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By employingHirota bilinearmethod, wemainly discuss the (3+1)-dimensional potential-YTSF equation and discreteKP equation.
For the former, we use the linear superposition principle to get its𝑁 exponential wave solutions. In virtue of some Riemann theta
function formulas, we also construct its quasiperiodic solutions and analyze the asymptotic properties of these solutions. For the
latter, by using certain variable transformations and identities of the theta functions, we explicitly investigate its periodic waves
solutions in terms of one-theta function and two-theta functions.

1. Introduction

There has been considerable interest in seeking exact solu-
tions to nonlinear differential or discrete equations. Since the
exact solutions can help the physicists to well understand
the mechanism of the complicated physical phenomena and
dynamic processes modeled by these equations. In recent
years, various approaches for constructing exact solutions are
currently available such as inverse scattering transformation
[1], Hirota direct method [2], the Bäcklund transformation
[3], and algebra-geometric method [4–6].

Among vast exact solutions, linear superposition princi-
ple [7] and periodic or quasiperiodic wave solution [8] play a
significant role in explaining the physical applications of these
systems. The former method can be applied to exponential
traveling waves of Hirota bilinear equations and is helpful
in generating N-wave solutions to soliton equations, partic-
ularly those in higher dimensions. The latter is also called
algebra-geometric solutions or finite gap solution; it is often
obtained based on the inverse spectral theory and algebra-
geometric method. The algebra-geometric theory, however,
needs Lax pairs and is also involved in complicated analysis
procedures on the Riemann surfaces. It is rather difficult to
directly determine the characteristic parameters of waves,

such as frequencies and phase shifts, for a function with
given wave numbers and amplitudes. Based on the Hirota
forms, Nakamura proposed a convenient way to find a kind of
explicit quasiperiodic solution of nonlinear equations [9, 10];
it does not need any Lax pair and Riemann surface for the
given nonlinear equation and is also able to find the explicit
construction ofmultiperiodicwave solutions. Recently, Fan et
al. [11–13] extended thismethod and gave a uniform approach
to establish the periodic solutions of nonlinear differential
and difference equations. However, there are only a fewworks
[14, 15] available for constructing multiperiodic wave solu-
tions of discrete equations, since more constraint equations
need to be satisfied, but the parameters in the bilinear form
of these discrete equations are insufficient; thus, it is difficult
to construct multiperiodic wave solutions, even for two-
periodic wave solution.

In this paper, we will mainly consider 3 + 1-dimensional
potential-YTSF equation and discrete KP equation. First,
we use a linear superposition principle to generate N-wave
solutions of the former then use the above discussingmethod
to construct quasiperiodic or periodic wave solutions of these
two equations. In an appropriate limiting procedure, the
soliton solutions are also obtained from the quasiperiodic
solutions.
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2. (3+1)-Dimensional Potential-YTSF Equation

(3 + 1)-Dimensional potential-YTSF equation, first intro-
duced by Yu et al. [16], may be written as

−4
𝑥𝑡

+ 𝑢
𝑥𝑥𝑥𝑧

+ 4𝑢
𝑥
𝑢
𝑥𝑧

+ 2𝑢
𝑥𝑥
𝑢
𝑧
+ 3𝑢
𝑦𝑦

= 0. (1)

The exact solitary-wave and periodic solutions have been
addressed by means of the auto-Bäcklund transformation
[17], the generalized projective Riccati equation method [18],
the extended homoclinic test technique [19], and so on. Using
the dependent variable transformation

𝜁 = 𝑥 + 𝑑𝑧, 𝑢 = 2(ln𝑓)
𝜁
, (2)

we transform (1) to the bilinear form

[−4𝐷
𝜁
𝐷
𝑡
+ 𝑑𝐷
4

𝜁
+ 3𝐷
2

𝑦
+ 𝑐] 𝑓 ⋅ 𝑓 = 0, (3)

where 𝑑 is an arbitrary positive constant and Hirota bilinear
operators𝐷

𝜁
,𝐷
𝑦
, and𝐷

𝑡
are defined by
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|
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(4)

which have a nice property when acting on exponential
functions

𝐷
𝑚

𝜁
𝐷
𝑚


𝑡
𝑒
𝜂
1 ⋅ 𝑒
𝜂
2 = (𝑘
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1
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2 , (5)

with 𝜂
𝑗
= 𝑘
𝑗
𝜁 + 𝑙
𝑗
𝑦 + 𝑤

𝑗
𝑡, 𝑗 = 1, 2.

2.1. N ExponentialWave Solutions. Let us consider the special
case 𝑐 = 0 in (3) and introduce N-wave testing function

𝑓 =
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, 1 ≤ 𝑗 ≤ 𝑁, (6)

where 𝜀
𝑗
, 𝑘
𝑗
, 𝑙
𝑗
, and 𝑤

𝑗
are arbitrary constants. Substituting

(6) into (3) and using (5) give
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If the following condition
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(8)

is satisfied, then any linear combination of the𝑁 exponential
wave solutions 𝑒𝜂𝑗 , 1 ≤ 𝑗 ≤ 𝑁 solves (3). By inspection, a
solution to (8) is

𝑤
𝑗
= 𝑑𝑘
3

𝑗
, 𝑙
𝑗
= ±√𝑑𝑘

2
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Therefore, (1) has the following N-wave solution
𝑢 = 2(ln𝑓)
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where 𝜖
𝑗
, 𝑘
𝑗
are arbitrary constants. Especially assume that

𝜖
1
= 𝜖
2
= 𝜖
3
= 1, 𝑘

1
= −𝑘
2
, and 𝑘

3
= 0 in (10); then, we get
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2.2. Quasiperiodic Solutions. TheRiemann theta functions of
genus one [20] are defined by
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respectively, where 𝜉 = 𝑘𝜁+ 𝑙𝑦+𝑤𝑡. LettingΘ
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we can obtain the Hirota derivatives of Θ
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where
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Next, we will calculate analytically the quasiperiodic solu-
tions using the Hirota derivatives in (14).

Case 1. In the bilinear equation (3), we suppose 𝑓(𝑥, 𝑦, 𝑧, 𝑡)

to be
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are arbitrary constants. Substituting (16)

into (3) and setting the coefficients of the terms Θ2
3
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Solving (17), we find
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where 𝑏
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2
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1
, 𝑐
2
are given by (15). We have thus

constructed a kind of quasiperiodic solution for (1)
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In the following, we further analyze the asymptotic property
of (19).

Proposition 1. If the vector (𝑤
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From (2), one gets the solution of (1) as follows:
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Case 2. Assume 𝑓(𝑥, 𝑦, 𝑧, 𝑡) in (3) to be

𝑓 (𝑥, 𝑦, 𝑧, 𝑡) = Θ
4
(𝜉) , 𝜉 = 𝑘

2
𝜁 + 𝑙
2
𝑦 + 𝑤

2
𝑡, (22)

where 𝑘
1
, 𝑙
1
, and 𝑤

1
are arbitrary constants. Setting the

coefficients of the terms Θ2
3
(𝜉), Θ2

4
(𝜉) to be zero, we have

(4𝑘
2
𝑤
2
− 3𝑙
2

2
) 𝑏
2
− 𝑑𝑘
4

2
𝑐
1
= 0,

(−4𝑘
2
𝑤
2
+ 3𝑙
2

2
) 𝑏
2
+ 𝑑𝑘
4

2
𝑐
2
+ 𝑐 = 0.

(23)

Solving (23) yields

𝑤
2
=

3𝑙
2

2
𝑏
1
+ 𝑑𝑘
4

2
𝑐
1

4𝑘
2
𝑏
1

,

𝑐 = − (3𝑙
2

2
𝑏
2
+ 𝑑𝑘
4

2
𝑐
1
) +

𝑏
2

𝑏
1

(3𝑙
2

2
𝑏
1
+ 𝑑𝑘
4

2
𝑐
1
) ,

(24)

where 𝑏
1
, 𝑏
2
, and 𝑐

1
, 𝑐
2
are given by (15).Thus, the second kind

of quasiperiodic solution of (1) is constructed as follows:
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Using the variable transformation (2), one gets the solution of
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3. Discrete KP Equation

The discrete analogue of KP equation [21, 22] (or a two-
dimensional analogue of the discrete KdV equation) is
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In fact, using the dependent variable transformation

𝑛 = 𝑎(
𝑥

𝛿𝑥
+

𝑦

𝛿𝑦
) ,

𝑙 = 𝑏 (
𝑦

𝛿𝑦
+

𝑡

𝛿𝑡
) ,

𝑚 = −𝑐 (
𝑥

𝛿𝑥
+

𝑡

𝛿𝑡
) ,

𝑢 =

𝜁
𝑚

𝑛,𝑙
𝜁
𝑚+𝑐

𝑛,𝑙+𝑏

𝜁
𝑚

𝑛,𝑙+𝑏
𝜁
𝑚+𝑐

𝑛,𝑙

− 1,

V = 1 −

𝜁
𝑚

𝑛,𝑙
𝜁
𝑚+𝑐

𝑛+𝑎,𝑙+𝑏

𝜁
𝑚

𝑛+𝑎,𝑙+𝑏
𝜁
𝑚+𝑐

𝑛,𝑙

,

𝜒 =
𝑎 (𝑏 − 𝑐)

𝑏 (𝑐 − 𝑎)

𝛿𝑥

𝛿𝑡

(30)

and substituting (30) into (28), we have the bilinear form of
discrete KP equation as follows:

𝑎 (𝑏 − 𝑐) 𝜁
𝑚

𝑛+𝑎,𝑙
𝜁
𝑚+𝑐

𝑛,𝑙+𝑏
+ 𝑏 (𝑐 − 𝑎) 𝜁

𝑚

𝑛,𝑙+𝑏
𝜁
𝑚+𝑐

𝑛+𝑎,𝑙

+ 𝑐 (𝑎 − 𝑏) 𝜁
𝑚+𝑐

𝑛,𝑙
𝜁
𝑚

𝑛+𝑎,𝑙+𝑏
= 0,

(31)

where 𝑎, 𝑏, and 𝑐 are the difference intervals for independent
variables 𝑛, 𝑙, and 𝑚, respectively. Some operator solutions
of (31) have been addressed by the transformation groups
methods [23, 24]. This famous three-dimensional difference
equation is interesting and important because it is emerging
in the context of quantum integrable systems [25, 26] as the
model-independent functional relations for eigenvalues of
quantum transfer matrices. Moreover, some typical soliton
equations can be obtained by performing a scaling con-
tinuum limit for appropriate combinations of parameters
and variables, such as continuous Korteweg-de Vries (KdV)
equation, KP equation, two-dimensional Toda lattice (2DTL)
equation, Sine-Gordon (SG) equation, and Benjamin-Ono
equation.

3.1. The Solutions in Terms of One-Theta Function. Suppose
that

𝜁
𝑚+(𝑐/2)

𝑛+(𝑎/2),𝑙+(𝑏/2)
= Θ
𝑖
(𝑘
1
𝑛 + 𝑘
2
𝑙 + 𝑘
3
𝑚 +

𝑘
1
𝑎 + 𝑘
2
𝑏 + 𝑘
3
𝑐

2
, 𝜏)

= Θ
𝑖
(𝜉, 𝜏) , 𝑖 = 1, 2, 3, 4,

(32)

where

𝜉 = 𝑘
1
𝑛 + 𝑘
2
𝑙 + 𝑘
3
𝑚 +

𝑘
1
𝑎 + 𝑘
2
𝑏 + 𝑘
3
𝑐

2
, (33)

𝑘
1
, 𝑘
2
, and 𝑘

3
are arbitrary constants, and Θ

𝑖
(𝜉, 𝜏) is defined

by (12). Similarly, we can obtain

𝜁
𝑚

𝑛+𝑎,𝑙
= Θ
𝑖
(𝜉 − 𝛼, 𝜏) , 𝜁

𝑚+𝑐

𝑛,𝑙+𝑏
= Θ
𝑖
(𝜉 + 𝛼, 𝜏) ,

𝜁
𝑚

𝑛,𝑙+𝑏
= Θ
𝑖
(𝜉 − 𝛽, 𝜏) , 𝜁

𝑚+𝑐

𝑛+𝑎,𝑙
= Θ
𝑖
(𝜉 + 𝛽, 𝜏) ,

𝜁
𝑚+𝑐

𝑛,𝑙
= Θ
𝑖
(𝜉 − 𝛾, 𝜏) , 𝜁

𝑚

𝑛+𝑎,𝑙+𝑏
= Θ
𝑖
(𝜉 + 𝛾, 𝜏) ,

(34)

with

𝛼 =
𝑘
2
𝑏 + 𝑘
3
𝑐 − 𝑘
1
𝑎

2
, 𝛽 =

𝑘
1
𝑎 + 𝑘
3
𝑐 − 𝑘
2
𝑏

2
,

𝛾 =
𝑘
1
𝑎 + 𝑘
2
𝑏 − 𝑘
3
𝑐

2
.

(35)

Substituting (34) into (31) and using the following identities
of the theta functions

Θ
1
(𝑥 + 𝑦)Θ

1
(𝑥 − 𝑦)

= Θ
−2

2
(0) [Θ

2

1
(𝑥)Θ
2

2
(𝑦) − Θ

2

2
(𝑥)Θ
2

1
(𝑦)] ,

Θ
2
(𝑥 + 𝑦)Θ

2
(𝑥 − 𝑦)

= Θ
−1

2
(0) [Θ

2

2
(𝑥)Θ
2

2
(𝑦) − Θ

2

1
(𝑥)Θ
2

1
(𝑦)] ,

Θ
3
(𝑥 + 𝑦)Θ

3
(𝑥 − 𝑦)

= Θ
−2

2
(0) [Θ

2

2
(𝑥)Θ
2

3
(𝑦) + Θ

2

1
(𝑥)Θ
2

4
(𝑦)] ,

Θ
4
(𝑥 + 𝑦)Θ

4
(𝑥 − 𝑦)

= Θ
−2

2
(0) [Θ

2

1
(𝑥)Θ
2

3
(𝑦) + Θ

2

2
(𝑥)Θ
2

4
(𝑦)] ,

(36)

yield

𝑎 (𝑏 − 𝑐)Θ
2

2
(𝛼) + 𝑏 (𝑐 − 𝑎)Θ

2

2
(𝛽)

+ 𝑐 (𝑎 − 𝑏)Θ
2

2
(𝛾) = 0,

𝑎 (𝑏 − 𝑐)Θ
2

1
(𝛼) + 𝑏 (𝑐 − 𝑎)

×Θ
2

1
(𝛽) + 𝑐 (𝑎 − 𝑏)Θ

2

1
(𝛾) = 0,

when 𝑖 = 1, 2;

𝑎 (𝑏 − 𝑐)Θ
2

3
(𝛼) + 𝑏 (𝑐 − 𝑎)Θ

2

3
(𝛽)

+ 𝑐 (𝑎 − 𝑏)Θ
2

3
(𝛾) = 0,

𝑎 (𝑏 − 𝑐)Θ
2

4
(𝛼) + 𝑏 (𝑐 − 𝑎)Θ

2

4
(𝛽)

+𝑐 (𝑎 − 𝑏)Θ
2

4
(𝛾) = 0,

when 𝑖 = 3, 4.

(37)

Here, we use Θ
𝑖
(𝜉) = Θ

𝑖
(𝜉, 𝜏) for simplicity. From (37), we

can find that if 𝛼 = 𝛽 = 𝛾, that is, 𝑘
1
𝑎 = 𝑘

2
𝑏 = 𝑘

3
𝑐, which

follows from (35), then (31) holds. In virtue of the variable
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transformation (30), the solution of (28) is expressed by one-
theta function as follows:

𝑢 = (Θ
𝑖
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚)]

× Θ
𝑖
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 2𝑘

1
𝑎])

× (Θ
2

𝑖
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 𝑘

1
𝑎])

−1

− 1,

V = 1 − (Θ
𝑖
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚)]

×Θ
𝑖
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 3𝑘

1
𝑎])

× (Θ
𝑖
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 2𝑘

1
𝑎]

×Θ
𝑖
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 𝑘

1
𝑎]) , 𝑖 = 1, 2, 3, 4.

(38)

Remark 3 (see [27]). If 𝜁𝑚
𝑛,𝑙

= Θ
𝑖
(𝜉 − (3𝑘

1
𝑎/2), 𝜏) is a solution

of (31), then 𝑅
0
((𝑛/𝑎) + (𝑙/𝑏) + (𝑚/𝑐))𝑅

1
(𝑛/𝑎)𝑅

2
(𝑙/𝑏)𝑅

3
(𝑚/

𝑐)Θ
𝑖
(𝜉−(3𝑘

1
𝑎/2), 𝜏) is a solution too, where𝑅

𝑖
, (𝑖 = 0, 1, 2, 3),

are arbitrary functions.

Remark 4 (see [27]). By means of the transformation, 𝜁𝑚
𝑛,𝑙

=

[(𝑏(𝑐−𝑎))/(𝑐(𝑎−𝑏))]
(𝑛𝑙/𝑎𝑏)

[(𝑏(𝑐−𝑎))/(𝑎(𝑏−𝑐))]
(𝑙𝑚/𝑏𝑐)

𝜁
𝑚

𝑛,𝑙
; then,

[(𝑏(𝑐 − 𝑎))/(𝑐(𝑎 − 𝑏))]
(𝑛𝑙/𝑎𝑏)

[(𝑏(𝑐 − 𝑎))/(𝑎(𝑏 − 𝑐))]
(𝑙𝑚/𝑏𝑐)

Θ
𝑖
(𝜉 −

(3𝑘
1
𝑎/2), 𝜏) satisfies bilinear equation

𝜁
𝑚

𝑛+𝑎,𝑙
𝜁
𝑚+𝑐

𝑛,𝑙+𝑏
+ 𝜁
𝑚

𝑛,𝑙+𝑏
𝜁
𝑚+𝑐

𝑛+𝑎,𝑙
+ 𝜁
𝑚+𝑐

𝑛,𝑙
𝜁
𝑚

𝑛+𝑎,𝑙+𝑏
= 0. (39)

Proposition 5. The Riemann theta function Θ
3
(𝜉, 𝜏) defined

by (12) has the periodic properties

Θ
3
(𝜉 + 1 + 𝜏, 𝜏) = exp (−2𝑖𝜋𝜉 − 𝑖𝜋𝜏)Θ

3
(𝜉, 𝜏) . (40)

So, the meromorphic functions 𝐹(𝜉, 𝜏) defined by

(𝐼) 𝐹 (𝜉, 𝜏) =
Θ
3
(𝜉, 𝜏)Θ

3
(𝜉 + 2ℎ, 𝜏)

Θ
2

3
(𝜉 + ℎ, 𝜏)

, (∀ℎ, 𝜉 ∈ 𝐶)

(𝐼𝐼) 𝐹 (𝜉, 𝜏) =
Θ
3
(𝜉, 𝜏)Θ

3
(𝜉 + 3ℎ, 𝜏)

Θ
3
(𝜉 + 2ℎ, 𝜏)Θ

3
(𝜉 + ℎ, 𝜏)

, (∀ℎ, 𝜉 ∈ 𝐶)

(41)

are all double periodic functions with two fundamental periods
1 and 𝜏. Because the other three Riemann theta functions in
(12) are the deformations of Θ

3
(𝜉, 𝜏), they can be proved to be

periodic in a similar way.

Proof. By using definitionΘ
3
(𝜉, 𝜏) in (12), it is easy to see that

Θ
3
(𝜉 + 1 + 𝜏, 𝜏) =

∞

∑

𝑚=−∞

𝑒
2𝑚𝜋𝑖(𝜉+1+𝜏)+𝜋𝑖𝜏𝑚

2

= 𝑒
−2𝜋𝑖𝜉

𝑒
−𝜋𝑖𝜏

Θ
3
(𝜉, 𝜏) ,

Θ
3
(𝜉 + ℎ + 1 + 𝜏, 𝜏) =

∞

∑

𝑚=−∞

𝑒
2𝑚𝜋𝑖(𝜉+ℎ+1+𝜏)+𝜋𝑖𝜏𝑚

2

= 𝑒
−2𝜋𝑖(𝜉+ℎ)

𝑒
−𝜋𝑖𝜏

Θ
3
(𝜉 + ℎ, 𝜏) .

(42)

Therefore, in both (I) and (II) cases, it holds that
𝐹 (𝜉 + 1 + 𝜏, 𝜏) = 𝐹 (𝜉, 𝜏) , 𝜉 ∈ 𝐶. (43)

That is to say, (38) is periodic wave solution of (28).

3.2. The Solutions in Terms of Two-Theta Function. In order
to look for its solutions in terms of two-theta functions, we
suppose

𝜁
𝑚+(𝑐/2)

𝑛+(𝑎/2),𝑙+(𝑏/2)
= Θ
𝑖
(𝜉, 𝜏
1
)Θ
𝑗
(𝜉, 𝜏
2
)

= Θ
𝑖
(𝑘
1
𝑛 + 𝑘
2
𝑙 + 𝑘
3
𝑚

+
𝑘
1
𝑎 + 𝑘
2
𝑏 + 𝑘
3
𝑐

2
, 𝜏
1
)

× Θ
𝑗
(𝑘
1
𝑛 + 𝑘
2
𝑙 + 𝑘
3
𝑚

+
𝑘
1
𝑎 + 𝑘
2
𝑏 + 𝑘
3
𝑐

2
, 𝜏
2
) ,

∀𝑖, 𝑗 = 1, 2, 3, 4.

(44)

Therefore,
𝜁
𝑚

𝑛+𝑎,𝑙
= Θ
𝑖
(𝜉 − 𝛼, 𝜏

1
)Θ
𝑗
(𝜉 − 𝛼, 𝜏

2
) ,

𝜁
𝑚+𝑐

𝑛,𝑙+𝑏
= Θ
𝑖
(𝜉 + 𝛼, 𝜏

1
)Θ
𝑗
(𝜉 + 𝛼, 𝜏

2
) ,

𝜁
𝑚

𝑛,𝑙+𝑏
= Θ
𝑖
(𝜉 − 𝛽, 𝜏

1
)Θ
𝑗
(𝜉 − 𝛽, 𝜏

2
) ,

𝜁
𝑚+𝑐

𝑛+𝑎,𝑙
= Θ
𝑖
(𝜉 + 𝛽, 𝜏

1
)Θ
𝑗
(𝜉 + 𝛽, 𝜏

2
) ,

𝜁
𝑚+𝑐

𝑛,𝑙
= Θ
𝑖
(𝜉 − 𝛾, 𝜏

1
)Θ
𝑗
(𝜉 − 𝛾, 𝜏

2
) ,

𝜁
𝑚

𝑛+𝑎,𝑙+𝑏
= Θ
𝑖
(𝜉 + 𝛾, 𝜏

1
)Θ
𝑗
(𝜉 + 𝛾, 𝜏

2
) ,

(45)

where 𝛼, 𝛽, and 𝛾 are the same as in (35).

Case 1. If 𝑖 = 1, 𝑗 = 2, we substitute (45) into (31) to get

𝑎 (𝑏 − 𝑐)Θ
1
(𝜉 − 𝛼, 𝜏

1
)Θ
2
(𝜉 − 𝛼, 𝜏

2
)

× Θ
1
(𝜉 + 𝛼, 𝜏

1
)Θ
2
(𝜉 + 𝛼, 𝜏

2
) + 𝑏 (𝑐 − 𝑎)

× Θ
1
(𝜉 − 𝛽, 𝜏

1
)Θ
2
(𝜉 − 𝛽, 𝜏

2
)Θ
1
(𝜉 + 𝛽, 𝜏

1
)

× Θ
2
(𝜉 + 𝛽, 𝜏

2
) + 𝑐 (𝑎 − 𝑏)Θ

1
(𝜉 − 𝛾, 𝜏

1
)

× Θ
2
(𝜉 − 𝛾, 𝜏

2
)Θ
1
(𝜉 + 𝛾, 𝜏

1
)Θ
2
(𝜉 + 𝛾, 𝜏

2
) = 0.

(46)
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By using the first two identities of the theta functions (36), the
above equation is equivalent to

Θ
2

1
(𝜉, 𝜏
1
)Θ
2

2
(𝜉, 𝜏
2
) [𝜖
1
Θ
2

2
(𝛼, 𝜏
1
)Θ
2

2
(𝛼, 𝜏
2
)

+ 𝜖
2
Θ
2

2
(𝛽, 𝜏
1
)Θ
2

2
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

2
(𝛾, 𝜏
1
)Θ
2

2
(𝛾, 𝜏
2
)]

− Θ
2

1
(𝜉, 𝜏
1
)Θ
2

1
(𝜉, 𝜏
2
) [𝜖
1
Θ
2

2
(𝛼, 𝜏
1
)Θ
2

1
(𝛼, 𝜏
2
)

+ 𝜖
2
Θ
2

2
(𝛽, 𝜏
1
)Θ
2

1
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

2
(𝛾, 𝜏
1
)Θ
2

1
(𝛾, 𝜏
2
)]

− Θ
2

2
(𝜉, 𝜏
1
)Θ
2

2
(𝜉, 𝜏
2
) [𝜖
1
Θ
2

1
(𝛼, 𝜏
1
)Θ
2

2
(𝛼, 𝜏
2
)

+ 𝜖
2
Θ
2

1
(𝛽, 𝜏
1
)Θ
2

2
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

1
(𝛼, 𝜏
1
)Θ
2

2
(𝛼, 𝜏
2
)]

+ Θ
2

2
(𝜉, 𝜏
1
)Θ
2

1
(𝜉, 𝜏
2
) [𝜀
1
Θ
2

1
(𝛼, 𝜏
1
)Θ
2

1
(𝛼, 𝜏
2
)

+ 𝜖
2
Θ
2

1
(𝛽, 𝜏
1
)Θ
2

1
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

1
(𝛾, 𝜏
1
)Θ
2

1
(𝛾, 𝜏
2
)] = 0.

(47)

Therefore,

𝜖
1
Θ
2

2
(𝛼, 𝜏
1
)Θ
2

2
(𝛼, 𝜏
2
) + 𝜖
2
Θ
2

2
(𝛽, 𝜏
1
)Θ
2

2
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

2
(𝛾, 𝜏
1
)Θ
2

2
(𝛾, 𝜏
2
) = 0,

𝜖
1
Θ
2

2
(𝛼, 𝜏
1
)Θ
2

1
(𝛼, 𝜏
2
) + 𝜖
2
Θ
2

2
(𝛽, 𝜏
1
)Θ
2

1
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

2
(𝛾, 𝜏
1
)Θ
2

1
(𝛾, 𝜏
2
) = 0,

𝜖
1
Θ
2

1
(𝛼, 𝜏
1
)Θ
2

2
(𝛼, 𝜏
2
) + 𝜖
2
Θ
2

1
(𝛽, 𝜏
1
)Θ
2

2
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

1
(𝛾, 𝜏
1
)Θ
2

2
(𝛾, 𝜏
2
) = 0,

𝜖
1
Θ
2

1
(𝛼, 𝜏
1
)Θ
2

1
(𝛼, 𝜏
2
) + 𝜖
2
Θ
2

1
(𝛽, 𝜏
1
)Θ
2

1
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

1
(𝛾, 𝜏
1
)Θ
2

1
(𝛾, 𝜏
2
) = 0.

(48)

Here, 𝜖
1
= 𝑎(𝑏 − 𝑐), 𝜖

2
= 𝑏(𝑐 − 𝑎), and 𝜖

3
= 𝑐(𝑎 − 𝑏). To get

special solutions of (48), we can assume that 𝛼 = 𝛽 = 𝛾; that
is, 𝑘
1
𝑎 = 𝑘

2
𝑏 = 𝑘

3
𝑐. From the variable transformation (30),

the solution of (28) in terms of two-theta functions are

𝑢 = (Θ
1
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) , 𝜏

1
]

× Θ
2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) , 𝜏

2
]

× Θ
1
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 2𝑘

1
𝑎, 𝜏
1
]

× Θ
2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 2𝑘

1
𝑎, 𝜏
2
])

× (Θ
2

1
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 𝑘

1
𝑎, 𝜏
1
]

×Θ
2

2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 𝑘

1
𝑎, 𝜏
2
])

−1

− 1,

V = 1 − (Θ
1
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) , 𝜏

1
]

× Θ
2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) , 𝜏

2
]

× Θ
1
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 3𝑘

1
𝑎, 𝜏
1
]

×Θ
2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 3𝑘

1
𝑎, 𝜏
2
])

× (Θ
1
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 2𝑘

1
𝑎, 𝜏
1
]

× Θ
2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 2𝑘

1
𝑎, 𝜏
2
]

× Θ
1
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 𝑘

1
𝑎, 𝜏
1
]

×Θ
2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 𝑘

1
𝑎, 𝜏
2
])

−1

.

(49)

Case 2. If 𝑖 = 2, 𝑗 = 3 and substituting (45) into (31), then we
are led to

𝑎 (𝑏 − 𝑐)Θ
2
(𝜉 − 𝛼, 𝜏

1
)Θ
3
(𝜉 − 𝛼, 𝜏

2
)Θ
2
(𝜉 + 𝛼, 𝜏

1
)

×Θ
3
(𝜉 + 𝛼, 𝜏

2
) + 𝑏 (𝑐 − 𝑎)Θ

2
(𝜉 − 𝛽, 𝜏

1
)

× Θ
3
(𝜉 − 𝛽, 𝜏

2
)Θ
2
(𝜉 + 𝛽, 𝜏

1
)Θ
3
(𝜉 + 𝛽, 𝜏

2
)

+ 𝑐 (𝑎 − 𝑏)Θ
2
(𝜉 − 𝛾, 𝜏

1
)Θ
3
(𝜉 − 𝛾, 𝜏

2
)

× Θ
2
(𝜉 + 𝛾, 𝜏

1
)Θ
3
(𝜉 + 𝛾, 𝜏

2
) = 0.

(50)

From the identities of the theta functions (36), the last
equation is changed into

Θ
2

2
(𝜉, 𝜏
1
)Θ
2

2
(𝜉, 𝜏
2
) [𝜖
1
Θ
2

2
(𝛼, 𝜏
1
)Θ
2

3
(𝛼, 𝜏
2
)

+ 𝜖
2
Θ
2

2
(𝛽, 𝜏
1
)Θ
2

3
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

2
(𝛾, 𝜏
1
)Θ
2

3
(𝛾, 𝜏
2
)]

− Θ
2

1
(𝜉, 𝜏
1
)Θ
2

2
(𝜉, 𝜏
2
) [𝜖
1
Θ
2

1
(𝛼, 𝜏
1
)Θ
2

3
(𝛼, 𝜏
2
)

+ 𝜖
2
Θ
2

1
(𝛽, 𝜏
1
)Θ
2

3
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

1
(𝛾, 𝜏
1
)Θ
2

3
(𝛾, 𝜏
2
)]

+ Θ
2

2
(𝜉, 𝜏
1
)Θ
2

1
(𝜉, 𝜏
2
) [𝜖
1
Θ
2

2
(𝛼, 𝜏
1
)Θ
2

4
(𝛼, 𝜏
2
)

+ 𝜖
2
Θ
2

2
(𝛽, 𝜏
1
)Θ
2

4
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

2
(𝛼, 𝜏
1
)Θ
2

4
(𝛼, 𝜏
2
)]
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− Θ
2

1
(𝜉, 𝜏
1
)Θ
2

1
(𝜉, 𝜏
2
) [𝜖
1
Θ
2

1
(𝛼, 𝜏
1
)Θ
2

4
(𝛼, 𝜏
2
)

+ 𝜖
2
Θ
2

1
(𝛽, 𝜏
1
)Θ
2

4
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

1
(𝛾, 𝜏
1
)Θ
2

4
(𝛾, 𝜏
2
)] = 0.

(51)

Therefore,

𝜖
1
Θ
2

2
(𝛼, 𝜏
1
)Θ
2

3
(𝛼, 𝜏
2
) + 𝜖
2
Θ
2

2
(𝛽, 𝜏
1
)Θ
2

3
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

2
(𝛾, 𝜏
1
)Θ
2

3
(𝛾, 𝜏
2
) = 0,

𝜖
1
Θ
2

1
(𝛼, 𝜏
1
)Θ
2

3
(𝛼, 𝜏
2
) + 𝜖
2
Θ
2

1
(𝛽, 𝜏
1
)Θ
2

3
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

1
(𝛾, 𝜏
1
)Θ
2

3
(𝛾, 𝜏
2
) = 0,

𝜖
1
Θ
2

2
(𝛼, 𝜏
1
)Θ
2

4
(𝛼, 𝜏
2
) + 𝜖
2
Θ
2

2
(𝛽, 𝜏
1
)Θ
2

4
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

2
(𝛼, 𝜏
1
)Θ
2

4
(𝛼, 𝜏
2
) = 0,

𝜖
1
Θ
2

1
(𝛼, 𝜏
1
)Θ
2

4
(𝛼, 𝜏
2
) + 𝜖
2
Θ
2

1
(𝛽, 𝜏
1
)Θ
2

4
(𝛽, 𝜏
2
)

+ 𝜖
3
Θ
2

1
(𝛾, 𝜏
1
)Θ
2

4
(𝛾, 𝜏
2
) = 0,

(52)

with 𝜖
1
= 𝑎(𝑏 − 𝑐), 𝜖

2
= 𝑏(𝑐 − 𝑎), and 𝜖

3
= 𝑐(𝑎 − 𝑏). To get the

special solutions of (52), we can assume that 𝛼 = 𝛽 = 𝛾; that
is, 𝑘
1
𝑎 = 𝑘

2
𝑏 = 𝑘

3
𝑐. From the variable transformation (30),

the solution of (28) in terms of two-theta functions are

𝑢 = (Θ
2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) , 𝜏

1
]

× Θ
3
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) , 𝜏

2
]

× Θ
2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 2𝑘

1
𝑎, 𝜏
1
]

×Θ
3
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 2𝑘

1
𝑎, 𝜏
2
])

× (Θ
2

2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 𝑘

1
𝑎, 𝜏
1
]

× Θ
2

3
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 𝑘

1
𝑎, 𝜏
2
])

−1

− 1,

V = 1 − (Θ
2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) , 𝜏

1
]

× Θ
3
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) , 𝜏

2
]

× Θ
2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 3𝑘

1
𝑎, 𝜏
1
]

×Θ
3
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 3𝑘

1
𝑎, 𝜏
2
])

× Θ
2
([𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 2𝑘

1
𝑎, 𝜏
1
]

× Θ
3
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 2𝑘

1
𝑎, 𝜏
2
]

× Θ
2
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 𝑘

1
𝑎, 𝜏
1
]

× Θ
3
[𝑘
1
(𝑛 +

𝑎

𝑏
𝑙 +

𝑎

𝑐
𝑚) + 𝑘

1
𝑎, 𝜏
2
])

−1

.

(53)

Proposition 6. The Riemann theta functions Θ
2
(𝜉, 𝜏),

Θ
3
(𝜉, 𝜏) defined by (12) have the periodic properties

Θ
2
(𝜉 + 2 + 𝜏, 𝜏) = exp (−2𝑖𝜋𝜉 − 𝑖𝜋𝜏)Θ

2
(𝜉, 𝜏) ,

Θ
3
(𝜉 + 1 + 𝜏, 𝜏) = exp (−2𝑖𝜋𝜉 − 𝑖𝜋𝜏)Θ

3
(𝜉, 𝜏) .

(54)

So, the meromorphic functions 𝐹
1
(𝜉, 𝜏), 𝐹

2
(𝜉, 𝜏) defined by

𝐹
1
(𝜉, 𝜏) =

Θ
2
(𝜉, 𝜏) Θ

2
(𝜉 + 2ℎ, 𝜏)

Θ
2

2
(𝜉 + ℎ, 𝜏)

,

𝐹
2
(𝜉, 𝜏) =

Θ
3
(𝜉, 𝜏) Θ

3
(𝜉 + 3ℎ, 𝜏)

Θ
3
(𝜉 + 2ℎ, 𝜏)Θ

3
(𝜉 + ℎ, 𝜏)

(∀ℎ, 𝜉 ∈ 𝐶)

(55)

are all periodic functions; moreover, 𝐹
1
(𝜉, 𝜏) ∗ 𝐹

2
(𝜉, 𝜏) is also

periodic functions.

From Proposition 6, we verify that (53) is periodic wave
solution of (28). In a similar way, the other cases of two-theta
functions solutions of (28) can also be proved to be periodic.

4. Conclusion

In this paper, based on the Riemann theta functions, a lucid
and straightforward generalization of the Hirota-Riemann
method is presented to explicitly construct some kinds
of quasiperiodic wave solutions for (3 + 1)-dimensional
potential-YTSF equation and discrete KP equation. This
method is also suitable for other more general nonlinear evo-
lution equations in mathematical physics. Moreover, for the
(3+1)-dimensional potential-YTSF equation, we not only use
linear superposition principle to generate N-wave solutions
but also analyze the quasiperiodic wave solutions that tend to
the soliton solutions under a small amplitude limit.
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