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This paper mainly focuses on the least square regression problem for the 𝛼-mixing and 𝜙-mixing processes. The standard bound
assumption for output data is abandoned and the learning algorithm is implemented with samples drawn from dependent sampling
process with a more general output data condition. Capacity independent error bounds and learning rates are deduced by means
of the integral operator technique.

1. Introduction and Main Results

The aim of this paper is to study the least square regularized
regression learning algorithm. The main novelty of this
problem here is the unboundedness and dependence of the
sampling process. Let 𝑋 be a compact metric space (usually
a subset of R𝑛) and 𝑌 = R. Suppose that 𝜌 is a probability
distribution defined on 𝑍 = 𝑋 × 𝑌. In regression learning,
one wants to learn or approximate the regression function
𝑓
𝜌
: 𝑋 → 𝑌 given by

𝑓
𝜌
(𝑥) = E (𝑦 | 𝑥) = ∫

𝑌

𝑦𝑑𝜌 (𝑦 | 𝑥) , 𝑥 ∈ 𝑋, (1)

where 𝜌(𝑦 | 𝑥) is the conditional distribution of 𝑦 for given
𝑥. 𝑓

𝜌
is not directly computable because 𝜌 is unknown in

fact. Instead we learn a good approximation of 𝑓
𝜌
from a

set of observations z = {(𝑥
𝑖
, 𝑦

𝑖
)}
𝑚

𝑖=1
∈ 𝑍

𝑚 drawn according
to 𝜌.

The learning algorithm studied here is based on a Mercer
kernel 𝐾 : 𝑋 × 𝑋 → R which is a continuous, symmetric,
and positive semidefinite function.TheRKHSH

𝐾
associated

with the Mercer kernel 𝐾 is the completion of span {𝐾
𝑥
=

𝐾(⋅, 𝑥) : 𝑥 ∈ 𝑋} with the inner product satisfying

⟨𝐾(𝑥, ⋅), 𝐾(𝑥
󸀠

, ⋅)⟩
𝐾
= 𝐾(𝑥, 𝑥

󸀠

). The learning algorithm is a
regularization scheme inH

𝐾
given by

𝑓z,𝜆 = arg min
𝑓∈H𝐾

{

1

𝑚

𝑚

∑

𝑖=1

(𝑓 (𝑥
𝑖
) − 𝑦

𝑖
)
2

+ 𝜆
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

𝐾
} , (2)

where 𝜆 > 0 is a regularization parameter.
Error analysis for learning algorithm (2) has been studied

in a lot of literatures [1–4], which focused on independent
samples. In recent years, there are some studies relaxing the
independent restriction and turning to the dependent sam-
pling learning [5–8]. In [8] the learning performance of reg-
ularized least square regression was studied with the mixing
sequences, and the result for this setting was refined by an
operator monotone inequality in [7].

For a stationary real-valued sequence {𝑧
𝑖
}
𝑖≥1

, the 𝜎-
algebra generated by the random variables 𝑧

𝑎
, 𝑧

𝑎+1
, . . ., 𝑧

𝑏

is denoted by M𝑏

𝑎
. The uniformly mixing condition (or 𝜙-

mixing condition) and the strongly mixing condition (or 𝛼-
mixing condition) are defined as follows.

Definition 1 (𝜙-mixing). The 𝑙th 𝜙-mixing coefficient for the
sequence is defined as

𝜙
𝑙
= sup

𝑘≥1

sup
𝐴∈M𝑘

1
, 𝐵∈M∞

𝑘+𝑙

|𝑃 (𝐴 | 𝐵) − 𝑃 (𝐴)| . (3)



2 Abstract and Applied Analysis

The process {𝑧
𝑖
}
𝑖≥1

is said to satisfy a uniformlymixing condi-
tion (or 𝜙-mixing condition) if 𝜙

𝑙
→ 0, as 𝑙 → ∞.

Definition 2 (𝛼-mixing). The 𝑙th 𝛼-mixing coefficient for ran-
dom sequence {𝑧

𝑖
}
𝑖≥1

is defined as

𝛼
𝑙
= sup

𝑘≥1

sup
𝐴∈M𝑘

1
, 𝐵∈M∞

𝑘+𝑙

|𝑃 (𝐴 ∩ 𝐵) − 𝑃 (𝐴) 𝑃 (𝐵)| . (4)

The random process {𝑧
𝑖
}
𝑖≥1

is said to satisfy a strongly mixing
condition (or 𝛼-mixing condition) if 𝛼

𝑙
→ 0, as 𝑙 → ∞.

By the fact 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴 | 𝐵)𝑃(𝐵), 𝛼-mixing condi-
tion is weaker than 𝜙-mixing condition. Many random pro-
cesses satisfy the strongly mixing condition, for example, the
stationaryMarkov processwhich is uniformly pure nondeter-
ministic, the stationary Gaussian sequence with a continuous
spectral density that is bounded away from 0, certain ARMA
processes, and some aperiodic, Harris-recurrentMarkov pro-
cesses; see [5, 9] and the references therein.

In this paper we follow [7, 8] to consider 𝛼-mixing and 𝜙-
mixing processes, estimate the error bounds, and derive the
learning rates of algorithm (2), where the output data satisfy
the following unbounded condition.

Unbounded Hypothesis. There exist two constants𝑀 > 0 and
𝑝 ≥ 2 such that

E
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝑝

≤ 𝑀. (5)

The error analysis for the algorithm (2) was usually pre-
sented under the standard assumption that |𝑦| ≤ 𝑀 almost
surely with some constant𝑀 > 0. This standard assumption
was abandoned in [10–14]. In [10] the authors introduced the
condition

∫

𝑌

(exp{−
󵄨
󵄨
󵄨
󵄨
𝑦−𝑓H

󵄨
󵄨
󵄨
󵄨

2

𝑀

}−

󵄨
󵄨
󵄨
󵄨
𝑦−𝑓H (𝑥)

󵄨
󵄨
󵄨
󵄨

𝑀

− 1)𝑑𝜌 (𝑦 | 𝑥)≤

Σ
2

2𝑀
2

(6)

for almost every 𝑥 ∈ 𝑋 and some constants 𝑀,Σ > 0,
where 𝑓H is the orthogonal projection of 𝑓

𝜌
onto the closure

ofH
𝐾
in 𝐿2

𝜌𝑋

(𝑋). In [11–13] the error analysis was conducted
in another setting satisfying the following moment hypothe-
sis; that is, there exist constants 𝑀̃ > 0 and 𝐶̂ > 0 such that
∫
𝑌

|𝑦|
𝑙

𝑑𝜌(𝑦 | 𝑥) ≤ 𝐶̂𝑙!𝑀̃

𝑙 for all 𝑙 ∈ N, 𝑥 ∈ 𝑋. Notice that
with different constants the moment hypothesis and (6) are
equivalent in the case 𝑓H ∈ 𝐿

∞

(𝑋) [13]. Obviously, our
unbounded hypothesis is a natural generalization of the
moment hypothesis. An example for which unbounded
hypothesis (5) is satisfied but moment hypothesis failed has
been given in [15]. It mainly studies the half supervised coef-
ficient regularization with indefinite kernels and unbounded
sampling, where the unbounded condition is ∫

𝑍

𝑦
2

𝑑𝜌 ≤ 𝑀̂

2

for some constant 𝑀̂ > 0.
Since E(𝑓

𝜌
) = minE(𝑓), where the generalization error

E(𝑓) = ∫
𝑍

(𝑓(𝑥) − 𝑦)
2

𝑑𝜌, the goodness of the approximation

of 𝑓
𝜌
by 𝑓z,𝜆 is usually measured by the excess generalization

error E(𝑓z,𝜆) − E(𝑓
𝜌
) = ‖𝑓z,𝜆 − 𝑓𝜌‖

2

𝜌𝑋

. Denoting

𝜅 := sup
𝑥∈𝑋

√𝐾 (𝑥, 𝑥) < ∞, (7)

the reproducing property in RKHS H
𝐾
yields that ‖𝑓‖

∞
≤

𝜅‖𝑓‖
𝐾
for any 𝑓 ∈ H

𝐾
. Thus, the distance between 𝑓z,𝜆 and

𝑓
𝜌
in H

𝐾
can be applied to measure this approximation as

well when 𝑓
𝜌
∈ H

𝐾
.

The noise-free limit of algorithm (2) takes the form

𝑓
𝜆
:= arg min

𝑓∈H𝐾

{

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓 − 𝑓

𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌𝑋

+ 𝜆
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

𝐾
} , (8)

thus the error analysis can be divided into two parts. The dif-
ference between𝑓z,𝜆 and𝑓𝜆 is called the sample error, and the
distance between𝑓

𝜆
and 𝑓

𝜌
is called the approximation error.

We will bound the error in 𝐿
2

𝜌𝑋

(𝑋) and H
𝐾
, respectively.

Estimate of the sample error is more difficult because 𝑓z,𝜆
changes with the sample z and cannot be considered as a fixed
function. The approximation error does not depend on the
samples, which has been studied in the literature [2, 3, 7, 16,
17].

We mainly devote the next two sections to estimating
the sample error with more general sampling processes. Our
main results can be stated as follows.

Theorem 3. Suppose that the unbounded hypothesis holds,
𝐿
−𝑟

𝐾
𝑓
𝜌
∈ 𝐿

2

𝜌𝑋

(𝑋) for some 𝑟 > 0, and the 𝜙-mixing coefficients
satisfy a polynomial decay, that is, 𝜙

𝑖
≤ 𝑎𝑖

−𝑡 for some 𝑎 > 0 and
𝑡 > 0. Then, for any 0 < 𝜂 < 1, one has with confidence 1 − 𝜂,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆 − 𝑓𝜌

󵄩
󵄩
󵄩
󵄩
󵄩𝜌𝑋

= 𝑂(𝑚
−𝜃min{𝑡/2,1}

(log𝑚)3/4) , (9)

where 𝜃 is given by

𝜃 =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

3𝑟

4 (𝑟 + 1)

if 0 < 𝑟 < 1

2

,

𝑟

2𝑟 + 1

if 1
2

≤ 𝑟 < 1,

1

3

if 𝑟 ≥ 1.

(10)

Moreover, when 𝑟 > 1/2, one has with confidence 1 − 𝜂,
󵄩
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆 − 𝑓𝜌

󵄩
󵄩
󵄩
󵄩
󵄩𝐾

= 𝑂(𝑚
−𝜃
󸀠min{𝑡/2,1}

(log𝑚)1/2) , (11)

where 𝜃󸀠 is given by

𝜃
󸀠

=

{
{
{
{

{
{
{
{

{

2𝑟 − 1

2 (2𝑟 + 1)

if 1
2

< 𝑟 <

3

2

,

1

4

if 𝑟 ≥ 3

2

.

(12)

Theorem 3 proves the asymptotic convergence of algo-
rithm (2) with the samples satisfying a uniformly mixing
condition. Our second main result considers this algorithm
with 𝛼-mixing process.
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Theorem 4. Suppose that the unbounded hypothesis with 𝑝 >
2 holds, 𝐿−𝑟

𝐾
𝑓
𝜌
∈ 𝐿

2

𝜌𝑋

(𝑋) for some 𝑟 > 0, and the𝛼-mixing coef-
ficients satisfy a polynomial decay, that is, 𝛼

𝑙
≤ 𝑏𝑙

−𝑡 for some
𝑏 > 0 and 𝑡 > 0. Then, for any 0 < 𝜂 < 1, one has with con-
fidence 1 − 𝜂,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓z,𝛾 − 𝑓𝜌

󵄩
󵄩
󵄩
󵄩
󵄩𝜌𝑋

= 𝑂(𝑚
−𝜗min{(𝑝−2)𝑡/𝑝,1}

(log𝑚)1/2) , (13)

where 𝜗 is given by

𝜗 =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑝𝑟

2 (2𝑟 + 𝑝 − 1)

if 0 < 𝑟 < 1

2

, 0 < 𝑡 <

𝑝

𝑝 − 2

;

3𝑝𝑟

2 (4𝑟 + 3𝑝 − 2)

if 0 < 𝑟 < 1

2

, 𝑡 ≥

𝑝

𝑝 − 2

;

𝑟

2𝑟 + 1

if 1
2

≤ 𝑟 < 1;

1

3

if 𝑟 ≥ 1.

(14)

Moreover, when 𝑟 > 1/2, with confidence 1 − 𝜂,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓z,𝛾 − 𝑓𝜌

󵄩
󵄩
󵄩
󵄩
󵄩𝐾

= 𝑂(𝑚
−𝜗
󸀠min{(𝑝−2)𝑡/𝑝,1}

(log𝑚)1/2) , (15)

where 𝜗󸀠 is given by

𝜗
󸀠

=

{
{
{
{

{
{
{
{

{

2𝑟 − 1

4𝑟 + 2

if 1
2

< 𝑟 <

3

2

,

1

4

if 𝑟 ≥ 3

2

.

(16)

Theproof of these two theoremswill be given in Sections 2,
3, and 4, and notice that the log term can be dropped when
𝑡 ̸= 2. Our error analysis reveals some interesting phenomena
for learning with unbounded and dependent sampling.

(i) Smoother target function 𝑓
𝜌
(i.e., 𝑟 becomes larger)

implies better learning rates. Stronger dependence
between samples (i.e., 𝑡 becomes smaller) implies that
they contain less information and hence lead to worse
rates.

(ii) The learning rates are improved as the dependence
between samples becomes weaker and 𝑟 becomes
larger but they are no longer improved after some
constant 𝑡, 𝑟. This phenomenon is called saturation
effect, which was discussed in [18–20]. In our setting,
saturation effects include saturation for smoothness
of function 𝑓

𝜌
mainly relative to the approximation

error and saturation for dependence between sam-
ples. An interesting phenomenon revealed here is that
when 𝛼-mixing coefficients satisfy 𝛼

𝑙
≤ 𝑂(𝑙

−𝑡

), 𝑙 ∈

N for some 𝑡 > 0, the saturation for dependence
between samples is 𝑡 = 𝑝/(𝑝 − 2) for 𝑝 > 2, which is
dependent on the unbounded condition parameter 𝑝.

(iii) For 𝜙-mixing process, the learning rates have nothing
to do with unbound condition parameter 𝑝 since

E(𝑦 − 𝑓
𝜆
(𝑥))

2 is bounded by E𝑦2 < ∞. But for 𝛼-
mixing process, to derive the learning rate, we have to
estimate E|𝑦 − 𝑓

𝜆
(𝑥)|

𝑝 with 𝑝 > 2.
(iv) Under 𝛼-mixing condition, when 𝑡 > 𝑝/(𝑝 − 2) and

𝑟 ≥ 1/2, the influence of the unbounded condition
becomes weak. Recall that the learning rate derived
in [8] is𝑂(𝑚−𝑟/(1+2𝑟)

) for 1/2 ≤ 𝑟 ≤ 1, 𝑡 ≥ 1. It implies
that when 𝑡 is large enough, our learning rate for
unbounded samples is as sharp as that for the uniform
bounded sampling.

2. Sampling Satisfying 𝜙-Mixing Condition

In this section, we would apply the integral operator tech-
nique in [7] to handle the sample error with 𝜙-mixing condi-
tion. However, different from the uniform bounded case the
learning performance of the unbounded sampling is not
measured directly. Instead, the expectations are estimated
first and then the bound for the sample error can be obviously
deduced by Markov inequality:

To this end, define the sampling operator 𝑆x : H
𝐾
→

𝑙
2

(x) as 𝑆x(𝑓) = (𝑓(𝑥
𝑖
))
𝑚

𝑖=1
, where x is the set of input data

{𝑥
1
, . . . , 𝑥

𝑚
}. Then its adjoint is 𝑆Tx 𝑐 = ∑

𝑚

𝑖=1
𝑐
𝑖
𝐾

𝑥𝑖
for 𝑐 ∈ 𝑙2(x).

The analytic expression of optimization solution 𝑓z,𝜆, 𝑓𝜆 was
given in [3],

𝑓z,𝜆 = (
1

𝑚

𝑆
𝑇

x 𝑆x + 𝜆𝐼)
−1
1

𝑚

𝑆
𝑇

x𝑦,

𝑓
𝜆
= (𝐿

𝐾
+ 𝜆𝐼)

−1

𝐿
𝐾
𝑓
𝜌
,

(17)

where 𝐿
𝐾
: 𝐿

2

𝜌𝑋

(𝑋) → 𝐿
2

𝜌𝑋

(𝑋) is the integral operator de-
fined as

𝐿
𝐾
𝑓 (𝑥) = ∫

𝑋

𝐾 (𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝜌
𝑋
(𝑡) , for any 𝑥 ∈ 𝑋.

(18)

For a random variable 𝜉 with values in a Hilbert space
H and 0 ≤ 𝑢 ≤ +∞, denote the 𝑢th moment as ‖𝜉‖

𝑢
=

(E‖𝜉‖
𝑢

H)
1/𝑢 if 1 ≤ 𝑢 < ∞ and ‖𝜉‖

∞
= sup ‖𝜉‖H. Lemma 5

is due to Billingsley [21].

Lemma 5. Let 𝜉 and 𝜂 be random variables with values in a
separable Hilbert space H measurable 𝜎-field J and D and
having finite𝑝th and 𝑞thmoments, respectively, where𝑝, 𝑞 ≥ 1
with 𝑝−1

+ 𝑞
−1

= 1. Then
󵄨
󵄨
󵄨
󵄨
E (𝜉, 𝜂) − (E𝜉,E𝜂)

󵄨
󵄨
󵄨
󵄨
≤ 2𝜙

1/𝑝

(J,D)
󵄩
󵄩
󵄩
󵄩
𝜉
󵄩
󵄩
󵄩
󵄩𝑝

󵄩
󵄩
󵄩
󵄩
𝜂
󵄩
󵄩
󵄩
󵄩𝑞
. (19)

Lemma 6. For an 𝜙-mixing sequence {𝑥
𝑖
}, one has

E
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐿
𝐾
−

1

𝑚

𝑆
𝑇

x 𝑆x
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

𝜅
4

𝑚

(1 + 4

𝑚−1

∑

𝑖=1

𝜙
1/2

𝑖
) . (20)

Proof. With the definition of the sample operator, we have

𝐿
𝐾
−

1

𝑚

𝑆
𝑇

x 𝑆x = 𝐿𝐾
−

1

𝑚

𝑚

∑

𝑖=1

𝐾
𝑥𝑖
⊗ 𝐾

𝑥𝑖
. (21)
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Letting 𝜂(𝑥) = 𝐾
𝑥
⊗ 𝐾

𝑥
, then 𝜂(𝑥) is an HS(H

𝐾
)-valued

random variable defined on 𝑋. Note that E𝜂(𝑥) = 𝐿
𝐾

∈

HS(H
𝐾
), and ‖𝐿

𝐾
‖HS ≤ 𝜅

2

, ‖𝜂(𝑥)‖HS ≤ 𝜅
2. We have

E
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐿
𝐾
−

1

𝑚

𝑆
𝑇

x 𝑆x
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ E

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

E𝜂 −
1

𝑚

𝑚

∑

𝑖=1

𝜂 (𝑥
𝑖
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

HS

=

1

𝑚

󵄩
󵄩
󵄩
󵄩
𝜂
󵄩
󵄩
󵄩
󵄩

2

2
+

1

𝑚
2
∑

𝑖 ̸= 𝑗

E⟨𝜂 (𝑥
𝑖
) , 𝜂 (𝑥

𝑗
)⟩

HS
−
󵄩
󵄩
󵄩
󵄩
𝐿
𝐾

󵄩
󵄩
󵄩
󵄩

2

HS.

(22)

By Lemma 5 with 𝑝 = 𝑞 = 2, for 𝑖 ̸= 𝑗,

E⟨𝜂 (𝑥
𝑖
) , 𝜂 (𝑥

𝑗
)⟩

HS
≤ ⟨E𝜂 (𝑥

𝑖
) ,E𝜂 (𝑥

𝑗
)⟩

HS
+ 2𝜙

1/2

|𝑖−𝑗|

󵄩
󵄩
󵄩
󵄩
𝜂
󵄩
󵄩
󵄩
󵄩

2

2

≤
󵄩
󵄩
󵄩
󵄩
𝐿
𝐾

󵄩
󵄩
󵄩
󵄩

2

HS + 2𝜅
4

𝜙
1/2

|𝑖−𝑗|
.

(23)

Thus the desired estimate can be obtained by plugging (23)
into (22).

Proposition 7. Suppose that the unbounded hypothesis holds
with some 𝑝 ≥ 2 and that the sample sequence {(𝑥

𝑖
, 𝑦

𝑖
)}
𝑚

𝑖=1
sat-

isfies an 𝜙-mixing condition and 𝐿−𝑟
𝐾
𝑓
𝜌
∈ 𝐿

2

𝜌𝑋

(𝑋) with 𝑟 > 0.
Then one has
E
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆 − 𝑓𝜆

󵄩
󵄩
󵄩
󵄩𝜌𝑋

≤ 𝐶(𝜆
−1/2

𝑚
−1/2

+ 𝜆
−1

𝑚
−3/4

(1 + 4

𝑚−1

∑

𝑖=1

𝜙
1/2

𝑖
)

1/4

)

× √1 + 4

𝑚−1

∑

𝑙=1

𝜙
1/2

𝑖
,

(24)

where 𝐶 is a constant only dependent on 𝜅,𝑀.

Proof. By [7, Theorem 3.1], we have

E
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆 − 𝑓𝜆

󵄩
󵄩
󵄩
󵄩𝜌𝑋

≤ (𝜆
−1/2

+ 𝜆
−1

(E
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐿
𝐾
−

1

𝑚

𝑆
𝑇

x 𝑆x
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

)

1/4

)

× √E

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝑚

𝑚−1

∑

𝑙=1

𝜉(𝑧
𝑖
) − 𝐿

𝐾
(𝑓

𝜌
− 𝑓

𝜆
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐾

,

(25)

where 𝜉(𝑧) = (𝑦 − 𝑓
𝜆
(𝑥))𝐾

𝑥
is a random variable with values

in H
𝐾
, and E𝜉 = 𝐿

𝐾
(𝑓

𝜌
− 𝑓

𝜆
). A similar computation

together with the result of Lemma 6 leads to

E

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝑚

𝑚

∑

𝑖=1

𝜉 (𝑧
𝑖
) − 𝐿

𝐾
(𝑓

𝜌
− 𝑓

𝜆
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐾

≤

1

𝑚

(1 + 4

𝑚−1

∑

𝑖=1

𝜙
1/2

𝑖
)
󵄩
󵄩
󵄩
󵄩
𝜉
󵄩
󵄩
󵄩
󵄩

2

2
.

(26)

It suffices to estimate ‖𝜉‖
2
. By Hölder inequality, there is

E𝑦
2

≤ (E
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝑝

)

2/𝑝

≤ 𝑀
2/𝑝

,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌𝑋

= ∫

𝑋

𝑓
2

𝜌
(𝑥) 𝑑𝜌

𝑋

= ∫

𝑋

(∫

𝑌

𝑦𝑑𝜌(𝑦 | 𝑥))

2

𝑑𝜌
𝑋
≤ ∫

𝑍

𝑦
2

𝑑𝜌 ≤ 𝑀
2/𝑝

.

(27)

Thus E(𝑦 − 𝑓
𝜌
(𝑥))

2

= E𝑦2 − ‖𝑓
𝜌
‖
2

𝜌𝑋

≤ 𝑀
2/𝑝 and

E(𝑓
𝜌
(𝑥)−𝑓

𝜆
(𝑥))

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝜆 (𝜆𝐼 + 𝐿

𝐾
)
−1

𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌𝑋

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜌𝑋

≤ 𝑀
2/𝑝

,

(28)

which implies

󵄩
󵄩
󵄩
󵄩
𝜉
󵄩
󵄩
󵄩
󵄩

2

2
= E ((𝑦 − 𝑓

𝜆
(𝑥))

2

𝐾 (𝑥, 𝑥)) ≤ 𝜅
2

E(𝑦 − 𝑓
𝜆
(𝑥))

2

= 𝜅
2

(E(𝑦− 𝑓
𝜌
(𝑥))

2

+ E(𝑓
𝜌
(𝑥)− 𝑓

𝜆
(𝑥))

2

)≤ 2𝜅
2

𝑀
2/𝑝

.

(29)

Plugging (29) into (26), there holds

E

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝑚

𝑚

∑

𝑖=1

𝜉(𝑧
𝑖
) − 𝐿

𝐾
(𝑓

𝜌
− 𝑓

𝜆
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐾

≤ 2𝑀
2/𝑝

𝑘
2

𝑚
−1

(1 + 4

𝑚−1

∑

𝑖=1

𝜙
1/2

𝑖
) .

(30)

Combining (25), (22), and (30) and taking the constant
𝐶 = √2𝑘(𝑘 + 1)𝑀

1/𝑝, we complete the proof.

The following proposition provides the bound of the
difference between𝑓z,𝜆 and𝑓𝜆 inH𝐾

with 𝜙-mixing process.

Proposition 8. Under the assumption of Proposition 7, there
holds

E
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆 − 𝑓𝜆

󵄩
󵄩
󵄩
󵄩𝐾

≤ √2𝑀
1/𝑝

𝜅𝜆
−1

𝑚
−1/2

√1 + 4

𝑚−1

∑

𝑖=1

𝜙
1/2

𝑖
. (31)

Proof. The representations of 𝑓z,𝜆 and 𝑓𝜆 imply that

E
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆 − 𝑓𝜆

󵄩
󵄩
󵄩
󵄩𝐾

= E

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

1

𝑚

𝑆
𝑇

x 𝑆x + 𝜆𝐼)
−1

(

1

𝑚

𝑚−1

∑

𝑙=1

𝜉 (𝑧
𝑖
)−𝐿

𝐾
(𝑓

𝜌
− 𝑓

𝜆
))

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐾

≤ 𝜆
−1
√E

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝑚

𝑚−1

∑

𝑙=1

𝜉(𝑧
𝑖
) − 𝐿

𝐾
(𝑓

𝜌
− 𝑓

𝜆
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐾

.

(32)

Then the desired bound follows from (30) and (32).
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3. Samples Satisfying 𝛼-Mixing Condition

Now we turn to bound the sample error when the sampling
process satisfies strongly mixing condition, and unbounded
hypothesis holds. In Section 2, the key point is to estimate
‖𝜉‖

2
with the lack of uniform boundedness. For the sampling

satisfying 𝛼-mixing condition, we have to deal with ‖𝜉‖
𝑝
for

some 𝑝 > 2.

Proposition 9. Suppose that the unbounded hypothesis holds
with some 𝑝 > 2 and that the sample sequence {(𝑥

𝑖
, 𝑦

𝑖
)}
𝑚

𝑖=1
sat-

isfies an 𝛼-mixing condition and 𝐿−𝑟
𝐾
𝑓
𝜌
∈ 𝐿

2

𝜌𝑋

(𝑋) with 𝑟 > 0.
Then one gets

E
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆 − 𝑓𝜆

󵄩
󵄩
󵄩
󵄩𝜌𝑋

≤ 𝐶̃𝜆
min{(𝑝−2)(2𝑟−1)/2𝑝,0}

√1 +

𝑚−1

∑

𝑙=1

𝛼
(𝑝−2)/𝑝

𝑙

× (𝜆
−1/2

𝑚
−1/2

+𝜆
−1

𝑚
−3/4

(1 +

𝑚−1

∑

𝑙=1

𝛼
𝑙
)

1/4

) ,

(33)

where 𝐶̃ is a constant only depending on 𝜅,𝑀 and
‖𝐿

−min{𝑟,1/2}
𝐾

𝑓
𝜌
‖
𝜌𝑋

.

Proof. For the strongly mixing process, by [8, Lemma 5.1],

E
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐿
𝐾
−

1

𝑚

𝑆
𝑇

x 𝑆x
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

𝑘
4

𝑚

(1 + 30

𝑚−1

∑

𝑙=1

𝛼
𝑙
) . (34)

Taking 𝛿 = 𝑝 − 2 in [8, Lemma 4.2], we have

E

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝑚

𝑚

∑

𝑖=1

𝜉(𝑧
𝑖
) − 𝐿

𝐾
(𝑓

𝜌
− 𝑓

𝜆
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐾

≤

1

𝑚

󵄩
󵄩
󵄩
󵄩
𝜉
󵄩
󵄩
󵄩
󵄩

2

2
+

30

𝑚

𝑚−1

∑

𝑙=1

𝛼
(𝑝−2)/𝑝

𝑙

󵄩
󵄩
󵄩
󵄩
𝜉
󵄩
󵄩
󵄩
󵄩

2

𝑝
.

(35)

The estimation of ‖𝜉‖
2
has been obtained in Section 2,

and now we mainly devote to estimating ‖𝜉‖
𝑝
. To get this

estimation, the bound of 𝑓
𝜆
is needed which can be stated

as follows ([3, Lemma 3] or [8, Lemma 4.3]):

󵄨
󵄨
󵄨
󵄨
𝑓
𝜆
(𝑥)

󵄨
󵄨
󵄨
󵄨
≤ 𝜅

󵄩
󵄩
󵄩
󵄩
𝑓
𝜆

󵄩
󵄩
󵄩
󵄩𝐾

≤ 𝐶
1
𝜅𝜆

min{(2𝑟−1)/2,0}
, (36)

where 𝐶
1

= ‖𝐿
−min{𝑟,1/2}
𝐾

𝑓
𝜌
‖
𝜌𝑋

. Observe that ‖𝑓
𝜆
‖
2

𝜌𝑋

≤

‖𝑓
𝜌
‖
2

𝜌𝑋

≤ E𝑦2 ≤ 𝑀2/𝑝. Hence,

(E
󵄨
󵄨
󵄨
󵄨
𝑓
𝜆
(𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝

)

2/𝑝

≤ (
󵄩
󵄩
󵄩
󵄩
𝑓
𝜆

󵄩
󵄩
󵄩
󵄩

2

𝜌𝑋

𝐶
𝑝−2

1
𝜅
𝑝−2

𝜆
(𝑝−2)min{(2𝑟−1)/2,0}

)

2/𝑝

≤ 𝑀
4/𝑝
2

(𝐶
2

1
𝜅
2

+ 1) 𝜆
min{(𝑝−2)(2𝑟−1)/𝑝,0}

.

(37)

Now we can deduce that

󵄩
󵄩
󵄩
󵄩
𝜉
󵄩
󵄩
󵄩
󵄩

2

𝑝
= (E((𝑦 − 𝑓

𝜆
(𝑥))

2

𝐾 (𝑥, 𝑥))

𝑝/2

)

2/𝑝

≤ 𝜅
2

(E
󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑓

𝜆
(𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝

)

2/𝑝

≤ 4𝜅
2

(Emax {󵄨󵄨󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝑝

,
󵄨
󵄨
󵄨
󵄨
𝑓
𝜆
(𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝

})

2/𝑝

≤ 2𝜅
2

((E
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

𝑝

)

2/𝑝

+ (E
󵄨
󵄨
󵄨
󵄨
𝑓
𝜆
(𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝

)

2/𝑝

)

≤ 2𝜅
2

(𝑀
2/𝑝

+𝑀
4/𝑝
2

(𝐶
2

1
𝜅
2

+ 1)) 𝜆
min{(𝑝−2)(2𝑟−1)/𝑝,0}

.

(38)

Plugging this estimate into (35) yields

E

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝑚

𝑚

∑

𝑖=1

𝜉(𝑧
𝑖
) − 𝐿

𝐾
(𝑓

𝜌
− 𝑓

𝜆
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐾

≤ 𝐶
2
𝑚

−1

𝜆
min{(𝑝−2)(2𝑟−1)/𝑝,0}

(1 +

𝑚−1

∑

𝑙=1

𝛼
(𝑝−2)/𝑝

𝑙
) ,

(39)

where 𝐶
2

is a constant only depending on 𝜅,𝑀 and
‖𝐿

−min{𝑟,1/2}
𝐾

𝑓
𝜌
‖
𝜌𝑋

. Then combining (34) and (39) with (25),
we complete the proof.

For 𝛼-mixing process we have the following proposition
to get the bound of sample error inH

𝐾
, and the proof can be

directly obtained by the inequality (32).

Proposition 10. Under assumption of Proposition 9, one has

E
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆 − 𝑓𝜆

󵄩
󵄩
󵄩
󵄩𝐾

≤ 𝐶
3
𝑚

−1/2

𝜆
−1
√1 +

𝑚−1

∑

𝑙=1

𝛼
(𝑝−2)/𝑝

𝑙
, (40)

where 𝐶
3
= √𝐶

2
.

4. Error Bounds and Learning Rates

In this section we derive the learning rates, that is, the con-
vergence rates of ‖𝑓z,𝜆 − 𝑓𝜌‖

𝜌𝑋

and ‖𝑓z,𝜆 − 𝑓𝜌‖
𝐾

as 𝑚 → ∞

by choosing the regularization parameter 𝜆 according to 𝑚.
The following approximation error bound is needed to get the
convergence rates.

Proposition 11. Supposing that 𝐿−𝑟
𝐾
𝑓
𝜌
∈ 𝐿

2

𝜌𝑋

(𝑋) for some 𝑟 >
0, there holds

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
𝜆
− 𝑓

𝜌

󵄩
󵄩
󵄩
󵄩
󵄩𝜌𝑋

≤ 𝜆
min{𝑟,1}󵄩󵄩

󵄩
󵄩
󵄩
𝐿
−min{𝑟,1}
𝐾

𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩𝜌𝑋

. (41)

Moreover, when 𝑟 ≥ 1/2, that is, 𝑓
𝜌
∈ H

𝐾
, there holds

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
𝜆
− 𝑓

𝜌

󵄩
󵄩
󵄩
󵄩
󵄩𝐾

≤ 𝜆
min{𝑟−(1/2),1}󵄩󵄩

󵄩
󵄩
󵄩
𝐿
−min{𝑟,3/2}
𝐾

𝑓
𝜌

󵄩
󵄩
󵄩
󵄩
󵄩𝜌𝑋

. (42)
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The first conclusion in Proposition 11 has been proved in
[20], and the second one can be proved in the same way. To
derive the learning rates, we need to balance the approxi-
mation error and sample error. For this purpose, the follow-
ing simple facts are necessary:

𝑚−1

∑

𝑙=1

𝑙
−𝑠

≤

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

1

1 − 𝑠

𝑚
1−𝑠 if 0 < 𝑠 < 1,

log𝑚 if 𝑠 = 1,

1

𝑠 − 1

if 𝑠 > 1.

(43)

Proof of Theorem 3. The estimate of learning rates in 𝐿2
𝜌𝑋

(𝑋)

norm is divided into two cases.

Case 1. For 0 < 𝑡 < 2, by (43) and 𝜙
𝑖
≤ 𝑎𝑖

−𝑡, there is

1 + 4

𝑚−1

∑

𝑖=1

𝜙
1/2

𝑖
≤ 1 + 4√𝑎

𝑚−1

∑

𝑖=1

𝑖
−𝑡/2

≤ (1 +

8√𝑎

2 − 𝑡

)𝑚
1−(𝑡/2)

.

(44)

Thus Proposition 7 yields that

E
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆 − 𝑓𝜆

󵄩
󵄩
󵄩
󵄩𝜌𝑋

≤ 2𝐶(1 +

16√𝑎

2 − 𝑡

) (𝜆
−1/2

𝑚
−𝑡/4

+ 𝜆
−1

𝑚
−3𝑡/8

) .

(45)

By Proposition 11 andMarkov inequality, with confidence 1−
𝜂, there holds

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆 − 𝑓𝜌

󵄩
󵄩
󵄩
󵄩
󵄩𝜌𝑋

≤ 𝑂 (𝜆
min{𝑟,1}

+ 𝜂
−1

(𝜆
−1/2

𝑚
−𝑡/4

+ 𝜆
−1

𝑚
−3𝑡/8

)) .

(46)

For 0 < 𝑟 < 1/2, by taking𝜆 = 𝑚−3𝑡/(8(𝑟+1)), we can deduce
the learning rate as 𝑂(𝑚−3𝑡𝑟/(8(𝑟+1))

). When 1/2 ≤ 𝑟 < 1,
taking 𝜆 = 𝑚−𝑡/(2(2𝑟+1)), the learning rate 𝑂(𝑚−𝑟𝑡/(2(2𝑟+1))

) can
be derived. When 𝑟 ≥ 1, the desired convergence rate is
obtained by taking 𝜆 = 𝑚−𝑡/6.

Case 2. 𝑡 ≥ 2. With confidence 1 − 𝜂, there holds

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆 − 𝑓𝜌

󵄩
󵄩
󵄩
󵄩
󵄩𝜌𝑋

= 𝑂(𝜆
min{𝑟,1}

+ 𝜂
−1

(𝜆
−1/2

𝑚
−1/2

+ 𝜆
−1

𝑚
−3/4

) (log𝑚)3/4) .
(47)

For 0 < 𝑟 < 1/2, taking 𝜆 = 𝑚
−3/(4(𝑟+1)), the learning rate

𝑂(𝑚
−3𝑟/(4(𝑟+1))

(log𝑚)3/4) can be derived, and for 1/2 ≤ 𝑟 <

1, by taking 𝜆 = 𝑚
−1/(2𝑟+1), we can deduce the learning rate

𝑂(𝑚
−𝑟/(2𝑟+1)

(log𝑚)3/4). When 𝑟 ≥ 1, the desired convergence
rate is obtained by taking 𝜆 = 𝑚−1/3.

Next for bounding the generalization error in H
𝐾
,

Proposition 8 in connection with Proposition 11 tells us that
with confidence 1 − 𝜂,
󵄩
󵄩
󵄩
󵄩
󵄩
𝑓z − 𝑓𝜌

󵄩
󵄩
󵄩
󵄩
󵄩𝐾

≤ (𝜆
min{𝑟−(1/2),1}

+ 𝜂
−1

𝜆
−1

𝑚
−1/2

√1 + 4

𝑚−1

∑

𝑖=1

𝜙
1/2

𝑖
) .

(48)

The rest of the proof is analogous to the estimate of
‖𝑓z,𝜆 − 𝑓𝜌‖

𝜌𝑋

mentioned previously.

Proof of Theorem 4. For 0 < 𝑡 < 1, by (43) and 𝛼
𝑙
≤ 𝑏𝑙

−𝑡, there
is

1 +

𝑚−1

∑

𝑙=1

𝛼
(𝑝−2)/𝑝

𝑙
≤ 1 + 𝑏

(𝑝−2)/𝑝

𝑚−1

∑

𝑙=1

𝑙
−((𝑝−2)/𝑝)𝑡

≤ (1 +

𝑝𝑏
(𝑝−2)/𝑝

𝑝 − (𝑝 − 2) 𝑡

)𝑚
1−((𝑝−2)/𝑝)𝑡

,

1 +

𝑚−1

∑

𝑙=1

𝛼
𝑙
≤ 1 + 𝑏

𝑚−1

∑

𝑙=1

𝑙
−𝑡

≤ (1 +

𝑏

1 − 𝑡

)𝑚
1−𝑡

.

(49)

By Propositions 9 and 11 and Markov inequality, with confi-
dence 1 − 𝜂, there holds

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓z,𝜆 − 𝑓𝜌

󵄩
󵄩
󵄩
󵄩
󵄩𝜌𝑋

= 𝑂(𝜆
min{𝑟,1}

+ 𝜂
−1

𝜆
min{(𝑝−2)(2𝑟−1)/2𝑝,0}−1/2

× (𝑚
−(𝑝−2)𝑡/2𝑝

+𝜆
−1/2

𝑚
−(𝑝−2)𝑡/2𝑝−𝑡/4

)) .

(50)

For 0 < 𝑟 < 1/2, by taking 𝜆 = 𝑚
−(𝑝−2)𝑡/2(2𝑟+𝑝−1), we can

deduce the learning rate as𝑂(𝑚−(𝑝−2)𝑡𝑟/2(2𝑟+𝑝−1)

).When 1/2 ≤
𝑟 < 1, taking 𝜆 = 𝑚

−(𝑝−2)𝑡/𝑝(2𝑟+1), the learning rate
𝑂(𝑚

−(𝑝−2)𝑟𝑡/𝑝(2𝑟+1)

) can be derived. When 𝑟 ≥ 1, the desired
convergence rate is obtained by taking 𝜆 = 𝑚−(𝑝−2)𝑡/3𝑝.

The rest of the analysis is similar; we omit it here.
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