝑙))

J𝑘 (𝑦 (𝑚𝑘 − 𝑙
−
)) ,

(44)

where

R (𝑠, 𝑦 (𝑠)) := 𝐵

⋅ {𝑓 (𝑦 (𝑠) + 𝜓 (𝑠)) − 𝑓 (𝜓 (𝑠))}

+ 𝐶 ⋅ {𝑔(𝑦(𝑚[

𝑠 + 𝑙

𝑚

])

+𝜓(𝑚[

𝑠 + 𝑙

𝑚

]))

−𝑔(𝜓(𝑚[

𝑠 + 𝑙

𝑚

]))} ,

J𝑘 (𝑦 (𝑚𝑘 − 𝑙
−
)) := 𝐽𝑘 (𝑦 (𝑚𝑘 − 𝑙

−
) + 𝜓 (𝑚𝑘 − 𝑙

−
))

− 𝐽𝑘 (𝜓 (𝑚𝑘 − 𝑙
−
)) .

(45)

Notice that (L) implies that

󵄨
󵄨
󵄨
󵄨
R𝑖 (𝑠, 𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
≤ (

𝑛

∑

𝑗=1

L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑦𝑖 (𝑠)

󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦𝑖 (𝑚[

𝑠 + 𝑙

𝑚

])

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

) ,

󵄨
󵄨
󵄨
󵄨
R𝑖 (𝑠, 𝑦 (𝑠))

󵄨
󵄨
󵄨
󵄨
≤ max
𝑖∈[1,...,𝑛]

(

𝑛

∑

𝑗=1

L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑠)

󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦 (𝑚[

𝑠 + 𝑙

𝑚

])

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

) ,

󵄨
󵄨
󵄨
󵄨
J𝑘 (𝑦 (𝑚𝑘 − 𝑙

−
))
󵄨
󵄨
󵄨
󵄨
≤ L
𝐽

𝑘

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑚𝑘 − 𝑙

−
)
󵄨
󵄨
󵄨
󵄨
.

(46)

By (44), we can deduce that V𝑖(𝑡) = exp(𝑎∗ ⋅ (𝑡 − 𝜏))|𝑦𝑖(𝑡)|
satisfies

󵄨
󵄨
󵄨
󵄨
V𝑖 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝜑𝑖 (𝜏) − 𝜓𝑖 (𝜏)

󵄨
󵄨
󵄨
󵄨

+ ∫

𝑡

𝜏

[

[

𝑛

∑

𝑗=1

L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
V𝑗 (𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

V𝑗 (𝑚[

𝑠 + 𝑙

𝑚

])

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
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× exp(𝑎∗ ⋅ (𝑠 − 𝑚[

𝑠 + 𝑙

𝑚

]))
]

]

𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

L
𝐽

𝑘

󵄨
󵄨
󵄨
󵄨
V𝑖 (𝑚𝑘 − 𝑙

−
)
󵄨
󵄨
󵄨
󵄨
,

(47)

or

|V (𝑡)| ≤ 󵄨󵄨󵄨
󵄨
𝜑 (𝜏) − 𝜓 (𝜏)

󵄨
󵄨
󵄨
󵄨

+ max
𝑖∈[1,...,𝑛]

∫

𝑡

𝜏

[

[

𝑛

∑

𝑗=1

L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
|V (𝑠)|

+

𝑛

∑

𝑗=1

L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

V(𝑚[

𝑠 + 𝑙

𝑚

])

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

× exp(𝑎∗ ⋅ (𝑠 − 𝑚[

𝑠 + 𝑙

𝑚

]))
]

]

𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

L
𝐽

𝑘

󵄨
󵄨
󵄨
󵄨
V (𝑚𝑘 − 𝑙−)󵄨󵄨󵄨

󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝜑 (𝜏) − 𝜓 (𝜏)

󵄨
󵄨
󵄨
󵄨
+ max
𝑖∈[1,...,𝑛]

× ∫

𝑡

𝜏

[

[

𝑛

∑

𝑗=1

L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
|V (𝑠)| +

𝑛

∑

𝑗=1

L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

× exp (𝑎∗ ⋅ (𝑚 − 𝑙))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

V(𝑚[

𝑠 + 𝑙

𝑚

])

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

]

]

𝑑𝑠

+

𝑖(𝑡)

∑

𝑘=𝑖(𝜏)+1

L
𝐽

𝑘

󵄨
󵄨
󵄨
󵄨
V (𝑚𝑘 − 𝑙−)󵄨󵄨󵄨

󵄨
,

(48)

for any finite 𝑡 ∈ [𝜏,∞).
Hence, by Lemma 3 of IDEPCA Gronwall’s inequality

implies

|V (𝑡)| ≤ 󵄨󵄨󵄨
󵄨
𝜑 (𝜏) − 𝜓 (𝜏)

󵄨
󵄨
󵄨
󵄨

𝑖(𝑡)

∏

𝑘=𝑖(𝜏)+1

(1 +L
𝐽

𝑘
)

× exp( max
𝑖∈[1,...,𝑛]

{

{

{

𝑛

∑

𝑗=1

L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

1

1 − Ṽ

𝑛

∑

𝑗=1

L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

× exp (𝑎∗ ⋅ (𝑚 − 𝑙))

}

}

}

(𝑡 − 𝜏)) .

(49)

Then, we have

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑡) − 𝜓 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝜑 (𝜏) − 𝜓 (𝜏)

󵄨
󵄨
󵄨
󵄨

𝑖(𝑡)

∏

𝑘=𝑖(𝜏)+1

(1 +L
𝐽

𝑘
)

× exp{−(𝑎∗ − max
𝑖∈[1,...,𝑛]

𝛽𝑖) (𝑡 − 𝜏)} ,

(50)

or
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑡) − 𝜓 (𝑡)

󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝜑 (𝜏) − 𝜓 (𝜏)

󵄨
󵄨
󵄨
󵄨

× exp{ − (𝑎∗ − max
𝑖∈[1,...,𝑛]

𝛽𝑖

− max
𝑖(𝜏)+1≤𝑘≤𝑖(𝑡)

ln (1 +L𝐽
𝑘
)

𝑚

) (𝑡 − 𝜏)} ,

(51)

and the statement (41) follows.

The following result will show sufficient conditions for the
global exponential stability of the unique equilibrium of the
ICNNs with IDEPCA system (5a)-(5b).

Theorem 9. If the assumptions of Theorem 6, (42) and

𝑎∗ − 𝛽
∗
−L𝑖(𝑡) > 0, 𝑡 ∈ R

+
, (52)

are satisfied, then the unique equilibrium 𝑥
∗ of the ICNNs with

IDEPCA system (5a)-(5b) is globally exponentially stable.

Proof. By Theorem 6, we know that the IDEPCA system
(5a)-(5b) has a unique equilibrium 𝑥

∗. Let 𝑥(𝑡, 𝑥0) be an
arbitrary solution of (5a)-(5b) with initial condition 𝑥0 and
define 𝑧(𝑡) = 𝑥(𝑡, 𝑥0) − 𝑥

∗. By Lemma 8 and (42), we obtain

|𝑧 (𝑡)| ≤ |𝑧 (𝜏)| exp (−𝜆𝑖(𝑡) ⋅ (𝑡 − 𝜏)) , (53)

where 𝜆𝑖(𝑡) = 𝑎∗ − 𝛽
∗
− L𝑖(𝑡). So, using (52), we see that

|𝑧(𝑡)| → 0 as 𝑡 → ∞. That is, the zero solution of
ICNNs with IDEPCA system (36) is globally exponentially
stable. Therefore, the unique equilibrium 𝑥

∗ of the ICNNs
with IDEPCA system (5a)-(5b) is globally exponentially
stable.

Remark 10. To the best of the author’s knowledge, this
is the first time we investigate impulsive cellular neural
network models with piecewise alternately advanced and
retarded argument in equilibrium case. Sufficient conditions
are gained for the existence and exponential stability of a
unique equilibrium of the ICNNs with IDEPCA system. And
our results can be extended to a unique equilibrium of the
CNNswithDEPCA system. See Corollaries 11–12. Our results
about exponential stability of a unique equilibrium of the
ICNNs with IDEPCA system may give some insight into the
application of neural networks.

As immediate corollaries of Lemma 8 andTheorem 9, the
following results without impulsive effects are true.
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Corollary 11. If (L) and (E) are satisfied, then the solutions
𝜑 and 𝜓 of the DEPCA system (5a) satisfy for all 𝑡 ≥ 𝜏 the
inequality

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑡) − 𝜓 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝜑 (𝜏) − 𝜓 (𝜏)

󵄨
󵄨
󵄨
󵄨
exp (−𝜆 ⋅ (𝑡 − 𝜏)) , (54)

where 𝜆 = 𝑎∗ − 𝛽∗, 𝑎∗ = min𝑖∈[1,...,𝑛] 𝑎𝑖,

𝛽
∗
= max
𝑖∈[1,...,𝑛]

𝛽𝑖 = max
𝑖∈[1,...,𝑛]

𝑛

∑

𝑗=1

(L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − Ṽ)−1

× exp (𝑎∗ ⋅ (𝑚 − 𝑙)) ) ,

Ṽ = max
𝑖∈[1,...,𝑛]

(

𝑛

∑

𝑗=1

L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
exp (𝑎∗ ⋅ (𝑚 − 𝑙))) ⋅ 𝑙 < 1.

(55)

Corollary 12. If the assumptions of Corollary 11 and

𝑎∗ − 𝛽
∗
> 0 (56)

are satisfied, then the unique equilibrium 𝑥
∗ of the CNNs with

DEPCA system (5a) is globally exponentially stable.

Remark 13. In [41], authors investigated discrete-time cellular
neural network without impulsive effects in almost periodic
case. Simple sufficient conditions are gained for a unique
almost periodic sequence solution which is globally attrac-
tive. When 𝑚 = 1, 𝑙 = 0, this conclusion of Corollary 12
cannot be derived by applying the corresponding stability
result for cellular neural networks given in the literature [41]
with 𝑎𝑖, 𝑏𝑖𝑗, 𝑐𝑖𝑗, and 𝑑𝑖 being constant coefficients.

4. Examples and Simulations

In this section, we give two examples with numerical simu-
lations to illustrate the effectiveness of the proposed method
and results.

Example 1. Consider the following impulsive cellular neural
networks with piecewise alternately advanced and retarded
argument:

𝑑𝑥 (𝑡)

𝑑𝑡

= −(

1.2 0

0 0.9
)(

𝑥1 (𝑡)

𝑥2 (𝑡)
)

+ (

0.15 0.25

0.25 0.15
)(

tanh(𝑥1 (𝑡)
2

)

tanh(𝑥2 (𝑡)
8

)

)

+ (

0.15 0.25

0.25 0.15
)(

tanh(𝑥1 (3 [(𝑡 + 1) /3])
8

)

tanh(𝑥2 (3 [(𝑡 + 1) /3])
2

)

)

+ (

0.2

0.1
) ,

Δ𝑥|𝑡=3𝑘−1 = (
𝐽1𝑘 (𝑥1 (3𝑘 − 1

−
))

𝐽2𝑘 (𝑥2 (3𝑘 − 1
−
))
)

= (

𝑥1 (3𝑘 − 1
−
) − 𝑥
∗
1

2

𝑥2 (3𝑘 − 1
−
) − 𝑥
∗
2

3

), 𝑘 ∈ N,

(57)

where 𝑥∗1 = 1.943, 𝑥∗2 = 1.57. One can check that the point
𝑥
∗
= (𝑥
∗
1 , 𝑥
∗
2 )
𝑇 satisfies the algebraic system

−𝑎𝑖𝑥
∗

𝑖 +

2

∑

𝑗=1

{𝑏𝑖𝑗𝑓𝑗 (𝑥
∗

𝑗 ) + 𝑐𝑖𝑗𝑔𝑗 (𝑥
∗

𝑗 )} + 𝑑𝑖 = 0, 𝑖 = 1, 2,

(58)

approximately. And it is clear that 𝐽𝑖𝑘(𝑥
∗
𝑖 ) = 0 for 𝑖 = 1, 2. By

simple calculation, we can see that 𝑎∗ = 0.9, L𝑓1 = L
𝑔

2 =

L𝐽1 = 1/2, L𝑓2 = L
𝑔

1 = 1/8, L𝐽2 = 1/3, and sup𝑡∈R+ L𝑖(𝑡) =
ln(1 +L𝐽1)/3 ≈ 0.1351. Then

1 − 𝑒
−𝑙⋅𝑎
∗

𝑎∗

(

𝑛

∑

𝑗=1

[L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
]) ≈ 0.1813 < 1,

1 − 𝑒
−𝑙⋅𝑎
∗

𝑎∗

(

𝑛

∑

𝑗=1

[L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
]) ≈ 0.1648 < 1,

𝑎1 = 1.2 > 0.275 = L
𝑓

1

2

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

1

2

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑎2 = 0.9 > 0.25 = L
𝑓

2

2

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

2

2

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
.

(59)

ByTheorem 6, we know that the ICNNswith IDEPCA system
(57) have a unique equilibrium state 𝑥∗, approximately with
the error, which is less than 10−11 (evaluated by MATLAB).

Moreover, we have

Ṽ = max
𝑖∈[1,...,𝑛]

(

𝑛

∑

𝑗=1

L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
exp (𝑎∗ ⋅ (𝑚 − 𝑙)))

⋅ 𝑙 ≈ 0.7522 < 1,

𝑛

∑

𝑗=1

(L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − Ṽ)−1 exp (𝑎∗ ⋅ (𝑚 − 𝑙)))
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Figure 1: (a) The simulation, where the initial value is chosen as (1, 3)𝑇, illustrates that all trajectories uniformly converge to the unique
equilibrium 𝑥

∗
= (1.943, 1.57)

𝑇 for the ICNNs (57) with impulsive effects. (b) The simulation, where the initial value is chosen as (1, 3)𝑇,
illustrates that all trajectories uniformly converge to the unique equilibrium 𝑥

∗
= (1.943, 1.57)

𝑇 for the ICNNs (57) without impulsive effects.

≈ 0.7607 < 0.7648 ≈ 𝑎∗ − sup
𝑡∈R+

L𝑖(𝑡),

𝑛

∑

𝑗=1

(L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − Ṽ)−1 exp (𝑎∗ ⋅ (𝑚 − 𝑙)))

≈ 0.58302 < 0.7648 ≈ 𝑎∗ − sup
𝑡∈R+

L𝑖(𝑡).

(60)

Thus, according to Theorem 9, the ICNNs with IDEPCA
system (57) have a unique globally exponentially stable
equilibrium.The numerical simulations, showing the conver-
gence of the unique equilibrium 𝑥

∗ of the ICNNs with and
without impulses (57), are given in Figures 1(a) and 1(b).

Example 2. Consider the following impulsive cellular neural
networks model with piecewise constant argument:

𝑑𝑥 (𝑡)

𝑑𝑡

= −(

1.3 0

0 0.8
)(

𝑥1 (𝑡)

𝑥2 (𝑡)
) + (

0.1 0.25

0.25 0.35
)

×(

tanh(𝑥1 (𝑡)
3

)

tanh(𝑥2 (𝑡)
4

)

) + (

0.16 0.26

0.25 0.15
)

×(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥1 (4 [
𝑡 + 1

4

]) + 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥1 (4 [
𝑡 + 1

4

]) − 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

10
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥2 (4 [
𝑡 + 1

4

]) + 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥2 (4 [
𝑡 + 1

4

]) − 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

8

)

+ (

3

4
) ,

Δ𝑥|𝑡=4𝑘−1 = (
𝐽1𝑘 (𝑥1 (4𝑘 − 1

−
))

𝐽2𝑘 (𝑥2 (4𝑘 − 1
−
))
)

= (

𝑥1 (4𝑘 − 1
−
) − 𝑥
∗
1

4

𝑥2 (4𝑘 − 1
−
) − 𝑥
∗
2

10

) , 𝑘 ∈ N,

(61)

where 𝑥∗1 = 2.608, 𝑥∗2 = 5.719. One can check that the
point 𝑥∗ = (𝑥

∗
1 , 𝑥
∗
2 )
𝑇 satisfies the algebraic system (29)

approximately and it is clear that 𝐽𝑖𝑘(𝑥
∗
𝑖 ) = 0 for 𝑖 = 1, 2.

The output functions are 𝑓1(𝑥1) = tanh(𝑥1/3), 𝑓2(𝑥2) =

tanh(𝑥2/4), 𝑔1(𝑥1) = (|𝑥1 + 1| − |𝑥1 − 1|)/10, and 𝑔2(𝑥2) =
(|𝑥2 + 1| − |𝑥2 − 1|)/8.

We can easily obtain that 𝑎∗ = 0.8, L𝑓1 = 1/3, L𝑓2 =
L
𝑔

2 = L𝐽1 = 0.25, L𝑔1 = 0.2, L𝐽2 = 0.1, and sup𝑡∈R+ L𝑖(𝑡) =
ln(1 +L𝐽1)/4 ≈ 0.0557.

Then we give

1 − 𝑒
−𝑙⋅𝑎
∗

𝑎∗

(

𝑛

∑

𝑗=1

[L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
]) ≈ 0.1904 < 1,

1 − 𝑒
−𝑙⋅𝑎
∗

𝑎∗

(

𝑛

∑

𝑗=1

[L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
]) ≈ 0.1996 < 1,

𝑎1 = 1.3 > 0.2766 ≈ L
𝑓

1

2

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

1

2

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑎2 = 0.8 > 0.29 = L
𝑓

2

2

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

2

2

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
.

(62)

ByTheorem 6, we know that the ICNNswith IDEPCA system
(61) have a unique equilibrium.
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Figure 2: (a) The simulation, where the initial value is chosen as (3, 3)𝑇, illustrates that all trajectories uniformly converge to the unique
equilibrium 𝑥

∗
= (2.608, 5.719)

𝑇 for the ICNNs (61) with impulsive effects. (b) The simulation, where the initial value is chosen as (3, 3)𝑇,
illustrates that all trajectories uniformly converge to the unique equilibrium 𝑥

∗
= (2.608, 5.719)

𝑇 for the ICNNs (61) without impulsive effects.

In addition, we have

Ṽ = max
𝑖∈[1,...,𝑛]

(

𝑛

∑

𝑗=1

L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
exp (𝑎∗ ⋅ (𝑚 − 𝑙)))

⋅ 𝑙 ≈ 0.4615 < 1,

𝑛

∑

𝑗=1

(L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − Ṽ)−1 exp (𝑎∗ ⋅ (𝑚 − 𝑙)))

≈ 0.5826 < 0.7442 ≈ 𝑎∗ − sup
𝑡∈R+

L𝑖(𝑡),

𝑛

∑

𝑗=1

(L
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+L
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
(1 − Ṽ)−1 exp (𝑎∗ ⋅ (𝑚 − 𝑙)))

≈ 0.7286 < 0.7442 ≈ 𝑎∗ − sup
𝑡∈R+

L𝑖(𝑡).

(63)

FromTheorem 9, the ICNNs with IDEPCA system (61) have
the unique equilibrium 𝑥

∗ which is globally asymptotically
stable and all other solutions of the IDEPCA system (61)
converge exponentially to it as 𝑡 → ∞. The numerical sim-
ulations, showing the convergence of the unique equilibrium
𝑥
∗ of the ICNNs with and without impulses (61), are given in

Figures 2(a) and 2(b).

5. Conclusions

This is the first time that impulsive differential equations
with alternately advanced and retarded argument have been
applied to the model of cellular neural network models, and
this paper has provided sufficient conditions guaranteeing the
existence, uniqueness, and global exponential stability of the
unique equilibrium of the impulsive cellular neural network
models for the considered system based on a new IDEPCA
integral inequality of Gronwall type and fixed point theorem.
In addition, our method gives new ideas not only from the
modeling point of view but also from that of theoretical

opportunities since the impulsive cellular neural network
model equation involves piecewise constant arguments of
both advanced and delayed types. The obtained results could
be useful in the design and applications of impulsive cellular
neural network models. Furthermore, the examples with
numerical simulations are given to show the effectiveness of
the proposed method and results.
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