
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 145190, 9 pages
http://dx.doi.org/10.1155/2013/145190

Research Article
Common Fixed Point Theorems of New Contractive Conditions
in Fuzzy Metric Spaces

Jiang Zhu,1 Yuan Wang,1 and Shin Min Kang2

1 School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
2Department of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Republic of Korea

Correspondence should be addressed to Shin Min Kang; smkang@gnu.ac.kr

Received 26 February 2013; Accepted 8 May 2013

Academic Editor: Tamaki Tanaka

Copyright © 2013 Jiang Zhu et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Some new limit contractive conditions in fuzzy metric spaces are introduced, by using property (E.A), some common fixed point
theorems for four maps are proved in GV-fuzzy metric spaces. As an application of our results, some new contractive conditions
are presented, and some common fixed point theorems are proved under these contractive conditions. The contractive conditions
presented in this paper contain or generalize many contractive conditions that appeared in the literatures. Some examples are given
to illustrate that our results are real generalizations for the results in the references and to show that our limit contractive conditions
are important for the existence of fixed point.

1. Introduction

The theory of fuzzy sets was first introduced by Zadeh [1],
after many authors introduced the notion of fuzzy metric
spaces in different ways (see [2–5]). In particular, Kramosil
and Michálek [4] generalized the concept of probabilistic
metric space given by Menger [6] to the fuzzy framework.
Later on, George and Veeramani [2] modified the concept
of fuzzy metric space introduced by Kramosil and Michálek
and defined the Hausdorff and first countable topology on
the modified fuzzy metric space. Actually, this topology can
also be constructed on each fuzzy metric space in the sense
of Kramosil and Michálek and it is metrizbale [2, 7]. Other
recent contributions to the study of fuzzymetric spaces in the
sense of [2] may be found in [8, 9]. Since then, many authors
have proved fixed point and common fixed point theorems
in fuzzy metric spaces in the sense of [2]. Especially, we want
to emphasize that some common fixed point theorems for
𝜑-type contraction maps in fuzzy metric spaces have been
recently obtained in [10–16].

Quite recently, Miheţ [13] proved some existence theo-
rems of common fixed point for two self-mappings 𝑓, 𝑔 of a
fuzzy metric space (𝑋,𝑀, ∗) under the following contractive

condition:

𝑀(𝑓𝑥, 𝑓𝑦, 𝑡)

≥ 𝜑 (min {𝑀 (𝑔𝑥, 𝑔𝑦, 𝑡) ,𝑀 (𝑓𝑥, 𝑔𝑥, 𝑡) ,𝑀 (𝑓𝑦, 𝑔𝑦, 𝑡) ,

𝑀 (𝑓𝑥, 𝑔𝑦, 𝑡) ,𝑀 (𝑓𝑦, 𝑔𝑥, 𝑡)})

(1)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0, where 𝜑 : [0, 1] → [0, 1] is
continuous and nondecreasing on [0, 1], and 𝜑(𝑥) > 𝑥 for all
𝑥 ∈ [0, 1].

C.Vetro andP.Vetro [15] proved some existence theorems
of common fixed point for two self-mappings 𝑓, 𝑔 of a
fuzzy metric space (𝑋,𝑀, ∗) under the following contractive
condition:

1

𝑀(𝑓𝑥, 𝑓𝑦, 𝑡)
− 1

≤ 𝑟(
1

min {𝑀 (𝑔𝑥, 𝑔𝑦, 𝑡) ,𝑀 (𝑓𝑥, 𝑔𝑥, 𝑡) ,𝑀 (𝑓𝑦, 𝑔𝑦, 𝑡)}
− 1)

(2)
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for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0, where 𝑟 : [0, +∞) → [0, +∞)with
𝑟(𝜏) < 𝜏 for every 𝜏 > 0, an upper semicontinuous function.

Gopal et al. [10] proved some existence theorems of
common fixed point for four self-mappings𝐴, 𝐵, 𝑆 and 𝑇 of a
fuzzy metric space (𝑋,𝑀, ∗) under the following contractive
condition:

1

𝑀 (𝐴𝑥, 𝐵𝑦, 𝑡)
− 1

≤𝑟(
1

min {𝑀 (𝑆𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝐴𝑥, 𝑆𝑥, 𝑡) ,𝑀 (𝐵𝑦, 𝑇𝑦, 𝑡)}
− 1)

(3)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0, where 𝑟 : [0, +∞) → [0, +∞)with
𝑟(𝜏) < 𝜏 for every 𝜏 > 0, an upper semicontinuous function.

Imdad and Ali [11], Vijayaraju and Sajath [16] proved
some existence theorems of common fixed point for four self-
mappings 𝐴, 𝐵, 𝑆, and 𝑇 of a fuzzy metric space (𝑋,𝑀, ∗)

under the following contractive condition:

𝑀(𝐴𝑥, 𝐵𝑦, 𝑡)

≥ 𝜙 (min {𝑀 (𝑆𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝑆𝑥, 𝐴𝑥, 𝑡) ,𝑀 (𝐵𝑦, 𝑇𝑦, 𝑡)})

(4)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0, where 𝜙 : [0, 1] → [0, 1] with
𝜙(𝑠) > 𝑠 whenever 0 < 𝑠 < 1 is a continuous or increasing
and left-continuous function.

Imdad et al. [12] proved some existence theorems of
common fixed point for four self-mappings𝑓, 𝑔, 𝑆, and𝑇 of a
fuzzy metric space (𝑋,𝑀, ∗) under the following contractive
condition:

𝑀(𝑓𝑥, 𝑔𝑦, 𝑡)

≥ 𝜑 (min {𝑀 (𝑆𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝑓𝑥, 𝑆𝑥, 𝑡) ,

𝑀 (𝑓𝑦, 𝑇𝑦, 𝑡) ,𝑀 (𝑓𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝑓𝑦, 𝑆𝑥, 𝑡)})

(5)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0, where 𝜑 : [0, 1] → [0, 1] is
continuous and nondecreasing on [0, 1], and 𝜑(𝑥) > 𝑥 for all
𝑥 ∈ [0, 1].

Shen et al. [14] proved an existence theorem of fixed point
for self-mapping 𝑇 of a fuzzy metric space (𝑋,𝑀, ∗) under
the following contractive condition:

𝜑 (𝑀(𝑇𝑥, 𝑇𝑦, 𝑡)) ≤ 𝑘 (𝑡) ⋅ 𝜑 (𝑀 (𝑥, 𝑦, 𝑡)) (6)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0, where 𝜑 : [0, 1] → [0, 1] satisfies
the following properties:

(P1) 𝜑 is strictly decreasing and left continuous;
(P2) 𝜑(𝜆) = 0 if and only if 𝜆 = 1.

Furthermore, let 𝑘 be a function from (0,∞) into (0, 1).
The purpose of this paper is to present limit contractive

conditions to unify all of these 𝜑-type nonlinear contractive
conditions. Then, by using property (𝐸.𝐴), some common
fixed point theorems for four maps are proved in GV-fuzzy

metric spaces. As an application of our limit contraction
condition, we present some new 𝜑-type integral contractive
conditions and some common fixed point theorems for four
maps in GV-fuzzy metric spaces under these contractive
conditions. Our results generalize the corresponding results
in [10–16]. Some examples are given to illustrate that our
results are real generalizations for the results in the references
and show that our limit contractive conditions are important
for the existence of fixed point.

For the reader’s convenience, we recall some terminolo-
gies from the theory of fuzzy metric spaces, which will be
used in what follows.

Definition 1 (see [4]). A continuous 𝑡-norm in the sense of
Kramosil and Michálek is a binary operation ∗ on [0, 1]

satisfying the following conditions:

(1) ∗ is associative and commutative,
(2) 𝑎 ∗ 1 = 𝑎 for all 𝑎 ∈ [0, 1],
(3) 𝑎∗𝑏 ≤ 𝑐∗𝑑whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 for all 𝑎, 𝑏, 𝑐, 𝑑 ∈

[0, 1],
(4) the mapping ∗ : [0, 1]× [0, 1] → [0, 1] is continuous.

Three typical examples of continuous 𝑡-norm are 𝑎 ∗ 𝑏 =
max{𝑎 + 𝑏 − 1, 0}, 𝑎 ∗ 𝑏 = 𝑎𝑏, and 𝑎 ∗ 𝑏 = min{𝑎, 𝑏}.

Definition 2 (see [2]). A fuzzy metric space in the sense of
George and Veeramani is a triple (𝑋,𝑀, ∗), where 𝑋 is a
nonempty set, 𝑀 is a fuzzy set on 𝑋

2
× (0,∞), and ∗ is

a continuous 𝑡-norm such that the following conditions are
satisfied for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑡, 𝑠 > 0

(GV-1) 𝑀(𝑥, 𝑦, 𝑡) > 0;
(GV-2) 𝑀(𝑥, 𝑦, 𝑡) = 1 if and only if 𝑥 = 𝑦;
(GV-3) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡);
(GV-4) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠);
(GV-5) 𝑀(𝑥, 𝑦, ⋅) : (0,∞) → [0, 1] is continuous.

In what follows, fuzzy metric spaces in the sense of
George and Veeramani will be called GV-fuzzy metric spaces.

Lemma3 (see [17]). Let (𝑋,𝑀, ∗) be aGV-fuzzymetric space.
Then𝑀(𝑥, 𝑦, 𝑡) is non-decreasing with respect to 𝑡 for all 𝑥, 𝑦 ∈

𝑋.

Definition 4 (see [13]). Let (𝑋,𝑀, ∗) be a GV-fuzzy metric
space. Then one has the following:

(1) a sequence {𝑥
𝑛
} in𝑋 is said to be convergent to 𝑥 ∈ 𝑋

if lim
𝑛→∞

𝑀(𝑥
𝑛
, 𝑥, 𝑡) = 1 for all 𝑡 > 0.

(2) a sequence {𝑥
𝑛
} in 𝑋 is said to be Cauchy sequence if

lim
𝑛→∞

𝑀(𝑥
𝑛
, 𝑥
𝑛+𝑝

, 𝑡) = 1 for all 𝑡 > 0 and 𝑝 ∈ N.
(3) a fuzzymetric space is called complete if every Cauchy

sequence converges in𝑋.

Lemma 5 (see [5]). Let (𝑋,𝑀, ∗) be a GV-fuzzy metric space.
Then𝑀 is a continuous function on𝑋2 × (0,∞).
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Definition 6 (see [18]). Let (𝑋,𝑀, ∗) be a GV-fuzzy metric
space. Then two self-mappings 𝐴 and 𝑆 of (𝑋,𝑀, ∗) satisfy
property (𝐸.𝐴) if there exists a sequence {𝑥

𝑛
} in𝑋 and 𝑧 in𝑋

such that {𝐴𝑥
𝑛
} and {𝑆𝑥

𝑛
} converge to 𝑧 that is, for any 𝑡 > 0,

lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝑧, 𝑡) = lim

𝑛→∞
𝑀(𝑆𝑥

𝑛
, 𝑧, 𝑡) = 1. (7)

Definition 7 (see [18]). Let (𝑋,𝑀, ∗) be a GV-fuzzy metric
space. Then two pairs of self-mappings 𝐴, 𝑆 and 𝐵, 𝑇 of
(𝑋,𝑀, ∗) are said to share common property (𝐸.𝐴) if there
exist sequences {𝑥

𝑛
} and {𝑦

𝑛
} in𝑋 such that, for any 𝑡 > 0,

lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝑧, 𝑡)

= lim
𝑛→∞

𝑀(𝑆𝑥
𝑛
, 𝑧, 𝑡)

= lim
𝑛→∞

𝑀(𝐵𝑦
𝑛
, 𝑧, 𝑡) = lim

𝑛→∞
𝑀(𝑇𝑦

𝑛
, 𝑧, 𝑡) = 1

(8)

for some 𝑧 ∈ 𝑋.

Definition 8 (see [19]). Let (𝑋,𝑀, ∗) be a GV-fuzzy metric
space. Then two self-mappings 𝐴 and 𝑆 of (𝑋,𝑀, ∗) are said
to be weak compatible if they commute at their coincidence
point; that is,

𝐴𝑥 = 𝑆𝑥 implies 𝑆𝐴𝑥 = 𝐴𝑆𝑥. (9)

2. Main Results

Let (𝑋,𝑀, ∗) be a GV-fuzzy metric space, and let𝐴, 𝐵, 𝑆, and
𝑇 be self-mappings of (𝑋,𝑀, ∗). For any 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0,
we define

Min (𝑥, 𝑦, 𝑡)

= min {𝑀 (𝑆𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝑆𝑥, 𝐴𝑥, 𝑡) ,𝑀 (𝑇𝑦, 𝐵𝑦, 𝑡) ,

𝑀 (𝑆𝑥, 𝐵𝑦, 𝑡) ,𝑀 (𝑇𝑦, 𝐴𝑥, 𝑡)} .

(10)

Consider that (𝐶1) 0 < lim
𝑛→∞

Min(𝑥
𝑛
, 𝑦
𝑛
, 𝑡) = 𝐿(𝑡) <

1 implies that lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡) > 𝐿(𝑡) for all 𝑡 > 0 and

any sequence {𝑥
𝑛
} and {𝑦

𝑛
} in𝑋.

Theorem 9. Let (𝑋,𝑀, ∗) be a GV-fuzzy metric space, and𝐴,
𝐵, 𝑆, and 𝑇 be self-mappings of (𝑋,𝑀, ∗) such that one has the
following:

(1) (𝐶1) holds;
(2) 𝐴, 𝑆 are weakly compatible and 𝐵, 𝑇 are weakly

compatible;
(3) 𝐴, 𝑆 satisfy property (𝐸.𝐴) or 𝐵, 𝑇 satisfy property

(𝐸.𝐴);
(4) 𝐴𝑋 ⊂ 𝑇𝑋 and 𝐵𝑋 ⊂ 𝑆𝑋;
(5) one of the range of the mappings𝐴, 𝐵, 𝑆, or𝑇 is a closed

subspace of𝑋.

Then 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed point.

Proof. Suppose that 𝐵, 𝑇 satisfy the property (𝐸.𝐴). Then
there exists a sequence {𝑥

𝑛
} in𝑋 such that

lim
𝑛→∞

𝑀(𝐵𝑥
𝑛
, 𝑧, 𝑡) = lim

𝑛→∞
𝑀(𝑇𝑥

𝑛
, 𝑧, 𝑡) = 1 (11)

for all 𝑡 > 0 and some 𝑧 ∈ 𝑋.
Since 𝐵𝑋 ⊂ 𝑆𝑋, there exists a sequence {𝑦

𝑛
} in 𝑋 such

that 𝐵𝑥
𝑛
= 𝑆𝑦
𝑛
. Hence lim

𝑛→∞
𝑀(𝑆𝑦

𝑛
, 𝑧, 𝑡) = 1 for all 𝑡 > 0.

Suppose that 𝑆𝑋 is a closed subspace of 𝑋. Then 𝑧 = 𝑆𝑢

for some 𝑢 ∈ 𝑋. Subsequently, we have that

lim
𝑛→∞

𝑀(𝐵𝑥
𝑛
, 𝑆𝑢, 𝑡)

= lim
𝑛→∞

𝑀(𝑇𝑥
𝑛
, 𝑆𝑢, 𝑡)

= lim
𝑛→∞

𝑀(𝑆𝑦
𝑛
, 𝑆𝑢, 𝑡) = 1

(12)

for all 𝑡 > 0. Then by using Lemma 5 we have that

lim
𝑛→∞

𝑀(𝑇𝑥
𝑛
, 𝐵𝑥
𝑛
, 𝑡) = 1,

lim
𝑛→∞

𝑀(𝑇𝑥
𝑛
, 𝐴𝑢, 𝑡) = 𝑀 (𝑆𝑢, 𝐴𝑢, 𝑡) .

(13)

Thus, we have that

lim
𝑛→∞

Min (𝑢, 𝑥
𝑛
, 𝑡)

= lim
𝑛→∞

min {𝑀 (𝑆𝑢, 𝑇𝑥
𝑛
, 𝑡) ,𝑀 (𝑆𝑢, 𝐴𝑢, 𝑡) ,

𝑀 (𝑇𝑥
𝑛
, 𝐵𝑥
𝑛
, 𝑡) ,𝑀 (𝑆𝑢, 𝐵𝑥

𝑛
, 𝑡) ,

𝑀 (𝑇𝑥
𝑛
, 𝐴𝑢, 𝑡)}

= 𝑀 (𝑆𝑢, 𝐴𝑢, 𝑡) = lim
𝑛→∞

𝑀(𝐵𝑥
𝑛
, 𝐴𝑢, 𝑡)

(14)

for any 𝑡 > 0; that is,

lim
𝑛→∞

Min (𝑢, 𝑥
𝑛
, 𝑡) = lim

𝑛→∞
𝑀(𝐴𝑢, 𝐵𝑥

𝑛
, 𝑡) = 𝑀 (𝑆𝑢, 𝐴𝑢, 𝑡) .

(15)

If 𝑆𝑢 ̸=𝐴𝑢, then there exists 𝑡 > 0 such that 0 <

𝑀(𝑆𝑢, 𝐴𝑢, 𝑡) < 1. This and (𝐶1) imply that

lim
𝑛→∞

𝑀(𝐴𝑢, 𝐵𝑥
𝑛
, 𝑡) > lim

𝑛→∞

Min (𝑢, 𝑥
𝑛
, 𝑡) . (16)

This is a contradiction.Thus, we have that 𝑆𝑢 = 𝐴𝑢.Theweak
compatibility of 𝐴 and 𝑆 implies that 𝐴𝑆𝑢 = 𝑆𝐴𝑢, and then
𝐴𝐴𝑢 = 𝐴𝑆𝑢 = 𝑆𝐴𝑢 = 𝑆𝑆𝑢.

On the other hand, since 𝐴𝑋 ⊂ 𝑇𝑋, there exists V ∈ 𝑋

such that 𝐴𝑢 = 𝑇V. Since for any 𝑡 > 0

Min (𝑢, V, 𝑡)

= min {𝑀 (𝑆𝑢, 𝑇V, 𝑡) ,𝑀 (𝑆𝑢, 𝐴𝑢, 𝑡) ,𝑀 (𝑇V, 𝐵V, 𝑡) ,

𝑀 (𝑆𝑢, 𝐵V, 𝑡) ,𝑀 (𝑇V, 𝐴𝑢, 𝑡)} = 𝑀 (𝐴𝑢, 𝐵V, 𝑡) ,

(17)

by (𝐶1), we get 𝑀(𝐴𝑢, 𝐵V, 𝑡) = 1, which implies that 𝐴𝑢 =

𝐵V; that is, 𝐴𝑢 = 𝑆𝑢 = 𝑇V = 𝐵V. The weak compatibility of 𝐵
and𝑇 implies that 𝐵𝑇V = 𝑇𝐵V and𝑇𝑇V = 𝑇𝐵V = 𝐵𝑇V = 𝐵𝐵V.
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Let us show that 𝐴𝑢 is a common fixed point of 𝐴, 𝐵, 𝑇,
and 𝑆. Since

Min (𝐴𝑢, V, 𝑡)

= min {𝑀 (𝑆𝐴𝑢, 𝑇V, 𝑡) ,𝑀 (𝑆𝐴𝑢, 𝐴𝐴𝑢, 𝑡) ,

𝑀 (𝑇V, 𝐵V, 𝑡) ,𝑀 (𝑆𝐴𝑢, 𝐵V, 𝑡) ,𝑀 (𝑇V, 𝐴𝐴𝑢, 𝑡)}

= min {𝑀 (𝐴𝐴𝑢, 𝐵V, 𝑡) , 1, 1,𝑀 (𝐴𝐴𝑢, 𝐵V, 𝑡) ,

𝑀 (𝑇V, 𝐴𝐴𝑢, 𝑡)}

= 𝑀 (𝐴𝐴𝑢, 𝐵V, 𝑡) ,

(18)

by (𝐶1), we get that 𝑀(𝐴𝐴𝑢, 𝐵V, 𝑡) = 1, which implies that
𝐴𝐴𝑢 = 𝐵V. Therefore, 𝐴𝐴𝑢 = 𝑆𝐴𝑢 = 𝐵V = 𝐴𝑢, and 𝐴𝑢 is
a common fixed point of 𝐴 and 𝑆. Similarly, we can prove
that 𝐵V is a common fixed point of 𝐵 and 𝑇. Noting that
𝐴𝑢 = 𝐵V, we conclude that 𝐴𝑢 is a common fixed point
𝐴, 𝐵, 𝑇, and 𝑆. The proof is similar when 𝑇𝑋 is assumed to
be a closed subspace of 𝑋. The cases in which 𝐴𝑋 or 𝐵𝑋 is a
closed subspace of 𝑋 are similar to the cases in which 𝑇𝑋 or
𝑆𝑋, respectively, is closed since 𝐴𝑋 ⊂ 𝑇𝑋 and 𝐵𝑋 ⊂ 𝑆𝑋. If
𝐴𝑢 = 𝐵𝑢 = 𝑇𝑢 = 𝑆𝑢 = 𝑢 and 𝐴V = 𝐵V = 𝑇V = 𝑆𝑢 = V, then

Min (𝑢, V, 𝑡)

= min {𝑀 (𝑆𝑢, 𝑇V, 𝑡) ,𝑀 (𝑆𝑢, 𝐴𝑢, 𝑡) ,𝑀 (𝑇V, 𝐵V, 𝑡) ,

𝑀 (𝑆𝑢, 𝐵V, 𝑡) ,𝑀 (𝑇V, 𝐴𝑢, 𝑡)}

= min {𝑀 (𝐴𝑢, 𝑇V, 𝑡) , 1, 1,𝑀 (𝑆𝑢, 𝐵V, 𝑡) ,

𝑀 (𝑇V, 𝐴𝑢, 𝑡)}

= 𝑀 (𝐴𝑢, 𝐵V, 𝑡) .

(19)

Therefore, by (𝐶1), we have 𝑢 = V; that is, the common fixed
point is unique. This completes the proof.

To introduce some integral contractive conditions, let ℎ :
[0, 1] → R

+
be nonnegative, Lebesgue integrable, and satisfy

∫

𝜀

0

ℎ (𝑡) 𝑑𝑡 > 0 (20)

for each 0 < 𝜀 ≤ 1. We denote 𝑑 = ∫
1

0
ℎ(𝑡)𝑑𝑡.

Theorem10. Let (𝑋,𝑀, ∗) be aGV-fuzzymetric space, and𝐴,
𝐵, 𝑆, and𝑇 be self-mappings of (𝑋,𝑀, ∗). If one of the following
conditions is satisfied

(𝐶2)There exists a function 𝜔 : [0, 𝑑] → [0, 𝑑] such that
for any 0 < 𝑠 < 𝑑, 𝜔(𝑠) < 𝑠, lim

𝑢→𝑠
𝜔(𝑢) < 𝑠 and for any

𝑥, 𝑦 ∈ 𝑋, 𝑡 ∈ (0,∞), 0 < Min (𝑥, 𝑦, 𝑡) < 1 implies that

𝜔(∫

𝑀(𝐴𝑥,𝐵𝑦,𝑡)

0

ℎ (𝑠) 𝑑𝑠) ≥ ∫

Min (𝑥,𝑦,𝑡)

0

ℎ (𝑠) 𝑑𝑠. (21)

(𝐶3)There exists a function 𝜙 : [0, 𝑑] → [0, 𝑑] such that,
for any 0 < 𝑠 < 𝑑, 𝜙(𝑠) > 𝑠, lim

𝑡→ 𝑠
𝜙(𝑡) > 𝑠, and for any

𝑥, 𝑦 ∈ 𝑋, 𝑡 ∈ (0,∞), 0 < Min (𝑥, 𝑦, 𝑡) < 1 implies that

∫

𝑀(𝐴𝑥,𝐵𝑦,𝑡)

0

ℎ (𝑠) 𝑑𝑠 ≥ 𝜙(𝑛∫

Min (𝑥,𝑦,𝑡)

0

ℎ (𝑠) 𝑑𝑠) . (22)

Then (𝐶1) holds.

Proof. (𝐶2) ⇒ (𝐶1). Assume that (𝐶2) holds. If {𝑥
𝑛
} and {𝑦

𝑛
}

in𝑋 and 0 < lim
𝑛→∞

Min(𝑥
𝑛
, 𝑦
𝑛
, 𝑡) = 𝐿(𝑡) < 1, then

lim
𝑛→∞

𝜔(∫

𝑀(𝐴𝑥
𝑛
,𝐵𝑦
𝑛
,𝑡)

0

ℎ (𝜏) 𝑑𝜏)

≥ lim
𝑛→∞

∫

Min(𝑥
𝑛
,𝑦
𝑛
,𝑡)

0

ℎ (𝜏) 𝑑𝜏

≥ ∫

lim
𝑛→∞

Min(𝑥
𝑛
,𝑦
𝑛
,𝑡)

0

ℎ (𝜏) 𝑑𝜏 = ∫

𝐿(𝑡)

0

ℎ (𝜏) 𝑑𝜏.

(23)

If lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡) = 1, then lim

𝑛→∞
𝑀(𝐴𝑥

𝑛
, 𝐵𝑦
𝑛
, 𝑡)

> 𝐿(𝑡). If lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡) = 𝑟(𝑡) < 1, then there exists

a subsequence {𝑀(𝐴𝑥
𝑛
𝑖

, 𝐵𝑦
𝑛
𝑖

, 𝑡)} such that

lim
𝑖→∞

𝑀(𝐴𝑥
𝑛
𝑖

, 𝐵𝑦
𝑛
𝑖

, 𝑡) = lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡) = 𝑟 (𝑡) . (24)

Thus,

lim
𝑛→∞

∫

𝑀(𝐴𝑥
𝑛
,𝐵𝑦
𝑛
,𝑡)

0

ℎ (𝜏) 𝑑𝜏

= lim
𝑖→∞

∫

𝑀(𝐴𝑥
𝑛
𝑖

,𝐵𝑦
𝑛
𝑖

,𝑡)

0

ℎ (𝜏) 𝑑𝜏

= ∫

𝑟(𝑡)

0

ℎ (𝜏) 𝑑𝜏 > lim
𝑢→∫

𝑟(𝑡)

0

ℎ(𝜏)𝑑𝜏

𝜔 (𝑢)

≥ lim
𝑖→∞

𝜔(∫

Min(𝑥
𝑛
𝑖

,𝑦
𝑛
𝑖

,𝑡)

0

ℎ (𝜏) 𝑑𝜏) ≥ ∫

𝐿(𝑡)

0

ℎ (𝜏) 𝑑𝜏.

(25)

This implies that

lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡) = 𝑟 (𝑡) > 𝐿 (𝑡) . (26)

Thus, (𝐶1) holds.
(𝐶3) ⇒ (𝐶1). Assume that (𝐶3) holds. If {𝑥

𝑛
} and

{𝑦
𝑛
} in 𝑋 and 0 < lim

𝑛→∞
Min(𝑥

𝑛
, 𝑦
𝑛
, 𝑡) = 𝐿(𝑡) < 1,

then there exists a subsequence {Min(𝑥
𝑛
𝑖

, 𝑦
𝑛
𝑖

, 𝑡)} such that
lim
𝑖→∞

Min(𝑥
𝑛
𝑖

, 𝑦
𝑛
𝑖

, 𝑡) = 𝐿(𝑡). This implies that

lim
𝑖→∞

𝜙(∫

Min(𝑥
𝑛
𝑖

,𝑦
𝑛
𝑖

,𝑡)

0

ℎ (𝜏) 𝑑𝜏)

≥ lim
𝑡→∫
𝐿(𝑡)

0

ℎ(𝜏)𝑑𝜏

𝜙 (𝑡) > ∫

𝐿(𝑡)

0

ℎ (𝜏) 𝑑𝜏

= lim
𝑖→∞

∫

Min(𝑥
𝑛
𝑖

,𝑦
𝑛
𝑖

,𝑡)

0

ℎ (𝜏) 𝑑𝜏.

(27)
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It follows from

∫

𝑀(𝐴𝑥,𝐵𝑦,𝑡)

0

ℎ (𝜏) 𝑑𝜏 ≥ 𝜙(∫

Min(𝑥,𝑦,𝑡)

0

ℎ (𝜏) 𝑑𝜏) (28)

that we can get

lim
𝑛→∞

∫

𝑀(𝐴𝑥
𝑛
,𝐵𝑦
𝑛
,𝑡)

0

ℎ (𝜏) 𝑑𝜏

= ∫

lim
𝑛→∞
𝑀(𝐴𝑥

𝑛
,𝐵𝑦
𝑛
,𝑡)

0

ℎ (𝜏) 𝑑𝜏

≥ lim
𝑛→∞

𝜙(∫

Min(𝑥
𝑛
,𝑦
𝑛
,𝑡)

0

ℎ (𝜏) 𝑑𝜏)

≥ lim
𝑖→∞

𝜙(∫

Min(𝑥
𝑛
𝑖

,𝑦
𝑛
𝑖

,𝑡)

0

ℎ (𝜏) 𝑑𝜏)

≥ lim
𝑖→∞

𝜙(∫

Min(𝑥
𝑛
𝑖

,𝑦
𝑛
𝑖

,𝑡)

0

ℎ (𝜏) 𝑑𝜏) > ∫

𝐿(𝑡)

0

ℎ (𝜏) 𝑑𝜏.

(29)

This implies that lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡) > 𝐿(𝑡); that is, (𝐶1)

holds.

It follows from Theorems 9 and 10 that we have the
following fixed point theorems for integral type contractive
mappings.

Theorem 11. Let (𝑋,𝑀, ∗) be a GV-fuzzymetric space, and let
𝐴, 𝐵, 𝑆, and 𝑇 be self-mappings of (𝑋,𝑀, ∗) such that one has
the following

(1) one of (𝐶2)-(𝐶3) holds;
(2) 𝐴, 𝑆 are weakly compatible and 𝐵, 𝑇 are weakly

compatible;
(3) 𝐴, 𝑆 satisfy the property (𝐸.𝐴) or 𝐵, 𝑇 satisfy the

property (𝐸.𝐴);
(4) 𝐴𝑋 ⊂ 𝑇𝑋 and 𝐵𝑋 ⊂ 𝑆𝑋;
(5) one of the range of the mappings𝐴, 𝐵, 𝑆, or𝑇 is a closed

subspace of𝑋.

Then 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed point.

In (𝐶2) and (𝐶3), by taking ℎ(𝑡) ≡ 1, we have the
following contractive conditions.

(𝐶4)There exists a function 𝜔 : [0, 1] → [0, 1] such that
for any 0 < 𝑠 < 1, 𝜔(𝑠) < 𝑠, lim

𝑢→𝑠
𝜔(𝑢) < 𝑠 and for any

𝑥, 𝑦 ∈ 𝑋, 𝑡 ∈ (0,∞), 0 < Min (𝑥, 𝑦, 𝑡) < 1 implies that

𝜔 (𝑀(𝑥, 𝑦, 𝑡)) ≥ Min (𝑥, 𝑦, 𝑡) . (30)

(𝐶5) There exists a function 𝜙 : [0, 1] → [0, 1] such
that, for any 0 < 𝑠 < 1, 𝜙(𝑠) > 𝑠, lim

𝑡→ 𝑠
𝜙(𝑡) > 𝑠, and for

any 𝑥, 𝑦 ∈ 𝑋, 𝑡 ∈ (0,∞), 0 < Min (𝑥, 𝑦, 𝑡) < 1 implies that

𝑀(𝐴𝑥, 𝐵𝑦, 𝑡) ≥ 𝜙 (Min (𝑥, 𝑦, 𝑡)) . (31)

Corollary 12. Let (𝑋,𝑀, ∗) be a GV-fuzzy metric space, and
let 𝐴, 𝐵, 𝑆, and 𝑇 be self-mappings of (𝑋,𝑀, ∗) such that one
has the following:

(1) one of (𝐶4)-(𝐶5) holds;
(2) 𝐴, 𝑆 are weakly compatible and 𝐵, 𝑇 are weakly

compatible;
(3) 𝐴, 𝑆 satisfy property (𝐸.𝐴) or 𝐵, 𝑇 satisfy the property

(𝐸.𝐴);
(4) 𝐴𝑋 ⊂ 𝑇𝑋 and 𝐵𝑋 ⊂ 𝑆𝑋;
(5) one of the range of the mappings𝐴, 𝐵, 𝑆, or𝑇 is a closed

subspace of𝑋.

Then 𝐴, 𝐵, 𝑆 and 𝑇 have a unique common fixed point.

Remark 13. As a special case of (𝐶4), we can take function
𝜔 : [0, 1] → [0, 1] as one of the following:

(1) 𝜔 is nonincreasing, for any 0 < 𝑠 < 1, 𝜔(𝑠) < 𝑠,
lim
𝑢→𝑠
−𝜔(𝑢) < 𝑠;

(2) 𝜔 is an upper semicontinuous function such that, for
any 0 < 𝑠 < 1, 𝜔(𝑠) < 𝑠;

(3) 𝜔 is non-increasing and left-upper semicontinuous
such that 𝜔(𝑠) < 𝑠 for any 0 < 𝑠 < 1.

As a special case of (𝐶5), we can take function 𝜙 :

[0, 1] → [0, 1] as one of the follows:

(1) 𝜙 is a nondecreasing and left-continuous function
such that, for any 0 < 𝑠 < 1, 𝜙(𝑠) > 𝑠;

(2) 𝜙 is a a lower semi-continuous function such that for
any 0 < 𝑠 < 1, 𝜙(𝑠) > 𝑠;

(3) 𝜙(𝑠) = 𝑠 + 𝜓(𝑠), where 𝜓 : [0, 1] → [0, 1] is a
continuous function with for any 0 < 𝑠 < 1, 𝜓(𝑠) > 0.

From Corollary 12, we have the following corollaries.

Corollary 14. Let (𝑋,𝑀, ∗) be a GV-fuzzy metric space, and
let 𝐴, 𝐵, 𝑆, and 𝑇 be self-mappings of (𝑋,𝑀, ∗) such that one
has the following:

(1) there exists an upper semicontinuous function 𝑟 :

[0, +∞) → [0, +∞) with 𝑟(𝑠) < 𝑠 for any 𝑠 > 0 such
that for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0

1

𝑀(𝐴𝑥, 𝐵𝑦, 𝑡)
− 1 ≤ 𝑟(

1

Min (𝑥, 𝑦, 𝑡)
− 1) ; (32)

(2) 𝐴, 𝑆 are weakly compatible and 𝐵, 𝑇 are weakly
compatible;

(3) 𝐴, 𝑆 satisfy property (𝐸.𝐴) or 𝐵, 𝑇 satisfy property
(𝐸.𝐴);

(4) 𝐴𝑋 ⊂ 𝑇𝑋 and 𝐵𝑋 ⊂ 𝑆𝑋;
(5) one of the range of the mappings𝐴, 𝐵, 𝑆 or 𝑇 is a closed

subspace of𝑋.

Then 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed point.
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Proof. Define function 𝜙 : [0, 1] → [0, 1] by

𝜙 (𝑡) =
{

{

{

0 if 𝑡 = 0;

1

1 + 𝑟 ((1/𝑡) − 1)
if 𝑡 ∈ (0, 1] . (33)

Then, for any 𝑠 > 0,

lim
𝑡→ 𝑠

𝜙 (𝑡) =
1

1 + lim
𝑡→ 𝑠

𝑟 ((1/𝑡) − 1)

=
1

1 + 𝑟 ((1/𝑠) − 1)
>

1

1 + (1/𝑠) − 1
= 𝑠,

(34)

and (32) can be rewritten as: for any 𝑥, 𝑦 ∈ 𝑋, 𝑡 ∈ (0,∞),
0 < Min(𝑥, 𝑦, 𝑡) < 1 implies that

𝑀(𝐴𝑥, 𝐵𝑦, 𝑡) ≥ 𝜙 (Min (𝑥, 𝑦, 𝑡)) . (35)

That is, (𝐶5) holds.Then the conclusion can be deduced from
Corollary 12. This completes the proof.

Corollary 15. Let (𝑋,𝑀, ∗) be a GV-fuzzy metric space, and
𝐴, 𝐵, 𝑆, and 𝑇 be self-mappings of (𝑋,𝑀, ∗) such that one has
the following:

(1) there exists a strictly decreasing and left continuous
function 𝜑 : [0, 1] → [0, 1] with 𝜑(𝜆) = 0 if and
only if 𝜆 = 1 and function 𝑘 : (0,∞) → (0, 1) such
that for all 𝑥, 𝑦 ∈ 𝑋 (𝑥 ̸= 𝑦) and 𝑡 > 0

𝜑 (𝑀 (𝐴𝑥, 𝐵𝑦, 𝑡)) ≤ 𝑘 (𝑡) ⋅ 𝜑 (Min (𝑥, 𝑦, 𝑡)) ; (36)

(2) 𝐴, 𝑆 are weakly compatible and 𝐵, 𝑇 are weakly
compatible;

(3) 𝐴, 𝑆 satisfy property (𝐸.𝐴) or 𝐵, 𝑇 satisfy property
(𝐸.𝐴);

(4) 𝐴𝑋 ⊂ 𝑇𝑋 and 𝐵𝑋 ⊂ 𝑆𝑋;
(5) one of the range of the mappings𝐴, 𝐵, 𝑆, or𝑇 is a closed

subspace of𝑋.

Then, 𝐴, 𝐵, 𝑆 and 𝑇 have a unique common fixed point.

Proof. Define function 𝜙 : [0, 1] × (0, +∞) → [0, 1] by

𝜙 (𝑠, 𝑡) = 𝜑
−1
(𝑘 (𝑡) 𝜑 (𝑠)) . (37)

Since 𝜑 is strictly decreasing and left continuous, we have that
𝜑
−1 is strictly decreasing and right continuous and 𝜙(𝑠, 𝑡) is

increasing in 𝑠. Then we have that

lim
𝑢→𝑠
−

𝜙 (𝑢, 𝑡) = 𝜑
−1
(𝑘 (𝑡) 𝜑 (𝑠)) . (38)

Also we have that 𝜙(𝑢, 𝑡) ≥ 𝜙(𝑠, 𝑡) for 𝑢 > 𝑠; this shows that

lim
𝑢→𝑠
+

𝜙 (𝑢, 𝑡) ≥ 𝜑
−1
(𝑘 (𝑡) 𝜑 (𝑠)) . (39)

That is, we can get that

lim
𝑢→𝑠

𝜙 (𝑢, 𝑡) ≥ 𝜙 (𝑠, 𝑡) = 𝜑
−1
(𝑘 (𝑡) 𝜑 (𝑠)) > 𝜑

−1
(𝜑 (𝑠)) = 𝑠,

(40)

and (36) can be rewritten as follows: for any 𝑥, 𝑦 ∈ 𝑋, 𝑡 ∈
(0,∞), 0 < Min(𝑥, 𝑦, 𝑡) < 1 implies that

𝑀(𝐴𝑥, 𝐵𝑦, 𝑡) ≥ 𝜙 (Min (𝑥, 𝑦, 𝑡) , 𝑡) . (41)

If {𝑥
𝑛
} and {𝑦

𝑛
} in𝑋 and 0 < lim

𝑛→∞
Min(𝑥

𝑛
, 𝑦
𝑛
, 𝑡) = 𝐿(𝑡) <

1, then there exists a subsequence {Min(𝑥
𝑛
𝑖

, 𝑦
𝑛
𝑖

, 𝑡)} such that
lim
𝑖→∞

Min(𝑥
𝑛
𝑖

, 𝑦
𝑛
𝑖

, 𝑡) = 𝐿(𝑡). This shows that

lim
𝑖→∞

𝜙 (Min (𝑥
𝑛
𝑖

, 𝑦
𝑛
𝑖

, 𝑡) , 𝑡)

≥ lim
𝑠→𝐿(𝑡)

𝜙 (𝑠, 𝑡) > 𝐿 (𝑡)

= lim
𝑖→∞

Min (𝑥
𝑛
𝑖

, 𝑦
𝑛
𝑖

, 𝑡) .

(42)

It follows from𝑀(𝐴𝑥, 𝐵𝑦, 𝑡) ≥ 𝜙(Min(𝑥, 𝑦, 𝑡), 𝑡) that we can
get

lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡)

≥ lim
𝑛→∞

𝜙 (Min (𝑥
𝑛
, 𝑦
𝑛
, 𝑡) , 𝑡)

≥ lim
𝑖→∞

𝜙 (Min (𝑥
𝑛
𝑖

, 𝑦
𝑛
𝑖

, 𝑡) , 𝑡)

≥ lim
𝑖→∞

𝜙 (Min (𝑥
𝑛
𝑖

, 𝑦
𝑛
𝑖

, 𝑡) , 𝑡) > 𝐿 (𝑡) .

(43)

Thus, we have that (𝐶1) holds.The conclusion can be deduced
fromTheorem 9. This completes the proof.

Remark 16. The main result Theorems 3.1 and 2.1 in [13]
are the special cases of our Theorem 9 and Corollary 14 for
𝐴 = 𝐵 = 𝑓 and 𝑆 = 𝑇 = 𝑔. Especially, it follows from
Corollary 12 that the condition “𝜑 is nondecreasing” is not
needed. Therefore, our results improve and generalize the
results in [13].

Let (𝑋,𝑀, ∗) be a GV-fuzzy metric space, and let 𝐴, 𝐵, 𝑆,
and 𝑇 be self-mappings of (𝑋,𝑀, ∗). For any 𝑥, 𝑦 ∈ 𝑋 and
𝑡 > 0, we define

M̃in (𝑥, 𝑦, 𝑡)

= min {𝑀 (𝑆𝑥, 𝑇𝑦, 𝑡) ,𝑀 (𝑆𝑥, 𝐴𝑥, 𝑡) ,𝑀 (𝑇𝑦, 𝐵𝑦, 𝑡)} .

(44)

Consider that (𝐶1) 0 < lim
𝑛→∞

M̃in(𝑥
𝑛
, 𝑦
𝑛
, 𝑡) = 𝐿̃(𝑡) < 1

implies lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡) > 𝐿̃(𝑡) for all 𝑡 > 0 and any

sequence {𝑥
𝑛
} and {𝑦

𝑛
} in𝑋.

By (44), we can write the conditions (𝐶2)–(𝐶5) which
correspond to the conditions (𝐶2)–(𝐶5) in Theorem 9,
Theorem 10 and Corollary 12 by replacing Min(𝑥, 𝑦, 𝑡) with
M̃in(𝑥, 𝑦, 𝑡). It is similar to the proof of Theorem 10, we can
know that one of (𝐶4)-(𝐶5) can imply (𝐶1) holds.



Journal of Applied Mathematics 7

Corollary 17. Let (𝑋,𝑀, ∗) be a GV-fuzzy metric space, and
𝐴, 𝐵, 𝑆 and 𝑇 be self-mappings of (𝑋,𝑀, ∗) such that one has
the following:

(1) (𝐶1) or one of (𝐶4)-(𝐶5) holds;
(2) 𝐴, 𝑆 are weakly compatible and 𝐵, 𝑇 are weakly

compatible;
(3) 𝐴, 𝑆 satisfy property (𝐸.𝐴) or 𝐵, 𝑇 satisfy property

(𝐸.𝐴);
(4) 𝐴𝑋 ⊂ 𝑇𝑋 and 𝐵𝑋 ⊂ 𝑆𝑋;
(5) one of the range of the mappings𝐴, 𝐵, 𝑆, or𝑇 is a closed

subspace of𝑋.

Then 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed point.

Proof. It is clear that we only need to prove Corollary 17
for (𝐶1). Assume that sequence {𝑥

𝑛
} and {𝑦

𝑛
} in 𝑋, 0 <

lim
𝑛→∞

Min(𝑥
𝑛
, 𝑦
𝑛
, 𝑡) = 𝐿(𝑡) < 1. Then

lim
𝑛→∞

M̃in (𝑥
𝑛
, 𝑦
𝑛
, 𝑡) = 𝐿̃ (𝑡) ≥ lim

𝑛→∞

Min (𝑥
𝑛
, 𝑦
𝑛
, 𝑡) = 𝐿 (𝑡) .

(45)

If lim
𝑛→∞

M̃in(𝑥
𝑛
, 𝑦
𝑛
, 𝑡) = 𝐿̃(𝑡) < 1, then by (𝐶1) we have

that

lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡) > 𝐿̃ (𝑡) ≥ 𝐿 (𝑡) . (46)

If lim
𝑛→∞

M̃in(𝑥
𝑛
, 𝑦
𝑛
, 𝑡) = 𝐿̃(𝑡) = 1, then, for any 𝑛, either

M̃in(𝑥
𝑛
, 𝑦
𝑛
, 𝑡) < 1 or M̃in(𝑥

𝑛
, 𝑦
𝑛
, 𝑡) = 1. If M̃in(𝑥

𝑛
, 𝑦
𝑛
, 𝑡) < 1,

then by (𝐶1) we have that 𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡) > M̃in(𝑥

𝑛
, 𝑦
𝑛
, 𝑡).

If M̃in(𝑥
𝑛
, 𝑦
𝑛
, 𝑡) = 1, then by (44) we have that 𝐴𝑥

𝑛
= 𝐵𝑦
𝑛
.

By (GV-2) we get that 𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡) = 1 = M̃in(𝑥

𝑛
, 𝑦
𝑛
, 𝑡).

Thus, (𝐶1) implies that 𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡) ≥ M̃in(𝑥

𝑛
, 𝑦
𝑛
, 𝑡) for

any 𝑛. This implies that

lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡)

≥ lim
𝑛→∞

M̃in (𝑥
𝑛
, 𝑦
𝑛
, 𝑡) = 𝐿̃ (𝑡) = 1 > 𝐿 (𝑡) .

(47)

Therefore, (𝐶1) implies that (𝐶1) holds. Then by Theorem 9
we know that 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed
point. This completes the proof.

Remark 18. In Theorem 9 and Corollaries 12–17, conditions
(3), (4), and (5) can be replaced by the following conditions:

(3󸀠) 𝐴, 𝑆 and 𝐵, 𝑇 share the common property (𝐸.𝐴);
(4󸀠) the range, of the mappings 𝑆 and 𝑇 are closed

subspaces of𝑋.

The proof can be got by properly modifying the proof
of Theorem 9, Corollaries 12–17. Thus, from Theorem 9,
Corollaries 12–17 and Remark 13, we can see that our results
generalize and improve the results in [10–16].

Example 19. Let 𝑋 = [0, 1], 𝑀(𝑥, 𝑦, 𝑡) = 𝑡/(𝑡 + |𝑥 − 𝑦|) for
every 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0 and 𝑎 ∗ 𝑏 = min{𝑎, 𝑏} for all 𝑎, 𝑏 ∈
[0, 1]. Then (𝑋,𝑀, ∗) is a fuzzy metric space. Define 𝐴 = 𝐵

and 𝑇 = 𝑆 : 𝑋 → 𝑋 by 𝐴𝑥 = sin(𝑥/(1 + 𝑥)) and 𝑇𝑥 = sin𝑥

for all 𝑥 ∈ 𝑋. Then we have the following:

(1) 𝐴 and 𝑆 satisfy the property (𝐸.𝐴) for the sequence
𝑥
𝑛
= 1/𝑛,𝑛 = 1, 2, . . .,

(2) 𝐴 and 𝑆 are weakly compatible,

(3) 𝐴𝑋 = [0, sin(1/2)] ⊂ 𝑇𝑋 = [0, sin 1], and𝐴𝑋,𝑇𝑋 are
closed;

(4) (𝐶1) holds. In fact, if {𝑥
𝑛
} and {𝑦

𝑛
} in 𝑋 and

0 < lim
𝑛→∞

Min(𝑥
𝑛
, 𝑦
𝑛
, 𝑡) = 𝐿(𝑡) < 1, then

there exists a subsequence {Min(𝑥
𝑛
𝑖

, 𝑦
𝑛
𝑖

, 𝑡)} such that
lim
𝑖→∞

Min(𝑥
𝑛
𝑖

, 𝑦
𝑛
𝑖

, 𝑡) = 𝐿(𝑡). Since {𝑥
𝑛
} and {𝑦

𝑛
} in

𝑋, {𝑥
𝑛
} and {𝑦

𝑛
} have convergent subsequence. With

out of generality, assume that lim
𝑖→∞

𝑥
𝑛
𝑖

= 𝑥
0
, and

lim
𝑖→∞

𝑦
𝑛
𝑖

= 𝑦
0
. Then we have that

lim
𝑖→∞

𝑀(𝐴𝑥
𝑛
𝑖

, 𝐵𝑦
𝑛
𝑖

, 𝑡)

=
𝑡

𝑡 +
󵄨󵄨󵄨󵄨sin (𝑥0/ (1 + 𝑥0)) − sin (𝑦

0
/ (1 + 𝑦

0
))
󵄨󵄨󵄨󵄨

,

lim
𝑖→∞

Min (𝑥
𝑛
𝑖

, 𝑦
𝑛
𝑖

, 𝑡)

= min{ 𝑡

𝑡 +
󵄨󵄨󵄨󵄨sin𝑥0 − sin𝑦

0

󵄨󵄨󵄨󵄨

,

𝑡

𝑡 +
󵄨󵄨󵄨󵄨sin𝑥0 − sin (𝑥

0
/ (1 + 𝑥

0
))
󵄨󵄨󵄨󵄨

,

𝑡

𝑡 +
󵄨󵄨󵄨󵄨sin𝑦0 − sin (𝑦

0
/ (1 + 𝑦

0
))
󵄨󵄨󵄨󵄨

,

𝑡

𝑡 +
󵄨󵄨󵄨󵄨sin𝑥0 − sin (𝑦

0
/ (1 + 𝑦

0
))
󵄨󵄨󵄨󵄨

,

𝑡

𝑡 +
󵄨󵄨󵄨󵄨sin𝑦0 − sin (𝑥

0
/ (1 + 𝑥

0
))
󵄨󵄨󵄨󵄨

} = 𝐿 (𝑡) .

(48)

If 0 ≤ 𝑥
0
< 𝑦
0
, then

𝐿 (𝑡) = min{ 𝑡

𝑡 + sin𝑦
0
− sin𝑥

0

,

𝑡

𝑡 + sin𝑥
0
− sin (𝑥

0
/ (1 + 𝑥

0
))
,

𝑡

𝑡 + sin𝑦
0
− sin (𝑦

0
/ (1 + 𝑦

0
))
,

𝑡

𝑡 +
󵄨󵄨󵄨󵄨sin𝑥0 − sin (𝑦

0
/ (1 + 𝑦

0
))
󵄨󵄨󵄨󵄨

,

𝑡

𝑡 + sin𝑦
0
− sin (𝑥

0
/ (1 + 𝑥

0
))
} .

(49)
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It is clear that

sin𝑦
0
− sin

𝑥
0

1 + 𝑥
0

> sin𝑦
0
− sin𝑥

0
,

sin𝑦
0
− sin

𝑥
0

1 + 𝑥
0

> sin𝑥
0
− sin

𝑥
0

1 + 𝑥
0

,

sin𝑦
0
− sin

𝑥
0

1 + 𝑥
0

> sin𝑦
0
− sin

𝑦
0

1 + 𝑦
0

.

(50)

It follows from

sin𝑦
0
+ sin𝑥

0
> sin

𝑥
0

1 + 𝑥
0

+ sin
𝑦
0

1 + 𝑦
0

(51)

that

sin𝑦
0
− sin

𝑥
0

1 + 𝑥
0

> sin
𝑦
0

1 + 𝑦
0

− sin𝑥
0
. (52)

On the other hand,

sin𝑦
0
− sin

𝑥
0

1 + 𝑥
0

> sin𝑥
0
− sin

𝑥
0

1 + 𝑥
0

> sin𝑥
0
− sin

𝑦
0

1 + 𝑦
0

.

(53)

Thus, we have that

sin𝑦
0
− sin

𝑥
0

1 + 𝑥
0

>

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
sin𝑥
0
− sin

𝑦
0

1 + 𝑦
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (54)

It follows from those inequalities that

𝐿 (𝑡) =
𝑡

𝑡 + sin𝑦
0
− sin (𝑥

0
/ (1 + 𝑥

0
))
. (55)

Similarly, if 0 ≤ 𝑦
0
< 𝑥
0
, then we can get that

𝐿 (𝑡) =
𝑡

𝑡 + sin𝑥
0
− sin (𝑦

0
/ (1 + 𝑦

0
))
, (56)

and if 𝑥
0
= 𝑦
0
> 0, then we have that

𝐿 (𝑡) =
𝑡

𝑡 + sin𝑥
0
− sin (𝑥

0
/ (1 + 𝑥

0
))
. (57)

Thus, we have that

𝐿 (𝑡) =

{{{{{{{{

{{{{{{{{

{

𝑡

𝑡 + sin𝑦
0
− sin (𝑥

0
/ (1 + 𝑥

0
))

if 0 ≤ 𝑥
0
< 𝑦
0
;

𝑡

𝑡 + sin𝑥
0
− sin (𝑦

0
/ (1 + 𝑦

0
))

if 0 ≤ 𝑦
0
< 𝑥
0
;

𝑡

𝑡 + sin𝑥
0
− sin (𝑥

0
/ (1 + 𝑥

0
))

if 𝑥
0
= 𝑦
0
> 0.

(58)

It is clear that

𝑡

𝑡 + sin (𝑦
0
/ (1 + 𝑦

0
)) − sin (𝑥

0
/ (1 + 𝑥

0
))

>
𝑡

𝑡 + sin𝑦
0
− sin (𝑥

0
/ (1 + 𝑥

0
))

if 0 ≤ 𝑥
0
< 𝑦
0
;

(59)

𝑡

𝑡 + sin (𝑥
0
/ (1 + 𝑥

0
)) − sin (𝑦

0
/ (1 + 𝑦

0
))

>
𝑡

𝑡 + sin𝑥
0
− sin (𝑦

0
/ (1 + 𝑦

0
))

if 0 ≤ 𝑦
0
< 𝑥
0
;

(60)

1 >
𝑡

𝑡 + sin𝑥
0
− sin (𝑥

0
/ (1 + 𝑥

0
))

if 𝑥
0
= 𝑦
0
> 0. (61)

This shows that

lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡)

≥ lim
𝑖→∞

𝑀(𝐴𝑥
𝑛
𝑖

, 𝐵𝑦
𝑛
𝑖

, 𝑡) > 𝐿 (𝑡)

= lim
𝑖→∞

Min (𝑥
𝑛
𝑖

, 𝑦
𝑛
𝑖

, 𝑡) = lim
𝑛→∞

Min (𝑥
𝑛
, 𝑦
𝑛
, 𝑡) .

(62)

Thus, (𝐶1) holds.

(5) ByTheorem 9, 𝐴 and 𝑇 have common fixed point.

Example 20. Let 𝑋 = [0, 1], 𝑀(𝑥, 𝑦, 𝑡) = 𝑡/(𝑡 + |𝑥 − 𝑦|) for
every 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0 and 𝑎 ∗ 𝑏 = min{𝑎, 𝑏} for all 𝑎, 𝑏 ∈
[0, 1]. Then (𝑋,𝑀, ∗) is a fuzzy metric space. Define 𝐴 = 𝐵

and 𝑇 = 𝑆 : 𝑋 → 𝑋 by

𝐴𝑥 =

{{{{

{{{{

{

1

2
if 𝑥 = 0;

0 if 𝑥 = 1;

𝑥

2
if 𝑥 ∈ (0, 1) ;

(63)

and 𝑇𝑥 = 𝑥 for all 𝑥 ∈ 𝑋. Then we have the following:

(1) 𝐴 and 𝑆 satisfy the property (𝐸.𝐴) for the sequence
𝑥
𝑛
= 1/𝑛, 𝑛 = 1, 2, . . .;

(2) 𝐴 and 𝑆 are weakly compatible;

(3) 𝐴𝑋 = [0, 1/2] ⊂ 𝑇𝑋 = [0, 1], and 𝐴𝑋, 𝑇𝑋 are closed;
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(4) (𝐶1) does not hold. In fact, for 𝑥
𝑛
= 1/𝑛 and 𝑦

𝑛
= 0,

𝑛 = 1, 2, . . ., we have that

Min (𝑥
𝑛
, 𝑦
𝑛
, 𝑡)

= min {𝑀(
1

𝑛
, 0, 𝑡) ,𝑀(

1

𝑛
,
1

2𝑛
, 𝑡) ,𝑀(0,

1

2
, 𝑡) ,

𝑀(
1

𝑛
,
1

2
, 𝑡) ,𝑀(0,

1

𝑛
, 𝑡)}

= min{ 𝑡

𝑡 + (1/𝑛)
,

𝑡

𝑡 + (1/2𝑛)
,

𝑡

𝑡 + (1/2)
,

𝑡

𝑡 + (1/2) − (1/𝑛)
,

𝑡

𝑡 + (1/𝑛)
} 󳨀→

𝑡

𝑡 + (1/2)

(𝑛 󳨀→ ∞) ,

lim
𝑛→∞

𝑀(𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
, 𝑡)

= lim
𝑛→∞

𝑀(
1

2𝑛
,
1

2
, 𝑡)

= lim
𝑛→∞

𝑡

𝑡 + (1/2) − (1/2𝑛)
=

𝑡

𝑡 + (1/2)
.

(64)

Thus, (𝐶1) does not hold.

(5) 𝐴 and 𝑇 have no common fixed point.

Example 19 does not satisfy the 𝜑-type contractive condi-
tions used in [10–16]. Example 20 shows that if (𝐶1) does not
hold, then 𝐴 and 𝑇 may have no common fixed point. Thus,
(𝐶1) is important for the existence of common fixed point.
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