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As generalizations of Yoshizawa’s theorem, it is proved that a dissipative affine-periodic system admits affine-periodic solutions.
This result reveals some oscillation mechanism in nonlinear systems.

1. Introduction

Consider the system

𝑥

= 𝑓 (𝑡, 𝑥) ,


=

d
d𝑡
, (1)

where 𝑓 : R1 × R𝑛 → R𝑛 is continuous and ensures the
uniqueness of solutions with respect to initial values. Fix 𝑇 >

0.The system (1) is said to be𝑇-periodic if𝑓(𝑡+𝑇, 𝑥) = 𝑓(𝑡, 𝑥)
for all (𝑡, 𝑥) ∈ R1 × R𝑛. For this 𝑇-periodic system, a major
problem is to seek the existence of 𝑇-periodic solutions.
Actually, some physical systems also admit the certain affine-
periodic invariance. For example, let 𝑄 ∈ GL(𝑛), and

𝑓 (𝑡 + 𝑇, 𝑥) = 𝑄𝑓 (𝑡, 𝑄
−1
𝑥) , ∀ (𝑡, 𝑥) . (2)

This affine-periodic invariance exhibits two characters: peri-
odicity in time and symmetry in space. Obviously, when
𝑄 = 𝑖𝑑, the invariance is just the usual periodicity; when
𝑄 = −𝑖𝑑, the invariance implies the usual antisymmetry in
space. When 𝑄 ∈ SO(𝑛), the invariance shows the rotating
symmetry in space. Hence, the invariance also reflects some
properties of solutions in geometry. Now, (2) is said to possess
the affine-periodic structure. For this affine-periodic system,
we are concerned with the existence of affine-periodic solu-
tions 𝑥(𝑡) with

𝑥 (𝑡 + 𝑇) = 𝑄𝑥 (𝑡) , ∀𝑡. (3)

In the qualitative theory, it is a basic result that the dissi-
pative periodic systems admit the existence of periodic solu-
tions. The related topics had ever captured the main field in

periodic solutions theory from the 1960s to the 1990s. For
some litratures, see, for example, [1–12].

In the present paper, wewill see whether (1) admits affine-
periodic solutions or not if (1) is affine-dissipative. Here, (1)
is said to be affine-dissipative if 𝑄−𝑚𝑥(𝑡 + 𝑚𝑇) are ultimately
bounded. Our main result is the following.

Theorem 1. Let 𝑄 ∈ 𝐺𝐿(𝑛). If the system (1) is 𝑄-affine-peri-
odic, that is,

𝑓 (𝑡 + 𝑇, 𝑥) = 𝑄𝑓 (𝑡, 𝑄
−1
𝑥) , (4)

and affine-dissipative, then it admits a 𝑄-affine-periodic solu-
tion 𝑥

∗
(𝑡); that is,

𝑥
∗
(𝑡 + 𝑇) = 𝑄𝑥

∗
(𝑡) , ∀𝑡. (5)

The paper is organized as follows. In Section 2, we use
the asymptotic fixed-point theorem, for example, Horn’s
fixed-point theorem to prove Theorem 1. Section 3 deals
with the case of functional differential equations, where an
anagolous version is given and the proof is sketched. Finally,
in Section 4, we illustrate some applications.

2. Proof of Theorem 1

In order to prove Theorem 1, we first recall some prelimi-
naries.

Lemma 2 (Horn’s fixed-point theorem [13]). Let 𝑋 be a
Banach space, and let 𝑆

0
⊂ 𝑆
1
⊂ 𝑆
2
⊂ 𝑋 be convex sets, where
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𝑆
0
is compact, 𝑆

1
relatively open with respect to 𝑆

2
, and 𝑆

2

closed. Assume that 𝑃 : 𝑆
0
→ 𝑋 is continuous and satisfies

𝑃
𝑗
(𝑆
1
) ⊂ 𝑆
2
, 𝑗 = 0, 1, . . . , 𝑁 − 1,

𝑃
𝑗
(𝑆
1
) ⊂ 𝑆
0
, 𝑗 = 𝑁, . . . , 2𝑁 − 1.

(6)

Then, 𝑃 has a fixed point in 𝑆
0
.

The following is a usual definition.

Definition 3. The system (1) is said to be dissipative or ulti-
mately bounded, if there is 𝐵

0
> 0 and for any 𝐵 > 0, there

are𝑀 = 𝑀(𝐵) > 0 and 𝐿 = 𝐿(𝐵) > 0 such that for |𝑥
0
| ≤ 𝐵,





𝑥 (𝑡, 𝑥

0
)




≤ 𝑀, ∀𝑡 ∈ [0, 𝐿] ,





𝑥 (𝑡, 𝑥

0
)




≤ 𝐵
0
, ∀𝑡 ∈ [𝐿,∞) ,

(7)

where 𝑥(𝑡, 𝑥
0
) denotes the solution of (1) with the initial value

𝑥(0) = 𝑥
0
.

For the affine-periodic system (1), we have the following.

Definition 4. The system (1) is said to be𝑄-affine-dissipative,
if there is 𝐵

0
> 0 and for any 𝐵 > 0, there are𝑀 = 𝑀(𝐵) > 0

and 𝐿 = 𝐿(𝐵) > 0 such that




𝑥 (𝑡, 𝑥

0
)




≤ 𝑀, ∀𝑡 ∈ [0, 𝐿] ,





𝑄
−𝑚
𝑥 (𝑡 + 𝑚𝑇, 𝑥

0
)




≤ 𝐵
0
, ∀𝑡 ∈ [𝐿,∞) , 𝑚 ∈ Z

1

+
,

(8)

whenever |𝑥
0
| ≤ 𝐵.

Proof of Theorem 1. Define the map 𝑃 : R𝑛 → R𝑛 by

𝑃 (𝑥
0
) = 𝑄

−1
𝑥 (𝑇, 𝑥

0
) , ∀𝑥

0
∈ R
𝑛
, (9)

and set
𝑆
0
= {𝑦 ∈ R

𝑛
:




𝑦




≤ 𝐵
0
} ,

𝑆
1
= {𝑦 ∈ R

𝑛
:




𝑦




< 𝐵
1
} ,

𝑆
2
= {𝑦 ∈ R

𝑛
:




𝑦




≤ 𝐵
2
} ,

(10)

where
𝐵
1
= 𝐵
0
+ 1,

𝐵
2
= sup {


𝑄
−𝑚
𝑥 (𝑚𝑇, 𝑥

0
)




: 𝑚 ∈ {0, . . . , 𝑁} ,





𝑥
0





≤ 𝐵
0
+ 1} + 𝐵

0
+ 2,

𝑁 = [𝐿 (𝐵
1
)] + 1.

(11)

By uniqueness and the affine periodicity of 𝑓(𝑡, 𝑥), 𝑄−𝑚𝑥(𝑡 +
𝑚𝑇, 𝑥

0
) is still the solution of (1) for each𝑚 ∈ Z1

+
. Therefore,

𝑃
𝑖
(𝑥
0
) = 𝑄

−𝑖
𝑥 (𝑖𝑇, 𝑥

0
) , 𝑖 = 0, 1, . . . . (12)

It follows from (8) that

𝑃
𝑗
(𝑆
1
) ⊂ 𝑆
2
, 𝑗 = 0, . . . , 𝑁 − 1,

𝑃
𝑗
(𝑆
1
) ⊂ 𝑆
0
, 𝑗 = 𝑁, . . . , 2𝑁 − 1.

(13)

Thus, Horn’s fixed-point theorem implies that 𝑃 has a fixed
point 𝑥

0
in 𝑆
0
; that is, 𝑄−1𝑥(𝑇, 𝑥

0
) = 𝑥

0
. Also, uniqueness

yields

𝑄
−1
𝑥 (𝑡 + 𝑇, 𝑥

0
) = 𝑥 (𝑡, 𝑥

0
) ,

⇐⇒ 𝑥 (𝑡 + 𝑇, 𝑥
0
) = 𝑄𝑥 (𝑡, 𝑥

0
) , ∀𝑡.

(14)

This completes the proof of Theorem 1.

3. A Version to Functional
Differential Equations

Consider the functional differential equation (FDE)

𝑥

= 𝐹 (𝑡, 𝑥

𝑡
) , (15)

where 𝐹 : R1 × C → R𝑛 is continuous, takes any bounded
set in C to a bounded set in R𝑛, and ensures the uniqueness
of solutions with respect to initial values, where C =

C([−𝑟, 0],R𝑛), 𝑥
𝑡
(𝑠) = 𝑥(𝑡 + 𝑠), and 𝑠 ∈ [−𝑟, 0]. Moreover, 𝐹

is 𝑄-affine-periodic; that is,

𝐹 (𝑡 + 𝑇, 𝜑) = 𝑄𝐹 (𝑡, 𝑄
−1
𝜑) , ∀ (𝑡, 𝜑) ∈ R

1
× C. (16)

Definition 5. Thesystem (15) is said to be𝑄-affine-dissipative;
if there is 𝐵

0
> 0 and for any 𝐵 > 0, there are𝑀 = 𝑀(𝐵) > 0

and 𝐿 = 𝐿(𝐵) > 0 such that




𝑥 (𝑡, 𝜑)





≤ 𝑀, ∀𝑡 ∈ [0, 𝐿] ,





𝑄
−𝑚
𝑥 (𝑡 + 𝑚𝑇, 𝜑)





≤ 𝐵
0
, ∀𝑡 ∈ [𝐿,∞) ,

(17)

whenever ‖𝜑‖ = max
[−𝑟,0]

|𝜑(𝑠)| ≤ 𝐵; here, 𝑥(𝑡, 𝜑) denotes the
solution of (15) at initial value 𝑥

0
= 𝜑.

We are in position to state another main result.

Theorem 6. If the system (15) is 𝑄-affine-periodic-dissipative,
then it admits a 𝑄-affine-periodic solution 𝑥(𝑡); that is,

𝑥 (𝑡 + 𝑇) = 𝑄𝑥 (𝑡) , ∀𝑡. (18)

Proof. Define the map 𝑃 : C → C by

𝑃 (𝜑) = 𝑄
−1
𝑥
𝑇
(⋅, 𝜑) , ∀𝜑 ∈ C, (19)

and set

𝑆
0
= {𝜑 ∈ C :





𝜑




≤ 𝐵
0
,





𝜑 (𝑠
1
) − 𝜑 (𝑠

2
)




≤ ℎ





𝑠
1
− 𝑠
2





, ∀𝑠
1
, 𝑠
2
∈ [−𝑟, 0]} ,

𝑆
1
= {𝜑 ∈ C :





𝜑




< 𝐵
1
,





𝜑 (𝑠
1
) − 𝜑 (𝑠

2
)




< ℎ
1





𝑠
1
− 𝑠
2





, ∀𝑠
1
, 𝑠
2
∈ [−𝑟, 0]} ,

𝑆
2
= {𝜑 ∈ C :





𝜑




≤ 𝐵
2
,





𝜑 (𝑠
1
) − 𝜑 (𝑠

2
)




≤ ℎ
2





𝑠
1
− 𝑠
2





, ∀𝑠
1
, 𝑠
2
∈ [−𝑟, 0]} ,

(20)
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where

ℎ = sup {

𝐹 (𝑡, 𝜑)





: 𝑡 ∈ R

1
,




𝜑




≤ 𝐵
0
} ,

ℎ
1
= sup {


𝐹 (𝑡, 𝜑)





: 𝑡 ∈ R

1
,




𝜑




≤ 𝐵
0
+ 1} ,

𝐵
1
= 𝐵
0
+ 1,

(21)

𝐵
2
= sup {


𝑄
−𝑚
𝑥
𝑚𝑇

(⋅, 𝜑)




: 𝑚 ∈ {0, 1, . . . , 𝑁} ,





𝜑




≤ 𝐵
0
+ 1} + 𝐵

0
+ 2,

ℎ
2
= sup {


𝐹 (𝑡, 𝜑)





: 𝑡 ∈ R

1
,




𝜑




≤ 𝐵
2
} ,

(22)

where𝑁 = [𝐿(𝐵
1
) + 𝑟] + 2. Then, (17) and the constructions

imply that

𝑃
𝑗
(𝑆
1
) ⊂ 𝑆
2
, 𝑗 = 0, . . . , 𝑁 − 1,

𝑃
𝑗
(𝑆
1
) ⊂ 𝑆
0
, 𝑗 = 𝑁, . . . , 2𝑁 − 1.

(23)

Hence, 𝑃 has a fixed point 𝜑
∗
∈ 𝑆
0
via Horn’s theorem. The

uniqueness implies that 𝑥(𝑡, 𝜑
∗
) is the desired affine-periodic

solution of (15). The proof is complete.

4. Some Applications

First, we observe a simple example to show the meanings of
affine-periodic solutions.

Example 7. Consider the equation

𝑥

+ 2𝑥 = 𝑒

−𝑡
. (24)

Put 𝑓(𝑡, 𝑥) = −2𝑥 + 𝑒−𝑡. The general solution of (24) is

𝑥 (𝑡) = 𝑒
−2𝑡
𝑐 + 𝑒
−𝑡

(𝑐 is any constant) . (25)

Obviously, for given 𝜏 > 0,

𝑓 (𝑡 + 𝜏, 𝑥) = 𝑒
−𝜏
𝑓 (𝑡, 𝑒

𝜏
𝑥) , (26)

and any solution 𝑥(𝑡) satisfies





(𝑒
−𝜏
)

−𝑚

𝑥 (𝑡 + 𝑚𝜏)






=






𝑒
𝑚𝜏
𝑒
−2(𝑡+𝑚𝜏)

𝑐 + 𝑒
𝑚𝜏
𝑒
−(𝑡+𝑚𝜏)





≤ 𝑒
−(2𝑡+𝑚𝜏)

|𝑐| + 1

≤ 𝑒
−2𝑡

|𝑐| + 1,

(27)

which implies that (24) is 𝑒
−𝜏-periodic-dissipative. By

Theorem 1, (24) has an 𝑒
−𝜏-affine-periodic solution. This

solution is just 𝑥(𝑡) = 𝑒
−𝑡 and different from the usual

periodic solutions!

As usual, Lyapunov’s method is flexible in studying the
existence of affine-periodic solutions. The following results
illustrate applications in this aspect.

Theorem8. Assume that there exists a Lyapunov’s function𝑉 :
R1
+
×R𝑛 → R1

+
such that

(i) 𝑉(𝑡, 𝑥) is of C1;
(ii) 𝑉(𝑡, 𝑥) ≤ −𝑊(𝑡, 𝑥), |𝑥| ≥ 𝑀 > 0, where 𝑊(𝑡, 𝑥) is

continuous in R1
+
× {|𝑥| ≤ 𝑀}, and𝑊(𝑡, 𝑥) ≥ 𝛼 > 0,

|𝑥| ≥ 𝑀;
(iii) Uniformly in 𝑡,

lim inf
|𝑥|→∞

𝑉 (𝑡, 𝑥) > sup {𝑉 (𝑡, 𝑥) : 𝑡 ∈ R
1

+
, |𝑥| ≤ 𝑀} .

(28)

Then, the system (1) has a 𝑄-affine-periodic solution.

Proof. Let 𝑥(𝑡, 𝑥
0
) denote the solution of (1) with the initial

value 𝑥(0) = 𝑥
0
. Put

𝐾 = sup {𝑉 (𝑡, 𝑥) : 𝑡 ∈ R
1

+
, |𝑥| ≤ 𝑀} ,

𝐺 = {𝑥 ∈ R
𝑛
: 𝑉 (𝑡, 𝑥) ≤ 𝐾} .

(29)

By assumption (iii), 𝐺 is bounded and closed. In the follow-
ing, we will prove that for each 𝐵 > 0, there are𝑀 = 𝑀(𝐵) >

0 and𝑁 = 𝑁(𝐵) > 0 such that




𝑥 (𝑡, 𝑥

0
)




≤ 𝑀, ∀𝑡 ∈ [0,𝑁] ,

𝑥 (𝑡, 𝑥
0
) ∈ 𝐺, ∀𝑡 ≥ 𝑁,

(30)

whenever |𝑥
0
| ≤ 𝐵.

In fact, given that 𝑥
0
∈ R𝑛, |𝑥

0
| > 𝑀 implies on the

maximal interval [0, 𝐿) that |𝑥(𝑡, 𝑥
0
)| > 𝑀; we have

0 ≤ 𝑉 (𝑡, 𝑥 (𝑡, 𝑥
0
)) ≤ 𝑉 (0, 𝑥

0
) − ∫

𝑡

0

𝑊(𝑠, 𝑥 (𝑠, 𝑥
0
)) d𝑠

≤ 𝑉 (0, 𝑥
0
) − 𝛼𝑡.

(31)

This shows that there is 𝑡
1
∈ (0,∞) such that





𝑥 (𝑡, 𝑥

0
)




> 𝑀, ∀𝑡 ∈ [0, 𝑡

1
) ,





𝑥 (𝑡
1
, 𝑥
0
)




= 𝑀.

(32)

Note that

𝑉 (𝑡, 𝑥 (𝑡, 𝑥
0
)) ≤ 𝑉 (𝑡

1
, 𝑥 (𝑡
1
, 𝑥
0
)) , if 


𝑥 (𝑡
1
, 𝑥
0
)




≥ 𝑀,

(33)

which together with the construction of 𝐺 yields

𝑥 (𝑡, 𝑥
0
) ∈ 𝐺, 𝑡 ∈ [𝑡

1
,∞) . (34)

If |𝑥
0
| < 𝑀, and there is a 𝑡 ∈ (0,∞) such that




𝑥 (𝑡, 𝑥

0
)




< 𝑀, 𝑡 ∈ (0, 𝑡) ,





𝑥 (𝑡, 𝑥

0
)




= 𝑀, (35)

then we also have

𝑥 (𝑡, 𝑥
0
) ∈ 𝐺, ∀𝑡 ∈ [𝑡,∞) . (36)

Of course, in case of |𝑥
0
| = 𝑀, we have

𝑥 (𝑡, 𝑥
0
) ∈ 𝐺, ∀𝑡 ∈ [0,∞) . (37)

Taking these cases into account, we choose

𝑁 = 𝑡
1
. (38)

Now, the existence of affine-periodic solutions is an
immediate consequence. The proof is complete.
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Theorem 9. Assume that

⟨𝑥, 𝑓 (𝑡, 𝑥)⟩ ≤ −𝑎 (𝑡) |𝑥|
2
, (39)

where 𝑎 ∈ Loc(R1
+
) satisfies

∫

∞

0

𝑎 (𝑠) d𝑠 = ∞, ∫

∞

0

𝑎
−

(𝑠) d𝑠 < ∞. (40)

Then, (1) has an affine-periodic solution.

Proof. Let

𝑉 (𝑡, 𝑥) =

1

2

|𝑥|
2
. (41)

Then,
𝑉


(𝑡, 𝑥) = ⟨𝑥, 𝑓 (𝑡, 𝑥)⟩ ≤ −2𝑎 (𝑡) 𝑉 (𝑡, 𝑥)

⇒ 𝑉 (𝑡, 𝑥 (𝑡, 𝑥
0
)) ≤ 𝑒

−∫
𝑡

0
2𝑎(𝑠)d𝑠

𝑉 (0, 𝑥
0
) , ∀𝑡 ≥ 0.

(42)

By assumption, ∫∞
0
𝑎(𝑠)d𝑠 = ∞, there is 𝑡

1
∈ (0,∞) such that

𝑒
−∫
𝑡1

0
2𝑎(𝑠)d𝑠 1

2

|𝑥|
2
≤ 1. (43)

Thus,

𝑉 (𝑡, 𝑥 (𝑡, 𝑥
0
)) ≤ 𝑒

−∫
∞

𝑡1

2𝑎
−
(𝑠)d𝑠

, ∀𝑡 ≥ 𝑡
1
,

⇒




𝑥 (𝑡, 𝑥

0
)




≤ √2𝑒

−∫
∞

𝑡1

𝑎
−
(𝑠)d𝑠

, ∀𝑡 ≥ 𝑡
1
.

(44)

ByTheorem 1, (1) has an affine-periodic solution.This finishes
the proof.

Example 10. Consider the system

𝑥

= ± |𝑥|

2𝛽
𝑥 + (𝑒

√−12𝜋Θ𝑡
) ≡ 𝑓 (𝑡, 𝑥) , (∗)

±

where 𝛽 ≥ 0; 𝑥 ∈ C𝑛; Θ = (𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑛
)
𝑇, 𝜃
𝑖
> 0, 𝑖 =

1, 2, . . . , 𝑛. Let

𝑄 = 𝑒
√−12𝜋Θ𝑇

, 𝑇 > 0. (45)

Then

𝑓 (𝑡 + 𝑇, 𝑥) = 𝑄𝑓 (𝑡, 𝑄
−1
𝑥) . (46)

In the following, we only consider the case (∗)
−
. Otherwise,

set 𝑡 → −𝑡 for (∗)
+
. Take 𝑉(𝑡, 𝑥) = (1/2)|𝑥|

2. Notice that for
|𝑥| ≥ √2 = 𝑀, 𝛼 = √2,

𝑉


(𝑡, 𝑥) = ⟨𝑥, 𝑓 (𝑡, 𝑥)⟩ = 𝑥
𝑇
𝑓 (𝑡, 𝑥)

= −|𝑥|
2𝛽+2

+ 𝑥
𝑇
𝑒
−√−12𝜋Θ𝑡

≤ −|𝑥|
2𝛽+2

+ |𝑥|

≤ − |𝑥| = −𝑊 (𝑡, 𝑥) ≤ −𝛼.

(47)

Hence, byTheorem 8, (∗)
−
has a𝑄-affine𝑇-periodic solution.

Now, if leting 𝑝/𝑞 be a reduced fraction and 𝜃
𝑖
𝑇 = 𝑝/𝑞, 𝑖 =

1, 2, . . . , 𝑛, then the 𝑄-affine 𝑇-periodic solutions are just 𝑞-
subharmonic ones; if Θ𝑇 ∈ Q𝑛 (the set of rational vectors),
then there is a 𝐾 such that these affine 𝑇-periodic solutions
are 𝐾-periodic ones; if Θ𝑇 ∈ R𝑛 \ Q𝑛, then these solutions
are quasiperiodic ones with frequency Θ𝑇.
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