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We investigate the complex dynamics of an epidemic model with nonlinear incidence rate of saturated mass action which depends
on the ratio of the number of infectious individuals to that of susceptible individuals.Wefirst dealwith the boundedness, dissipation,
persistence, and the stability of the disease-free and endemic points of the deterministic model. And then we prove the existence
and uniqueness of the global positive solutions, stochastic boundedness, and permanence for the stochastic epidemic model.
Furthermore, we perform some numerical examples to validate the analytical findings. Needless to say, both deterministic and
stochastic epidemic models have their important roles.

1. Introduction

Since the pioneer work of Kermack and McKendrick [1],
mathematical models are used extensively in analyzing the
spread, and control of infectious diseases qualitatively and
quantitatively. The research results are helpful for predict-
ing the developing tendencies of the infectious disease,
for determining the key factors of the disease spreading,
and for seeking the optimum strategies for preventing and
controlling the spread of infectious diseases [2]. And in
modeling communicable diseases, the incidence function
has been considered to play a key role in ensuring that the
models indeed give reasonable qualitative description of the
transmission dynamics of the diseases [3–7].

Let 𝑆(𝑡) be the number of susceptible individuals, 𝐼(𝑡)
the number of infective individuals, and 𝑅(𝑡) the number of
removed individuals at time 𝑡, respectively. We consider the
general SIRS epidemic model:

𝑑𝑆

𝑑𝑡
= 𝑏 − 𝑑𝑆 − 𝐻 (𝐼, 𝑆) + 𝛾𝑅,

𝑑𝐼

𝑑𝑡
= 𝐻 (𝐼, 𝑆) − (𝑑 + 𝜇 + 𝛿) 𝐼,

𝑑𝑅

𝑑𝑡
= 𝜇𝐼 − (𝑑 + 𝛾) 𝑅,

(1)

where 𝑏 is the recruitment rate of the population, 𝑑 is
the natural death rate of the population, 𝜇 is the natural
recovery rate of the infective individuals, 𝛾 is the rate at
which recovered individuals lose immunity and return to the
susceptible class, and 𝛿 is the disease-induced death rate. And
the transmission of the infection is governed by an incidence
rate𝐻(𝐼, 𝑆).

In [8], Liu et al. proposed the general saturated nonlinear
incidence rate:

𝐻(𝐼, 𝑆) = 𝑆𝑔 (𝐼) , 𝑔 (𝐼) =
𝑘𝐼
𝑙

1 + 𝛼𝐼ℎ
, (2)

where the parameters 𝑙 and ℎ are positive constants, 𝑘 the
proportionality constant, and 𝛼 is a nonnegative constant,
which measures the psychological or inhibitory effect. 𝑘𝐼𝑙

measures the infection force of the disease, and 1/(1 + 𝛼𝐼ℎ)
measures the inhibition effect from the behavioral change of
the susceptible individuals when their number increases or
from the crowding effect of the infective individuals. And the
other nonlinear incidence rates are considered in [6, 9–19].
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Note that the infectious force 𝑔(𝐼) of classical disease
transmission models typically is only a function of infective
individuals. But in the transmission of communicable dis-
eases, it involves both infective individuals and susceptible
individuals. Thus, Yuan et al. [18, 19] studied the infections
force function with a ratio-dependent nonlinear incident rate
which takes the following form:

𝑔(
𝐼

𝑆
) =

𝑘(𝐼/𝑆)
𝑙

1 + 𝛼(𝐼/𝑆)
ℎ
. (3)

And in [19], Li et al. focus on an epidemic disease of SIRS
type, in which they assume that the infectious force takes the
form of (3) with 𝑙 = 1 and ℎ = 1, and the model is as follows:

𝑑𝑆

𝑑𝑡
= 𝑏 − 𝑑𝑆 −

𝑘𝐼𝑆

𝑆 + 𝛼𝐼
+ 𝛾𝑅,

𝑑𝐼

𝑑𝑡
=

𝑘𝐼𝑆

𝑆 + 𝛼𝐼
− (𝑑 + 𝜇) 𝐼,

𝑑𝑅

𝑑𝑡
= 𝜇𝐼 − (𝑑 + 𝛾) 𝑅,

(4)

where all the parameters are nonnegative and have the same
definitions as in model (1).

From the standpoint of epidemiology, we are only inter-
ested in the dynamics ofmodel (4) in the closed first quadrant
R3
+
= {(𝑆, 𝐼, 𝑅) : 𝑆 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0}.Thus, we consider only

the epidemiological meaningful initial conditions 𝑆(0) > 0,
𝐼(0) > 0, 𝑅(0) > 0. Straightforward computation shows
that model (4) is continuous and Lipschizian in R3

+
if we

redefine that when (𝑆, 𝐼, 𝑅) = (0, 0, 0), 𝑑𝑆/𝑑𝑡 = 𝑏, 𝑑𝐼/𝑑𝑡 = 0,
𝑑𝑅/𝑑𝑡 = 0. Hence, the solution of model (4) with positive
initial conditions exists and is unique.

It is clear that the limit set of model (4) is on the plane
𝑆+𝐼+𝑅 = 𝑏/𝑑, and themodel can be reduced to the following:

𝑑𝑆

𝑑𝑡
= (𝑏 +

𝛾𝑏

𝑑
) − (𝑑 + 𝛾) 𝑆 − 𝛾𝐼 −

𝑘𝐼𝑆

𝑆 + 𝛼𝐼
,

𝑑𝐼

𝑑𝑡
=

𝑘𝐼𝑆

𝑆 + 𝛼𝐼
− (𝑑 + 𝜇) 𝐼,

(5)

when (𝑆, 𝐼) = (0, 0), 𝑑𝑆/𝑑𝑡 = 𝑏 + (𝛾𝑏/𝑑), 𝑑𝐼/𝑑𝑡 = 0.
For mathematical simplicity, let us nondimensionalize

model (5) as in [19] with the following scaling:

𝑥 =
𝑑 (𝑑 + 𝜇)

𝑏 (𝑑 + 𝛾)
𝑆, 𝑦 =

𝑑𝛾

𝑏 (𝑑 + 𝛾)
𝐼, 𝜏 = (𝑑 + 𝜇) 𝑡.

(6)

We still use variable 𝑡 instead of 𝜏, and model (5) takes the
following form:

𝑑𝑥

𝑑𝑡
= 1 − 𝑞𝑥 − 𝑦 −

𝑎𝑥𝑦

𝑥 + 𝑝𝑦
,

𝑑𝑦

𝑑𝑡
= (

𝑅0𝑥

𝑥 + 𝑝𝑦
− 1)𝑦,

(7)

where 𝑞 = (𝑑+𝛾)/(𝑑+𝜇), 𝑝 = 𝛼(𝑑+𝜇)/𝛾, 𝑎 = 𝑘/𝛾 are positive
constants. 𝑅0 = 𝑘/(𝑑 + 𝜇) is the basic reproduction number.
And when (𝑆, 𝐼) = (0, 0), 𝑑𝑥/𝑑𝑡 = 1, 𝑑𝑦/𝑑𝑡 = 0.

On the other hand, if the environment is randomly
varying, the population is subject to a continuous spectrum
of disturbances [20, 21].That is to say, population systems are
often subject to environmental noise; that is, due to environ-
mental fluctuations, parameters involved in epidemic models
are not absolute constants, and they may fluctuate around
some average values. Based on these factors, more and more
people began to be concerned about stochastic epidemic
models describing the randomness and stochasticity [22–34],
and the stochastic epidemicmodels can provide an additional
degree of realism if compared to their deterministic coun-
terparts [10, 35–47]. In Particular, Mao et al. [26] obtained
the interesting and surprising conclusion: even a sufficiently
small noise can suppress explosions in population dynamics.
Beretta et al. [35] obtained the stability of epidemic model
with stochastic time delays influenced by probability under
certain conditions. Carletti [36] studied the stable properties
of a stochastic model for phage-bacteria interaction in open
marine environment analytically and numerically. In [37],
establishing some stochastic models and studying of several
endemic infections with demography, Nåsell found that some
deterministic models are unacceptable approximations of the
stochastic models for a large range of realistic parameter
values. Dalal et al. [39, 40] showed that stochastic models
had nonnegative solutions and carried out analysis on the
asymptotic stability of models. In [41], Yu et al. presented
stochastic asymptotic stability of the epidemic point of the
two-group SIR model with random perturbation. It is shown
in [45] that the SIR model has a unique global positive and
asymptotic solution. But to our knowledge, the research on
the stochastic dynamics of the epidemic model with ratio-
dependent nonlinear incidence rate seems rare.

There are different possible approaches to including
random effects in the model, both from a biological and
from a mathematical perspectives [48]. Our basic approach
is analogous to that of Beddington and May [20], which is
pursued in [48], and also, for example, in [45, 47] to epidemic
models, in which they considered that the environmental
noise was proportional to the variables. Following them, in
this paper, we assume that stochastic perturbations are of a
white noise type which is directly proportional to 𝑥(𝑡), 𝑦(𝑡),
influenced on the 𝑑𝑥(𝑡)/𝑑𝑡 and 𝑑𝑦(𝑡)/𝑑𝑡 in model (4). In
this way, we introduce stochastic perturbation terms into the
growth equations of susceptible and infected individuals to
incorporate the effect of randomly fluctuating environment,
and the following stochastic differential equation is corre-
sponding to model (7):

𝑑𝑥 = (1 − 𝑞𝑥 − 𝑦 −
𝑎𝑥𝑦

𝑥 + 𝑝𝑦
)𝑑𝑡 + 𝜎1𝑥𝑑𝐵1 (𝑡) ,

𝑑𝑦 = (
𝑅0𝑥𝑦

𝑥 + 𝑝𝑦
− 𝑦)𝑑𝑡 + 𝜎2𝑦𝑑𝐵2 (𝑡) ,

(8)

where 𝜎1, 𝜎2 are real constants and known as the intensity of
environmental fluctuations, and 𝐵1(𝑡), 𝐵2(𝑡) are independent
standard Brownian motions.
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The aim of this paper is to consider the dynamics of
the epidemic models (7) and (8). The paper is organized
as follows. In Section 2, we give some properties about
deterministic model (7). In Section 3, we carry out the
analysis of the dynamical properties of stochastic model (8).
And in Section 4, we give some numerical examples and
make a comparative analysis of the stability of themodel with
deterministic and stochastic environments and have some
discussions.

2. Dynamics of the Deterministic Model

Let us begin to determine the location and number of the
equilibria of model (7). It is easy to see that if 𝑅0 < 1, the
disease-free point 𝐸0 = (1/𝑞, 0) is the unique equilibrium,
corresponding to the extinction of the disease; if 𝑅0 > 1,
in addition to the disease-free point 𝐸0, there is a unique
endemic point 𝐸∗ = (𝑥

∗
, 𝑦
∗
), corresponding to the survival

of the disease, described by the following expressions:

𝑥
∗
=

𝑝𝑅0

𝑝𝑞𝑅0 + (𝑅0 + 𝑎) (𝑅0 − 1)
, 𝑦

∗
=
𝑅0 − 1

𝑝
𝑥
∗
.

(9)

The Jacobian matrix of model (7) at 𝐸0 is as follows:

(
−𝑞 −1 − 𝑎

0 𝑅0 − 1
) . (10)

It follows that 𝐸0 is asymptotically stable if 𝑅0 < 1 and
unstable if 𝑅0 > 1.

The Jacobian matrix of model (7) at 𝐸∗ is as follows:

𝐽
∗
= (

𝐽11 𝐽12

𝐽21 𝐽22
) , (11)

where

𝐽11 = −
𝑝𝑞𝑅
2

0
+ 𝑎(𝑅0 − 1)

2

𝑝𝑅
2

0

, 𝐽12 = −
𝑅
2

0
+ 𝑎

𝑅
2

0

,

𝐽21 =
(𝑅0 − 1)

2

𝑝𝑅0

, 𝐽22 = −
𝑅0 − 1

𝑅0

.

(12)

It is easy, by simple computations, to see that

tr (𝐽∗) = 𝐽11 + 𝐽22 < 0,

det (𝐽∗) =
𝑝𝑞𝑅0 + (𝑎 + 𝑅0) (𝑅0 − 1)

𝑝𝑅
2

0

> 0.

(13)

Summarizing the above, we have the following results on
the dynamics of model (7).

Theorem 1. (i) If 𝑅0 < 1, then model (7) has a unique disease-
free equilibrium 𝐸0 which is asymptotically stable.

(ii) If 𝑅0 > 1, then model (7) has two equilibria, a disease-
free equilibrium𝐸0 which is an unstable saddle and an endemic
equilibrium 𝐸

∗ which is asymptotically stable.
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Figure 1: The dynamics of model (7). The parameters are taken as
(14). 𝐸0 = (0.5, 0) is a saddle point. 𝐸∗ = (0.11, 0.74) is globally
asymptotically stable.

As a matter of fact, we can prove that the endemic point
𝐸
∗
= (𝑥
∗
, 𝑦
∗
) is also global asymptotically stable. For more

details, see [19].
In Figure 1, we show the dynamics of the deterministic

model (7) with the following parameters:

𝑎 = 0.3, 𝑝 = 0.5, 𝑞 = 2, 𝑅0 = 4.5. (14)

In this case, 𝐸0 = (0.5, 0) is a saddle point. 𝐸∗ = (0.10563,

0.73944) is globally asymptotically stable.
In the following, we will focus on the boundedness,

dissipation, and persistence of mode (7).

Theorem 2. All the solutions of model (7) with the positive
initial condition (𝑥(0), 𝑦(0)) are uniformly bounded within a
region Γ, where

Γ = {(𝑥, 𝑦) ∈ R
2

+
: 𝑥 +

𝑎

𝑅0

𝑦 ≤ min{1
𝑞
,

𝑅0

𝑅0 + 𝑎
}} . (15)

Proof. Define function

𝑁(𝑡) = 𝑥 (𝑡) +
𝑎

𝑅0

𝑦 (𝑡) . (16)

Differentiating 𝑁(𝑡) with respect to time 𝑡 along the
solutions of model (7), we can get the following:

𝑑𝑁 (𝑡)

𝑑𝑡
=
𝑑𝑥

𝑑𝑡
+
𝑎

𝑅0

𝑑𝑦

𝑑𝑡
= 1 − 𝑞𝑥 − (1 +

𝑎

𝑅0

)𝑦. (17)

Thus, we obtain the following:

𝑑𝑁 (𝑡)

𝑑𝑡
+ 𝜂𝑁 (𝑡) = 1 − (𝑞 − 𝜂) 𝑥 − (1 +

𝑎

𝑅0

− 𝜂)𝑦 < 1,

(18)
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where 𝜂 < min{𝑞, 1 + (𝑎/𝑅0)}. And we obtain the following:

0 < 𝑁 (𝑥, 𝑦) ≤
1

𝜂
+ 𝑁 (𝑥 (0) , 𝑦 (0)) 𝑒

−𝜂𝑡
. (19)

As 𝑡 → ∞, 0 < 𝑁 ≤ 1/𝜂. Therefore, all solutions of model
(7) enter into the region Γ. This completes the proof.

Theorem 3. If 𝑅0 > 1, model (7) is dissipative.

Proof. Since all solutions of model (7) are positive, by the first
equation of (7), we have the following:

𝑑𝑥

𝑑𝑡
≤ 1 − 𝑞𝑥. (20)

A standard comparison theorem shows that

lim sup
𝑡→∞

𝑥 (𝑡) ≤
1

𝑞
. (21)

Hence, for any 0 < 𝜀 ≪ 1 and large 𝑡, 𝑥 ≤ (1/𝑞)+𝜀. It then
follows that 𝑦 satisfies the following:

𝑑𝑦

𝑑𝑡
≤
𝑦 (((𝑅0 − 1) /𝑞) + 𝜀 (𝑅0 − 1) − 𝑝𝑦)

(1/𝑞) + 𝜀 + 𝑝𝑦
. (22)

The arbitrariness of 𝜀 then implies that

lim sup
𝑡→∞

𝑦 (𝑡) ≤
𝑅0 − 1

𝑝𝑞
. (23)

Theorem4. If𝑅0 > 1 and 𝑝𝑞 < (1+𝑎)(𝑅0−1), thenmodel (7)
is permanent; that is, there exists 𝜀 > 0 (independent of initial
conditions), such that lim inf 𝑡→∞𝑥(𝑡) > 𝜀, lim inf 𝑡→∞𝑦(𝑡) >
𝜀.

Proof. By the first equation in (7), we have the following:

𝑑𝑥

𝑑𝑡
= 1 − 𝑞𝑥 − (1 + 𝑎) 𝑦 +

𝑎𝑝𝑦
2

𝑥 + 𝑝𝑦

> 1 − 𝑞𝑥 − (1 + 𝑎) 𝑦.

(24)

If 𝑅0 > 1 and 𝑝𝑞 < (1 + 𝑎)(𝑅0 − 1), from the proof of
Theorem 3, we see that lim sup

𝑡→∞
𝑦(𝑡) ≤ (𝑅0 − 1)/𝑝𝑞. Thus,

for any 0 < 𝜀 ≤ (𝑅0−1)/𝑝𝑞 and large 𝑡,𝑦(𝑡) > ((𝑅0−1)/𝑝𝑞)−𝜀.
As a result, we have the following:

𝑑𝑥

𝑑𝑡
> 1 − (1 + 𝑎) (

𝑅0 − 1

𝑝𝑞
− 𝜀) − 𝑞𝑥. (25)

With the comparison principle, the arbitrariness of 𝜀 implies
that

lim inf
𝑡→∞

𝑥 (𝑡) ≥
𝑝𝑞 − (1 + 𝑎) (𝑅0 − 1)

𝑝𝑞2
≜ 𝑥. (26)

Hence, for any 0 < 𝜀 < (𝑝𝑞 − (1 + 𝑎)(𝑅0 − 1))/𝑝𝑞
2 and large

𝑡, 𝑥(𝑡) > 𝑥 − 𝜀.

And for large 𝑡, we have the following:

𝑑𝑦

𝑑𝑡
>
𝑦 ((𝑥 − 𝜀) (𝑅0 − 1) − 𝑝𝑦)

𝑥 − 𝜀 + 𝑝𝑦
. (27)

Therefore,

lim inf
𝑡→∞

𝑥 (𝑡) ≥
(𝑥 − 𝜀) (𝑅0 − 1)

𝑝
. (28)

The arbitrariness of 𝜀 then implies that

lim inf
𝑡→∞

𝑥 (𝑡) ≥
𝑥 (𝑅0 − 1)

𝑝
≜ 𝑦. (29)

Choosing a positive number 𝜖 such that 𝜖 < min{𝑥/2, 𝑦/2},
we see that

lim inf
𝑡→∞

𝑥 (𝑡) > 𝜖, lim inf
𝑡→∞

𝑦 (𝑡) > 𝜀. (30)

This ends the proof.

Noting that if the parameters ofmodel (7) are fixed as (14),
we can obtain the following:

𝑅0 > 1, 𝑝𝑞 = 0.6 < (1 + 𝑎) (𝑅0 − 1) = 4.55, (31)

and fromTheorems 3 and 4, we can conclude that model (7)
is dissipation and persistence.

3. Dynamics of the Stochastic Model

In this subsection, we investigate the dynamical behavior of
the stochasticmodel (8).Throughout this paper, let (Ω,F,P)

be a complete probability space with a filtration {F𝑡}𝑡∈R
+

satisfying the usual conditions (i.e., it is right continuous and
increasing whileF0 contains allP-null sets). 𝐵1(𝑡), 𝐵2(𝑡) are
the Brownian motions defined on this probability space. We
denote by𝑋(𝑡) = ((𝑥(𝑡), 𝑦(𝑡)) and |𝑋(𝑡)| = (𝑥2(𝑡) + 𝑦2(𝑡))1/2.
Denote Λ = {(𝑥, 𝑦) ∈ R2

+
: 𝑥 ≥ 𝑎/𝑅0, 𝑦 > 0}.

Denote by 𝐶2,1(R𝑑 × (0,∞);R+) the family of all non-
negative functions 𝑉(𝑥, 𝑡) defined on R𝑑 × (0,∞) such that
they are continuously twice differentiable in 𝑥 and once
in 𝑡. Define the differential operator 𝐿 associated with 𝑑-
dimensional stochastic differential equation:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + ℎ (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) (32)

by

𝐿 =
𝜕

𝜕𝑡
+

𝑑

∑

𝑖=1

𝑓𝑖 (𝑥, 𝑡)
𝜕

𝜕𝑥𝑖

+
1

2

𝑑

∑

𝑖, 𝑗=1

[ℎ
𝑇
(𝑥, 𝑡) ℎ (𝑥, 𝑡)]

𝑖𝑗

𝜕
2

𝜕𝑥𝑖𝜕𝑥𝑗

.

(33)

If 𝐿 acts in a function 𝑉 ∈ 𝐶
2,1
(R𝑑 × (0,∞);R+), then

𝐿𝑉 (𝑥, 𝑡) = 𝑉𝑡 (𝑥, 𝑡) + 𝑉𝑥 (𝑥, 𝑡) 𝑓 (𝑥, 𝑡)

+
1

2
trace [ℎ𝑇 (𝑥, 𝑡) 𝑉𝑥𝑥 (𝑥, 𝑡) ℎ (𝑥, 𝑡)] ,

(34)

where 𝑇means transposition.
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3.1. Existence and Uniqueness of Global Positive Solutions. To
investigate the dynamical behavior of model (8), the first
thing concerned is whether the solution is global existent. In
this section, using the Lyapunov analysis method (mentioned
in [24]), we will show the solution of model (8) is global and
nonnegative.

Lemma 5. There is a unique local positive solution (𝑥(𝑡), 𝑦(𝑡))
for 𝑡 ∈ [0, 𝜏𝑒) to model (8) almost surely (a.s.) for the initial
value (𝑥(0), 𝑦(0)) ∈ Λ, where 𝜏𝑒 is the explosion time.

Proof. Set

𝑢 (𝑡) = ln𝑥 (𝑡) , V (𝑡) = ln𝑦 (𝑡) , (35)

by Itô formula, we have the following:

𝑑𝑢 = (
1

𝑒𝑢
− 𝑞 −

𝑒
V

𝑒𝑢
−

𝑎𝑒
V

𝑒𝑢 + 𝑝𝑒V
−
𝜎
2

1

2
)𝑑𝑡 + 𝜎1𝑑𝐵1 (𝑡) ,

𝑑V = (
𝑅0𝑒
𝑢

𝑒𝑢 + 𝑝𝑒V
− 1 −

𝜎
2

2

2
)𝑑𝑡 + 𝜎2𝑑𝐵2 (𝑡) ,

(36)

at 𝑡 ≥ 0 with initial value 𝑢(0) = ln𝑥(0), V(0) = ln𝑦(0).
It is easy to see that the coefficients of model (36) satisfy

the local Lipschitz condition, and there is a unique local
solution 𝑢(𝑡), V(𝑡) on [0, 𝜏𝑒) [24]. Therefore, 𝑥(𝑡) = 𝑒

𝑢(𝑡),
𝑦(𝑡) = 𝑒

V(𝑡) are the unique positive local solutions to model
(36) with the initial value (𝑥(0), 𝑦(0)) ∈ Λ.

Lemma 5 only tells us that there exists a unique local
positive solution to model (8). In the following, we show this
solution is global; that is, 𝜏𝑒 = ∞, which is motived by the
work of Luo and Mao [29].

Theorem 6. Consider model (8), for any given initial value
(𝑥(0), 𝑦(0)) ∈ Λ, there is a unique solution (𝑥(𝑡), 𝑦(𝑡)) on 𝑡 ≥ 0
and the solution will remain in Λ with probability 1.

Proof. Let 𝑛0 > 0 be sufficiently large for 𝑥(0) and 𝑦(0) lying
within the interval [1/𝑛0, 𝑛0]. For each integer 𝑛 > 𝑛0, define
the stopping times:

𝜏𝑛 = inf {𝑡 ∈ [0, 𝜏𝑒] : 𝑥 (𝑡) ∉ (
1

𝑛
, 𝑛) or 𝑦 (𝑡) ∉ (1

𝑛
, 𝑛)} .

(37)

We set inf 0 = ∞ (0 represents the empty set) in this paper. 𝜏𝑛
is increasing as 𝑛 → ∞. Let 𝜏∞ = lim𝑛→∞𝜏𝑛; then 𝜏∞ ≤ 𝜏𝑒

a.s..
In the following, we need to show 𝜏∞ = ∞ a.s. If this

statement is violated, there exist constants𝑇 > 0 and 𝜀 ∈ (0, 1)
such that P{𝜏∞ ≤ 𝑇} > 𝜀. As a consequence, there exists an
integer 𝑛1 ≥ 𝑛0 such that

P {𝜏𝑛 ≤ 𝑇} ≥ 𝜀, 𝑛 ≥ 𝑛1. (38)

Define a function 𝑉1 : Λ → R+ by the following:

𝑉1 (𝑥, 𝑦) = (
𝑅0

𝑎
𝑥 − 1 − ln

𝑅0

𝑎
𝑥) + (𝑦 − 1 − ln𝑦) , (39)

which is a non-negativity function.
If (𝑥(𝑡), 𝑦(𝑡)) ∈ Λ, by the Itô formula, we compute the

following:

𝑑𝑉1 = [(
𝑅0

𝑎
−
1

𝑥
)(1 − 𝑞𝑥 − 𝑦 −

𝑎𝑥𝑦

𝑥 + 𝑝𝑦
) +

𝜎
2

1

2
] 𝑑𝑡

+ 𝜎1 (
𝑅0

𝑎
𝑥 − 1) 𝑑𝐵1 (𝑡)

+ [(1 −
1

𝑦
)(

𝑅0𝑥

𝑥 + 𝑝𝑦
− 1)𝑦 +

𝜎
2

2

2
] 𝑑𝑡

+ 𝜎2 (𝑦 − 1) 𝑑𝐵2 (𝑡)

= 𝐿𝑉1𝑑𝑡 + 𝜎1 (
𝑅0

𝑎
𝑥 − 1) 𝑑𝐵1 (𝑡)

+ 𝜎2 (𝑦 − 1) 𝑑𝐵2 (𝑡) ,

(40)

where

𝐿𝑉1 = 𝑞 +
𝑎𝑦 − 𝑅0𝑥

𝑥 + 𝑝𝑦
−
𝑅0𝑞

𝑎
𝑥

+ (
𝑅0

𝑎
−
1

𝑥
) (1 − 𝑦) + 1 − 𝑦 +

𝜎
2

1

2
+
𝜎
2

2

2

≤ 𝑞 +
𝑎

𝑝
+ (

𝑅0

𝑎
−
1

𝑥
) (1 − 𝑦)

+ 1 − 𝑦 +
𝜎
2

1

2
+
𝜎
2

2

2
.

(41)

Case 1 (assume 𝑎 ≥ 𝑅0). In this case, we have 𝑥 ≥ 1. It follows
that

(
𝑅0

𝑎
−
1

𝑥
) (1 − 𝑦) + 1 − 𝑦

≤
𝑅0

𝑎
+ 𝑦(

1

𝑥
− 1) −

1

𝑥
+ 1 ≤ 1 +

𝑅0

𝑎
.

(42)

Case 2 (assume 𝑎 < 𝑅0). If 𝑎/𝑅0 ≤ 𝑥 < 1, one has the
following:

(a) ((𝑅0/𝑎)−(1/𝑥))(1−𝑦)+1−𝑦 ≤ (𝑅0/𝑎)+((𝑦−1)/𝑥)+

1 − 𝑦 ≤ 1 + (𝑅0/𝑎) provided that 0 < 𝑦 ≤ 1;
(b) ((𝑅0/𝑎)−(1/𝑥))(1−𝑦)+1−𝑦 ≤ 1 provided that 𝑦 > 1.
Hence, there exists a positive number𝑀 independent on

𝑥,𝑦 and 𝑡 such that 𝐿𝑉1 ≤ 𝑀. Substituting this inequality into
(40), we can get the following:

𝑑𝑉1 ≤ 𝑀𝑑𝑡 + 𝜎1 (
𝑅0

𝑎
𝑥 − 1) 𝑑𝐵1 (𝑡)

+ 𝜎2 (𝑦 − 1) 𝑑𝐵2 (𝑡) .

(43)

Integrating both sides of the above inequality from 0 to
𝜏𝑛 ∧ 𝑇 and taking expectations leads to the following:

𝐸𝑉1 (𝑥 (𝜏𝑛 ∧ 𝑇) , 𝑦 (𝜏𝑛 ∧ 𝑇)) ≤ 𝑉1 (𝑥 (0) , 𝑦 (0)) + 𝑀𝑇.

(44)
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Set Ω𝑛 = {𝜏𝑛 ≤ 𝑇}, for 𝑛 ≥ 𝑛1 and consider inequality
(38), we can get P(Ω𝑛) ≥ 𝜀. Note that for every 𝜔 ∈ Ω𝑛,
there exists some 𝑖 such that 𝑥𝑖(𝜏𝑛, 𝜔) equals either 𝑛 or 1/𝑛
for 𝑖 = 1, 2; hence,

𝑉1 (𝑥 (𝜏𝑛, 𝜔) , 𝑦 (𝜏𝑛, 𝜔))

≥ min {(𝑛 − 1 − ln 𝑛) , (1
𝑛
− 1 − ln 1

𝑛
)} .

(45)

It then follows from (44) that

𝑉1 (𝑥 (0) , 𝑦 (0)) + 𝑀𝑇

≥ 𝐸 [𝐼Ω
𝑛
(𝜔)𝑉1 (𝑥 (𝜏𝑛) , 𝑦 (𝜏𝑛))]

≥ 𝜖min {(𝑛 − 1 − ln 𝑛) , (1
𝑛
− 1 − ln 1

𝑛
)} ,

(46)

where 𝐼Ω
𝑛

is the indicator function ofΩ𝑛.
As 𝑛 → ∞ we have the following:

∞ > 𝑉1 (𝑥 (0) , 𝑦 (0)) + 𝑀𝑇 = ∞ a.s., (47)

which leads to the contradiction. This completes the proof.

3.2. Stochastic Boundedness and Permanence. Theorem 6
shows that the solutions to model (8) will remain in Λ.
Generally speaking, the nonexplosion property, the existence,
and the uniqueness of the solution are not enough but the
property of boundedness and permanence aremore desirable
since they mean the long-time survival in the population
dynamics. Now, we present the definition of stochastic
ultimate boundedness and stochastic permanence [31].

Definition 7. The solutions 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) of model (8)
are said to be stochastically ultimately bounded, if for any 𝜀 ∈
(0, 1), there is a positive constant 𝛿 = 𝛿(𝜀), such that for any
initial value (𝑥(0), 𝑦(0)) ∈ Λ, the solution 𝑋(𝑡) of model (8)
has the property that

lim sup
𝑡→∞

𝑃 {|𝑋 (𝑡)| > 𝛿} < 𝜀. (48)

Definition 8. The solutions 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) of model (8)
are said to be stochastically permanent if for any 𝜀 ∈ (0, 1),
there exists a pair of positive constants 𝛿 = 𝛿(𝜀) and 𝜒 = 𝜒(𝜀),
such that for any initial value (𝑥(0), 𝑦(0)) ∈ Λ, the solution
𝑋(𝑡) of model (8) has the property that

lim inf
𝑡→∞

𝑃 {|𝑋 (𝑡)| ≥ 𝛿} ≥ 1 − 𝜀,

lim inf
𝑡→∞

𝑃 {|𝑋 (𝑡)| ≤ 𝜒} ≥ 1 − 𝜀.

(49)

Theorem 9. The solutions of model (8) are stochastically
ultimately bounded for any initial value (𝑥(0), 𝑦(0)) ∈ Λ.

Proof. Denote functions

𝑉2 = 𝑒
𝑡
𝑥
𝜃
, 𝑉3 = 𝑒

𝑡
𝑦
𝜃 (50)

for (𝑥, 𝑦) ∈ Λ and 0 < 𝜃 < 1.

Applying the Itô formula leads to the following:

𝑑𝑉2 = 𝐿𝑉2𝑑𝑡 + 𝜎1𝜃𝑒
𝑡
𝑥
𝜃
𝑑𝐵1 (𝑡) ,

𝑑𝑉3 = 𝐿𝑉3𝑑𝑡 + 𝜎2𝜃𝑒
𝑡
𝑦
𝜃
𝑑𝐵2 (𝑡) ,

(51)

where

𝐿𝑉2 = 𝑒
𝑡
𝑥
𝜃
(1 + 𝜃(

1

𝑥
− 𝑞 −

𝑦

𝑥
−

𝑎𝑦

𝑥 + 𝑝𝑦
) +

𝜎
2

1
𝜃 (𝜃 − 1)

2
) ,

𝐿𝑉3 = 𝑒
𝑡
𝑦
𝜃
(1 + 𝜃(

𝑅0𝑥

𝑥 + 𝑝𝑦
− 1) +

𝜎
2

2
𝜃 (𝜃 − 1)

2
) .

(52)

Thus, there exists the positive constants𝑀1 and𝑀2 such that
we have 𝐿𝑉2 < 𝑀1𝑒

𝑡 and 𝐿𝑉3 < 𝑀2𝑒
𝑡. It follows that 𝑒𝑡𝐸𝑥𝜃 −

𝐸𝑥(0)
𝜃
≤ 𝑀1𝑒

𝑡 and 𝑒𝑡𝐸𝑦𝜃 − 𝐸𝑦(0)𝜃 ≤ 𝑀2𝑒
𝑡. Then we get the

following:

lim sup
𝑡→∞

𝐸𝑥
𝜃
≤ 𝑀1 < +∞,

lim sup
𝑡→∞

𝐸𝑦
𝜃
≤ 𝑀2 < +∞.

(53)

Note that

|𝑋 (𝑡)|
𝜃
= (𝑥
2
(𝑡) + 𝑦

2
(𝑡))
𝜃/2

≤ 2
𝜃/2max {𝑥𝜃 (𝑡) , 𝑦𝜃 (𝑡)}

≤ 2
𝜃/2
(𝑥
𝜃
+ 𝑦
𝜃
) .

(54)

Therefore, we obtain the following:

lim sup
𝑡→∞

𝐸|𝑋 (𝑡)|
𝜃
≤ 2
𝜃/2
(𝑀1 +𝑀2) < +∞. (55)

As a result, there exists a positive constant 𝛿1 such that

lim sup
𝑡→∞

𝐸 (√|𝑋 (𝑡)|) < 𝛿1. (56)

Now, for any 𝜀 > 0, let 𝛿 = 𝛿
2

1
/𝜀
2; then by Chebyshev’s ine-

quality,

P {|𝑋 (𝑡)| > 𝛿} ≤

𝐸 (√|𝑋 (𝑡)|)

√𝛿
. (57)

Hence,

lim sup
𝑡→∞

P {|𝑋 (𝑡)| > 𝛿} ≤
𝛿1

√𝛿
= 𝜀, (58)

which yields the required assertion.

We are now in the position to show the stochastic per-
manence. Let us present some hypothesis and a useful lemma.
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Lemma 10. Assume 𝑅0 > 𝑎 + max{4, 2𝑝𝑞}. For any initial
value (𝑥(0), 𝑦(0)) ∈ Λ, the solution (𝑥(𝑡), 𝑦(𝑡)) satisfies that

lim sup
𝑡→∞

𝐸(
1

|𝑋 (𝑡)|
𝜌
) ≤ 𝐻, (59)

where 𝜌 is an arbitrary positive constant satisfying

𝜌 + 1

2
(max {𝜎1, 𝜎2})

2
< 1 +min{

𝑅0 − 𝑎

2𝑝
− 𝑞,

𝑅0 − 𝑎

2
− 2} ,

(60)

𝐻 =
2
𝜌
(𝐶2 + 4𝑘𝐶1)

4𝑘𝐶1

×max
{{

{{

{

1,(

2𝐶1 + 𝐶2 + √𝐶
2

2
+ 4𝐶1𝐶2

2𝐶1

)

𝜌−2

}}

}}

}

(61)

in which 𝑘 is an arbitrary positive constant satisfying

𝜌 (𝜌 + 1)

2
(max {𝜎1, 𝜎2})

2
+ 𝑘

< 𝜌 + 𝜌min{
𝑅0 − 𝑎

2𝑝
− 𝑞,

𝑅0 − 𝑎

2
− 2}

(62)

with

𝐶1 = 𝜌 + 𝜌min{
𝑅0 − 𝑎

2𝑝
− 𝑞,

𝑅0 − 𝑎

2
− 2}

−
𝜌 (𝜌 + 1)

2
(max {𝜎1, 𝜎2})

2
− 𝑘 > 0,

𝐶2 = 𝜌max {𝑞, 2 + 𝑎} +
𝜌𝑅0 (𝑅0 − 1)max {1, 𝑝2}

2𝑎𝑝

+ 𝜌(max {𝜎1, 𝜎2})
2
+ 2𝑘 > 0.

(63)

Proof. Set 𝑈(𝑥, 𝑦) = 1/(𝑥 + 𝑦) for (𝑥(𝑡), 𝑦(𝑦)) ∈ Λ, by the Itô
formula, we have the following:

𝑑𝑈 = − 𝑈2 [1 − 𝑞𝑥 − 𝑦 −
𝑎𝑥𝑦

𝑥 + 𝑝𝑦
+

𝑅0𝑥𝑦

𝑥 + 𝑝𝑦
− 𝑦]𝑑𝑡

+ 𝑈
3
(𝜎
2

1
𝑥
2
+ 𝜎
2

2
𝑦
2
) 𝑑𝑡

− 𝑈
2
(𝜎1𝑥𝑑𝐵1 (𝑡) + 𝜎2𝑦𝑑𝐵2 (𝑡))

= 𝐿𝑈𝑑𝑡 − 𝑈
2
(𝜎1𝑥𝑑𝐵1 (𝑡) + 𝜎2𝑦𝑑𝐵2 (𝑡)) ,

(64)

where

𝐿𝑈 = − 𝑈
2
(1 − 𝑞𝑥 − 2𝑦 +

(𝑅0 − 𝑎) 𝑥𝑦

𝑥 + 𝑝𝑦
)

+ 𝑈
3
(𝜎
2

1
𝑥
2
+ 𝜎
2

2
𝑦
2
) .

(65)

Choose a positive constant 𝜌 such that it satisfies (60).
Applying the Itô formula again, we can get the following:

𝐿 [(1 + 𝑈)
𝜌
]

= 𝜌(1 + 𝑈)
𝜌−1
𝐿𝑈

+
𝜌 (𝜌 − 1)

2
𝑈
4
(1 + 𝑈)

𝜌−2
(𝜎
2

1
𝑥
2
+ 𝜎
2

2
𝑦
2
)

= (1 + 𝑈)
𝜌−2
Φ,

(66)

where

Φ = −𝜌𝑈
2
(1 − 𝑞𝑥 − 2𝑦 +

(𝑅0 − 𝑎) 𝑥𝑦

𝑥 + 𝑝𝑦
)

− 𝜌𝑈
3
(1 − 𝑞𝑥 − 2𝑦 +

(𝑅0 − 𝑎) 𝑥𝑦

𝑥 + 𝑝𝑦
)

+ 𝜌𝑈
3
(𝜎
2

1
𝑥
2
+ 𝜎
2

2
𝑦
2
)

+
𝜌 (1 + 𝜌)𝑈

4

2
(𝜎
2

1
𝑥
2
+ 𝜎
2

2
𝑦
2
)

≤ −𝜌𝑈
2
+ 𝜌𝑈
2
(𝑞𝑥 + (2 + 𝑎) 𝑦)

− 𝜌𝑈
3
((

𝑅0 − 𝑎

2𝑝
− 𝑞)𝑥 + (

𝑅0 − 𝑎

2
− 2)𝑦)

+ 𝜌𝑈
3
(

(𝑅0 − 𝑎) (𝑥
2
+ 𝑝
2
𝑦
2
)

2𝑝 (𝑥 + 𝑝𝑦)
)

+ 𝜌𝑈
3
(𝜎
2

1
𝑥
2
+ 𝜎
2

2
𝑦
2
)

+
𝜌 (1 + 𝜌)𝑈

4

2
(𝜎
2

1
𝑥
2
+ 𝜎
2

2
𝑦
2
) .

(67)

Using the facts that

𝑈
3
(𝜎
2

1
𝑥
2
+ 𝜎
2

2
𝑦
2
) < (max {𝜎1, 𝜎2})

2
𝑈,

𝑈
4
(𝜎
2

1
𝑥
2
+ 𝜎
2

2
𝑦
2
) < (max {𝜎1, 𝜎2})

2
𝑈
2
,

(68)

so,

Φ ≤ −𝑈
2
(𝜌 + 𝜌min{

𝑅0 − 𝑎

2𝑝
− 𝑞,

𝑅0 − 𝑎

2
− 2}

−
𝜌 (𝜌 + 1)

2
(max {𝜎1, 𝜎2})

2
)

+ 𝑈(𝜌max {𝑞, 2 + 𝑎} +
𝜌𝑅0 (𝑅0 − 1)max {1, 𝑝2}

2𝑎𝑝

+𝜌(max {𝜎1, 𝜎2})
2
) .

(69)
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Now, let 𝑘 > 0 sufficiently small such that it satisfies (62), by
the Itô formula; then

𝐿 [𝑒
𝑘𝑡
(1 + 𝑈)

𝜌
]

= 𝑘𝑒
𝑘𝑡
(1 + 𝑈)

𝜌
+ 𝑒
𝑘𝑡
𝐿(1 + 𝑈)

𝜌

= 𝑒
𝑘𝑡
(1 + 𝑈)

𝜌−2
(𝑘(1 + 𝑈)

2
+ Φ)

≤ 𝑒
𝑘𝑡
(1 + 𝑈)

𝜌−2
(−𝐶1𝑈

2
+ 𝐶2𝑢 + 𝑘)

≤ 𝐻1𝑒
𝑘𝑡
,

(70)

where 𝐻1 = ((𝐶2 + 4𝑘𝐶1)/4𝐶1)max{1, ((2𝐶1+ 𝐶2 +

√𝐶
2

2
+ 4𝐶1𝐶2)/2𝐶1)

𝜌−2
} and 𝐶1, 𝐶2 have been defined in the

statement of the theorem. Thus,

𝐸 [𝑒
𝑘𝑡
(1 + 𝑈)

𝜌
] ≤ (1 + 𝑈 (0))

𝜌
+
𝐻1

𝑘
𝑒
𝑘𝑡
. (71)

So we can have the following:

lim sup
𝑡→∞

𝐸 [𝑈(𝑡)
𝜌
] ≤ lim sup
𝑡→∞

𝐸(1 + 𝑈)
𝜌
≤
𝐻1

𝑘
. (72)

In addition, we know that (𝑥 + 𝑦)𝜌 ≤ 2
𝜌
(𝑥
2
+ 𝑦
2
)
𝜌/2

=

2
𝜌
|𝑋(𝑡)|

𝜌; consequently,

lim sup
𝑡→∞

𝐸[
1

|𝑋 (𝑡)|
𝜌
] ≤ 2
𝜌 lim sup
𝑡→∞

𝐸 [𝑈(𝑡)
𝜌
]

≤
2
𝜌
𝐻1

𝑘
= 𝐻,

(73)

which complets the proof.

ConsiderChebyshev inequality,Theorem 9, andLemma 10
together, we immediately obtain the following result.

Theorem 11. If the following conditions are satisfied

(i) 𝑎 +max{2𝑝𝑞, 4} < 𝑅0;
(ii) (1/2)(max{𝜎1, 𝜎2})

2
< 1+min{((𝑅0−𝑎)/2𝑝)−𝑞, ((𝑅0−

𝑎)/2) − 2},

then the solutions of model (8) is stochastically permanent.

4. Conclusions and Discussions

In this paper, by using the theory of stochastic differential
equation, we investigate the dynamics of an SIRS epidemic
modelwith a ratio-dependent incidence rate.The value of this
study lies in two aspects. First, it presents some relevant prop-
erties of the deterministic model (7), including boundedness,
dissipation, persistence, and the stability of the disease-free
and endemic points. Second, it verifies the existence of global
positive solutions, stochastic boundedness, and permanence
for the stochastic model (8).

As an example, we give some numerical examples to
illustrate the dynamical behavior of stochastic model (8) by

using theMilsteinmethodmentioned inHigham [49]. In this
way,model (8) can be rewritten as the following discretization
equations:

𝑥𝑘+1 = 𝑥𝑘 + (1 − 𝑞𝑥𝑘 − 𝑦𝑘 −
𝑎𝑥𝑘𝑦𝑘

𝑥𝑘 + 𝑝𝑦𝑘

)Δ𝑡

+ 𝜎1𝑥𝑘
√Δ𝑡𝜉𝑘 +

𝜎
2

1

2
𝑥
2

𝑘
(𝜉
2

𝑘
− 1)Δ𝑡,

𝑦𝑘+1 = 𝑦𝑘 + (
𝑅0𝑥𝑘𝑦𝑘

𝑥𝑘 + 𝑝𝑦𝑘

− 𝑦𝑘)Δ𝑡

+ 𝜎2𝑦𝑘
√Δ𝑡𝜂𝑘 +

𝜎
2

2

2
𝑦
2

𝑘
(𝜂
2

𝑘
− 1)Δ𝑡,

(74)

where 𝜉𝑘 and 𝜂𝑘, 𝑘 = 1, 2, . . . , 𝑛, are the Gaussian random
variables𝑁(0, 1).

The parameters of model (8) are fixed as (14). In this case,
model (7) has the endemic point 𝐸∗ = (0.11, 0.74). And
model (8) becomes as follows:

𝑑𝑥 = (1 − 2𝑥 − 𝑦 −
0.3𝑥𝑦

𝑥 + 0.5𝑦
)𝑑𝑡 + 𝜎1𝑥𝑑𝐵1 (𝑡) ,

𝑑𝑦 = (
4.5𝑥𝑦

𝑥 + 0.5𝑦
− 𝑦)𝑑𝑡 + 𝜎2𝑦𝑑𝐵2 (𝑡) .

(75)

Simple computations show that

𝑎 +max {2𝑝𝑞, 4} = 4.3 < 4.5 = 𝑅0,

0.03
2

2
=
1

2
(max {𝜎1, 𝜎2})

2

< 1 +min{
𝑅0 − 𝑎

2𝑝
− 𝑞,

𝑅0 − 𝑎

2
− 2} = 1.1,

if (𝜎1, 𝜎2) = (0.03, 0.01) ,

0.5
2

2
=
1

2
(max {𝜎1, 𝜎2})

2

< 1 +min{
𝑅0 − 𝑎

2𝑝
− 𝑞,

𝑅0 − 𝑎

2
− 2} = 1.1,

if (𝜎1, 𝜎2) = (0.5, 0.3) .
(76)

It is easy to see that, all the conditions of Theorem 11 are
satisfied, and we can therefore conclude that, with (𝜎1, 𝜎2) =
(0.03, 0.01) and (𝜎1, 𝜎2) = (0.5, 0.3), the solutions of model
(8) is stochastically permanent. The numerical examples
shown in Figures 2 and 3 clearly support these results. In
Figure 2, with (𝜎1, 𝜎2) = (0.03, 0.01), the solutions of model
(8) will be oscillating slightly around the endemic point 𝐸∗ =
(0.11, 0.74) of model (7). And in Figure 3, with (𝜎1, 𝜎2) =

(0.5, 0.3), the solutions of model (8) will be oscillating
strongly around the endemic point𝐸∗ = (0.11, 0.74) ofmodel
(7).

It is worthy to note that, throughout this paper, the para-
meters for model (7), also for model (8), are fixed as the set
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Figure 2:The solution of the stochastic model (8) with initial values
𝑥(0) = 0.2, 𝑦(0) = 0.15. The parameters are taken as (14), 𝜎1 = 0.03,
𝜎2 = 0.01.
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Figure 3:The solution of the stochastic model (8) with initial values
𝑥(0) = 0.2, 𝑦(0) = 0.15. The parameters are taken as (14), 𝜎1 = 0.5,
𝜎2 = 0.3.

(14).The reason is that with this parameter set, the conditions
of our theoretical results hold. Of course, one can adopt other
parameters set to show the numerical results.

From the theoretical and numerical results, we can know
that, when the noise density is not large, the stochastic model
(8) preserves the property of the stability of the deterministic
model (7). To a great extent, we can ignore the noise and
use the deterministic model (7) to describe the population
dynamics. However, when the noise is sufficiently large, it
can force the population to become largely fluctuating. In this

case, we cannot use deterministic model (7) but stochastic
model (8) to describe the population dynamics. Needless to
say, both deterministic and stochastic epidemic models have
their important roles.

Furthermore, from the numerical results in Figure 2, one
can see that model (8) is stochastically stable. But we cannot
prove the stochastic stability because of the complexity of
model (8). This can be further investigated.

On the other hand, we know that there are different
possible approaches to including random effects in the
epidemic models affected by environmental white noise, here
we consider another method to introduce random effects
in the epidemic model (7). The martingale approach was
initiated by Beretta et al. [35] and applied in [27, 30, 45,
47]. They introduced stochastic perturbation terms into the
growth equations to incorporate the effect of a randomly
fluctuating environment. In detail, assume that the stochastic
perturbations of the state variables around their steady-state
𝐸
∗ are of a white noise type which is proportional to the

distances of 𝑥, 𝑦 from their steady-state values 𝑥∗ and 𝑦∗,
respectively. In this way, model (7) will be reduced to the
following form:

𝑑𝑥 = (1 − 𝑞𝑥 − 𝑦 −
𝑎𝑥𝑦

𝑥 + 𝑝𝑦
)𝑑𝑡 + 𝜎1 (𝑥 − 𝑥

∗
) 𝑑𝐵1 (𝑡) ,

𝑑𝑦 = (
𝑅0𝑥𝑦

𝑥 + 𝑝𝑦
− 𝑦)𝑑𝑡 + 𝜎2 (𝑦 − 𝑦

∗
) 𝑑𝐵2 (𝑡) ,

(77)

where the definitions of 𝜎1, 𝜎2 and 𝐵1(𝑡), 𝐵2(𝑡) are the same
as in (8).

If 𝑅0 > 1, stochastic model (77) can center at its endemic
point 𝐸∗, with the change of variables 𝑢 = 𝑥−𝑥∗, V = 𝑦−𝑦∗.
The linearized version of model (77) is as follows:

𝑑𝑧 (𝑡) = 𝑓1 (𝑧 (𝑡)) 𝑑𝑡 + 𝑓2 (𝑧 (𝑡)) 𝑑𝐵 (𝑡) , (78)

where

𝑧 (𝑡) = (
𝑢 (𝑡)

V (𝑡)
) , 𝑓1 = (

𝐽11𝑢 (𝑡) + 𝐽12V (𝑡)

𝐽21𝑢 (𝑡) + 𝐽22V (𝑡)
) ,

𝑓2 = (
𝜎1𝑢 (𝑡) 0

0 𝜎2V (𝑡)
) ,

(79)

where 𝐽11, 𝐽12, 𝐽21, 𝐽22 are defined as (12).
It is easy to see that the stability of the endemic point 𝐸∗

of model (77) is equivalent to the stability of zero solution of
model (78).

Before proving the stochastic stability of the zero solution
of model (78), we put forward a lemma in [50].

Lemma 12. Suppose there exists a function 𝑉(𝑧, 𝑡) ∈ 𝐶
2
(Ω)

satisfying the following inequalities:

𝐾1|𝑧|
𝜔
≤ 𝑉 (𝑧, 𝑡) ≤ 𝐾2|𝑧|

𝜔
, (80)

𝐿𝑉 (𝑧, 𝑡) ≤ −𝐾3|𝑧|
𝜔
, (81)

where 𝜔 > 0 and 𝐾𝑖 (𝑖 = 1, 2, 3) is positive constant. Then the
zero solution of mode (78) is exponentially 𝜔-stable for all time
𝑡 ≥ 0.
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From the lemma above, note that if 𝜔 = 2 in (80) and
(81), then the zero solution of model (78) is stochastically
asymptotically stable in probability. Thus, we obtain the
following theorem.

Theorem 13. Assume that 𝜎2
1
< 2(𝑝𝑞𝑅

2

0
+ 𝑎(𝑅0 − 1)

2
)/𝑝𝑅
2

0
,

𝜎
2

2
< 2(𝑅0 − 1)/𝑅0 hold; then the zero solution of model (78) is

asymptotically mean square stable. And the endemic point 𝐸∗
of model (77) is asymptotically mean square stable.

The details of the proof are shown in the Appendix.
We should point out that the results obtained in this paper

are only for the simple case when 𝑙 = ℎ = 1 of the incidence
rate (3). The dynamical behaviors of the stochastic epidemic
model with general ratio-dependent incidence rate (3) are
desirable in future studies.

Appendix

The proof of Theorem 13

Proof. Let us consider the Lyapunov function

𝑉5 (𝑧 (𝑡)) =
1

2
(𝑢
2
+ 𝜅V2) , (A.1)

where 𝜅 = (𝑅2
0
+ 𝑎)/𝑅0(𝑅0 − 1)

2.
It is easy to check that inequality (80) holds with 𝜔 = 2.

Moreover,

𝐿𝑉5 (𝑧 (𝑡)) = 𝑢 (𝐽11𝑢 + 𝐽12V) + 𝜅V (𝐽21𝑢 + 𝐽22V)

+
1

2
(𝜎
2

1
𝑢
2
+ 𝜅𝜎
2

2
V2)

= (𝐽11 +
𝜎
2

1

2
)𝑢
2
+ 𝜅(𝐽22 +

𝜎
2

2

2
) V2

= −𝑧
𝑇
𝑄𝑧,

(A.2)

where

𝑄 = (

𝐽11 +
𝜎
2

1

2
0

0 𝜅(𝐽22 +
𝜎
2

2

2
)

) . (A.3)

When 𝜎2
1
< 2(𝑝𝑞𝑅

2

0
+𝑎(𝑅0 −1)

2
)/𝑝𝑅
2

0
, 𝜎2
2
< 2(𝑅0 −1)/𝑅0,

the two eigenvalues 𝜆1, 𝜆2 of thematrix𝑄will be positive. Set
𝜆min = min{𝜆1, 𝜆2}, it follows from (A.2) immediately that

𝐿𝑉5 (𝑧 (𝑡)) ≤ −𝜆min|𝑧 (𝑡)|
2
. (A.4)

We therefore have the assertion.
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