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A new topic in the analyses of complex systems dynamics, considering that the movements of complex system entities take place on
continuum but nondifferentiable curves, is proposed. In this way, some properties of complex systems (barotropic-type behaviour,
self-similarity behaviour, chaoticity through turbulence and stochasticization, etc.) are controlled through nondifferentiability
of motion curves. These behaviours can simulate the standard properties of the complex systems (emergence, self-organization,
adaptability, etc.).

1. Introduction

Complex systems are very large interdisciplinary research
topics that have been intensively studied, particularly since
the 1980s, by means of a combination of basic theory, derived
especially from physics and computer simulation. Such kind
of systems is composed of many interacting elemental units
that were called “agents.” Examples of complex systems can
be found in human societies, the brain, internet, ecosystems,
biological evolution, stock markets, economies, and many
others [1–4].

The way in which such a system manifests cannot be
predicted only by the behaviour of individual elements or
by adding their behavior but is determined by the manner
in which the elements relate to influence global behaviour.
Among the most significant properties of complex systems

are emergence, self-organization, adaptability, and so forth
[5–9].

The emergence of a complex system can be represented by
that state of the whole which does not include the sum of its
elements.

Self-organization is another characteristic of complex sys-
tems. Examples of organization that manifests in nature are
found from cells to organisms, ecosystems, and also planets,
stars, and galaxies [5–9].

Another characteristic of complex systems is adaptabil-
ity. This occurs when the system changes in response to
some information. Continuously oscillating between equi-
librium and disorder, complex systems are not “rigid.” Any
modification induced at microlevel generates a series of
fluctuations, exploring new states of self-organization
[5–9].
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An example of a complex system is represented by
polymers. Their forms present a multitude of organizations
starting from simple, linear chains of identical structural
units to very complex chains consisting of sequences of amino
acids that form the building blocks of living things. Probably
one of the most intriguing complex systems in nature is
DNA, which creates cells by means of a simple but very
elegant language. It is responsible for the remarkable way
in which individual cells organize into complex systems like
organs, and these organs form even more complex systems
like organisms. The study of complex systems can offer a
glimpse about the realistic dynamics of polymers, solving
difficult problems as protein folding [6–10].

Correspondingly, the theoretical models that describe
the complex systems dynamics become sophisticated and
ambiguous too [6–10]. However the situation can be stan-
dardized taking into account that the complexity of inter-
action process imposes various temporal resolution scales,
and the pattern evolution imposes different degrees of
freedom.

In order to develop a new theoretical model we must
admit that the complex systems that display chaotic be-
haviour are known to acquire self-similarity (space-time
structures seem to appear) in association with strong fluc-
tuations at all possible space-time scales [6–8]. Then, for
temporal scales that are large with respect to the inverse of
the highest Lyapunov exponent, the deterministic trajectories
are replaced by a collection of potential trajectories and the
concept of definite positions by that of probability density
[11–14]. One of the most interesting examples is the collisions
processes in plasma discharge as a complex system, where
the dynamics of the particles can be described by Levi-type
movements [15]: between two successive collisions, the parti-
cle trajectory is a straight line, with the trajectory becoming
nondifferentiable in the impact point, which implies that
there are left and right derivatives in this point. We note that
the Brownian-type motion is a particular case of Levi-type
motion [16].

Since the nondifferentiability appears as a universal prop-
erty of the complex systems, it is necessary to construct a
nondifferentiable physics. In such conjecture, by considering
that the complexity of the interactions processes is replaced
by nondifferentiability, it is no longer necessary to use the
whole classical “arsenal” of quantities from the standard
physics (differentiable physics) [12–14, 17, 18].

This topic was developed in [12–14, 19–23] using the
scale relativity theory (SRT) [12–14]. In the framework of
SRT we assume that the movements of complex system
entities take place on continuous but nondifferentiable curves
(fractal curves) so that all physical phenomena involved in
the dynamics depend not only on the space-time coordinates
but also on the space-time scales resolution. From such a per-
spective, the physical quantities that describe the dynamics of
complex systemsmay be considered fractal functions [12–14].
Moreover, the entities of the complex systemmay be reduced
to and identified with their own trajectories, so that the
complex systemwill behave as a special interactionless “fluid”
by means of its geodesics in a nondifferentiable (fractal)
space.

In the present paper, we propose a new topic to analyse
the complex systems dynamics using SRT. Considering that
the entities of the complex system are moving on continu-
ous but nondifferentiable curves, we show that the control
of different behaviours of these systems implies nondif-
ferentiability.

2. Geodesics Equations

Considering that the dynamics of the complex system entities
take place on continuous but nondifferentiable curves, that is,
fractal curves (e.g., the Koch curve, the Peano curve, or the
Weierstrass curve [11–14, 17, 18]), they are given by the fractal
operator ̂𝑑/𝑑𝑡 (for details see Appendices A and B):
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is the dissipative term, 𝛿𝑡/𝜏 is the scale resolution identified
here with 𝑑𝑡/𝜏 by substitution principle [12–14], 𝐷

𝐹
is the

fractal dimension of the movement curves, 𝜆 is the reference
length scale, 𝜏 is the reference time scale, and 𝜆2/𝜏 ≡ 𝐷 is
theNottale coefficient specific to fractal-nonfractal transition
[12–14]. In the case of fractal dimension 𝐷

𝐹
, we can use

any definition (the Hausdorff-Besicovitch fractal dimension,
the Kolmogorov fractal dimension, etc. [11]), but once such
definition is accepted, it has to be constant over the entire
complex system dynamics analysis.

Applying the fractal operator (1) to the complex velocity
(2) and accepting a generalized inertial principle (a general-
ization of Nottale’s principle of scale covariance [12–14]), we
obtain the geodesics in the form of the Navier-Stokes-type
equations:
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Equation (4) shows that at any point of a fractal path,
local acceleration, 𝜕

𝑡
̂V, convection, (̂V∇)̂V, and dissipation,

(𝜆

2
/𝜏)(𝑑𝑡/𝜏)

(2/𝐷𝐹)−1
Δ

̂V, is in equilibrium. According to [2–
6], the complex system can be assimilated to a “rheological”
fractal fluid.The “rheology” of the fractal fluid gives hysteretic
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properties to the complex system (the complex system has a
hysteresis cycle, memory, etc.).

Since themovement of the complex system’s entities lacks
interaction, we practically make use of self-convection and
self-dissipation type mechanisms.

3. Fractal Hydrodynamics Model

For irrotational motion

∇ ×

̂V = 0, (5a)

∇ × V
𝐷
= 0, (5b)

∇ × V
𝐹
= 0 (5c)
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where 𝜌 is an amplitude and 𝑆 a phase. The function 𝜓 by
means of ln defines the velocity scalar potential
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By substituting ((7a)–(7c)) in (4) and separating the real
and imaginary parts, up to an arbitrary phase factor which
may be at zero by a suitable choice of the phase 𝜓, we obtain

𝑚

0
[

𝜕V
𝐷

𝜕𝑡

+ (V
𝐷
⋅ ∇)V

𝐷
] = −∇𝑄, (9)

𝜕𝜌

𝜕𝑡

+ ∇ (𝜌V
𝐷
) = 0

(10)

with 𝑄 being the fractal potential
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and 𝑚
0
the rest mass of the complex system’s entity. The

first equation (9) is the momentum conservation law, the
second equation (10) is the density conservation law, and they

define together the fractal hydrodynamics (FH) model. We
note that, for Peano-type movements in fractal dimension
𝐷

𝐹
= 2 and supposing that fractal potential is assimilated

with the pressure, the fractal hydrodynamic model becomes
the standard hydrodynamic (for details see [19–23]).

The fractal potential (11) comes from the nondifferen-
tiability and must be considered as a kinetic term and not
as a potential one. Moreover, the fractal potential (11) can
generate a viscosity stress tensor type [22, 23]
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of which divergence is equal to the usual force density asso-
ciated with 𝑄

∇
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4. Barotropic-Type Behaviours of the Complex
Systems via Nondifferentiability

For a barotropic-type behaviour of the complex system [24],
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with 𝑐 being the critical velocity (for details see [24]); the FH
equations become
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In the following, using (15a) and (15b) in a plane symme-
try, we analyze the complex fluid dynamics. The presence of
an external field is specified by adequate initial and boundary
conditions (e.g., spatial-temporal Gaussian). In this situation,
let us introduce the normalized coordinates
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0
are critical parameters of the complex fluid

(in [19, 25–27] the complex fluid is identified with a laser
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produced plasma; in such a context𝜔 is the plasma pulsation,
𝜌

0
is the density of plasma at thermodynamic equilibrium, 𝑘

is the inverse of the Debye length, and 𝑐 is the ion acoustic
speed).

Then (15a) and (15b) become
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For the numerical integration we will impose the initial
conditions
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By using the finite differences method [28], the system
((17a)–(17c)) with the initial conditions ((18a)–(18e)) and the
boundary ones ((19a)–(19g)) was numerically resolved.

In Figures 1(a), 1(b), and 1(c), three-dimensional depen-
dences of the normalized density 𝑁, normalized velocities,
𝑉

𝜉
and 𝑉

𝜂
, on the normalized coordinates, 𝜉 and 𝜂, are given

for the normalized time 𝜏
0
= 0.54. Also in Figures 1(d),

1(e), and 1(f) the two-dimensional contours of the normalized
density 𝑁, and normalized velocities, 𝑉

𝜉
and 𝑉

𝜂
, are given

for the same normalized time.The followings result in (i) the
generation of two complex fluid structures; (ii) the symmetry

of the normalized velocity, 𝑉
𝜉
, with respect to symmetry

axis of the spatial-temporal Gaussian; and (iii) vertices at the
complex fluid periphery for the normalized velocity field,𝑉

𝜂
.

These results are in agreement with the experimental data
on the behaviours of a laser produced aluminium plasma
[19, 26, 27, 29–33].

Starting from these numerical solutions we can build the
normalized current density
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See Figures 2(a)–2(c).
It results in the splitting of the complex fluid into two

structures. By assimilating the complex fluid with a laser
produced aluminium plasma, the previous theoretical results
are in agreement with the experimental data [32, 33].

5. Self-Similarity Behaviour of the Complex
Systems via Nondifferentiability

Neglecting both convection ̂V ⋅ ∇
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Figure 1:Three-dimensional dependences of the normalized density𝑁 and normalized velocities,𝑉
𝜉
and𝑉

𝜂
, on the normalized coordinates,

𝜉 and 𝜂, for the normalized time 𝜏
0
= 0.54 ((a), (b), and (c)); two-dimensional contour of the normalized density𝑁 and normalized velocities,

𝑉

𝜉
and 𝑉

𝜂
, for the same normalized time ((d), (e), and (f)).



6 Journal of Applied Mathematics

j

−2

0.0

0.0

0

2

0.5

0.5

1.0

1.0

𝜉

𝜂

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−1 1

𝜉

𝜂

(b)

0.0 0.2 0.4 0.6 0.8

0.5

1.0

1.5

2.0

2.5

3.0

First plasma structure

Second plasma structure
𝜉 = 0.5; 𝜂 = 0.4

j

𝜏0

(c)

Figure 2: Three-dimensional dependences of the normalized density current 𝑗, on the normalized coordinates, 𝜉 and 𝜂, for the normalized
time 𝜏

0
= 0.54 (a); two-dimensional contour of the normalized current density 𝑗 for the same normalized time (b); time evolution of the

normalized density current for 𝜉 = 0.5 and 𝜂 = 0.4 (c).

For one-dimensional case, the previous equations with
the substitutions

𝑥

𝐿

= 𝜉, (26a)

𝑡

𝑇

= 𝜏, (26b)

𝐿

4

𝑇

2
=

𝜆

4

𝜏

2
(

𝑑𝑡

𝜏

)

(4/𝐷𝐹)−2

,
(26c)

(V
𝐷
;V
𝐹
) ≡ 𝐾

𝑖
(𝜉, 𝜏) , 𝑖 = 1, 2 (26d)

take the unitary form

𝐿

4 𝜕
4
𝐾

𝑖

𝜕𝜉

4
+ 𝑇

2 𝜕
2
𝐾

𝑖

𝜕𝜏

2
= 0. (27)

On (27), we impose for “clamping” conditions at 𝜉 = 1

𝜕

2
𝐾

𝑖
(1, 𝜏)

𝜕𝜉

2
= 0, (28a)
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Figure 3: Numerical solution of the Kirchhoff equation (27) with
“clamped-free” unitary conditions, for a uniform initial𝐾

𝑖0
.𝐾
𝑖
(0, 𝜏)

relaxes to zero within the first few time steps.

𝜕

3
𝐾

𝑖
(1, 𝜏)

𝜕𝜉

3
= 0 (28b)

and for boundary conditions at 𝜉 = 0

𝐾

𝑖
(0, 𝜏) = 0, (29a)

𝜕𝐾

𝑖
(0, 𝜏)

𝜕𝜉

= 0. (29b)

These four boundary conditions in 𝜉 associated with the
two initial conditions

𝐾

𝑖
(𝜉, 0) = 𝐾

𝑖0
, (30a)

𝜕𝐾

𝑖
(𝜉, 0)

𝜕𝜏

= 0

(30b)

imply a unique solution𝐾
𝑖
(𝜉, 𝜏) to (27); see Figure 3.

Owing to the scaling 𝑥 ∼ 𝐿√𝑡/𝑇, we seek a solution of
(27) in the form

𝐾

𝑖
(𝜉, 𝜏) = 𝐾

𝑖0
𝑢

𝑖
(𝜂) , (31)

where the self-similarity variable is

𝜂 = (

𝜉

√
𝜏

) =

(𝑥/𝐿)

√
𝑡/𝑇

=

𝑥

√𝛾𝑡

. (32)
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Figure 4: The self-similar solution (36) is a function of 𝜂. At later
times, 𝜏 ∼ 1, reflections are generated from the “clamped” end 𝜉 = 1.

The boundary conditions for 𝑢(𝜂) are derived from those
for𝐾
𝑖
:

𝑢

𝑖
(0) = 0, (33a)

𝑢

󸀠

𝑖
(0) = 0, (33b)

𝑢

𝑖
(+∞) 󳨀→ 1. (33c)

Substituting this self-similar form of 𝐾
𝑖
(𝜉, 𝜏) into (27)

yields the following equation for the self-similar solution
𝑢

𝑖
(𝜂):

4

𝑑

4
𝑢

𝑖
(𝜂)

𝑑 𝜂

4
+ 𝜂

2
𝑑

2
𝑢

𝑖
(𝜂)

𝑑 𝜂

2
+ 3𝜂

𝑑𝑢

𝑖
(𝜂)

𝑑 𝜂

= 0. (34)

Imposing that 𝑢
𝑖
(𝜂)matches the initial condition for large

𝜂 implies that

𝑑

2
𝑢

𝑖
(0)

𝑑𝜂

2
= 0, (35)

as shown with the help of an integral of motion. This last
condition, combined with the previous ones, yields a unique
self-similar solution to (34):

2𝐾

𝑖
(𝜉, 𝜏) = 2𝐾

𝑖0
(

𝜂

√
2𝜋

) , (36)

where we have introduced the Fresnel sine integral, 𝑆(𝑥) =
∫

𝑥

0
sin(𝜋𝑦2/2)𝑑𝑦, also arising in diffraction theory.
Equation (36) describes a self-similar solution. This

reflects the dispersive nature of (27), see Figure 4.
In these conditions the phase 𝑆 associated with the

velocity scalar potential is presented in Figure 5.
The states density associated with the same velocity scalar

potential has the same behaviour as the one presented in
Figure 5. It results in a self-similarity behaviour.

The theoretical oscillations (obtained by means of self-
elimination of the dissipative terms between differentiable
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Figure 5: The phase dependence versus normalized space-time co-
ordinates.

and fractal scales) can explain the experimental ionic oscilla-
tions of the current density that take place in a laser produced
aluminium plasma [19, 26, 27, 29]. In Figure 6 we give
by comparison the experimental curve (red curve, which
reflects the ionic oscillations of the current density with time
that take place in a laser produced aluminium plasma at a
laser power of 40mJ/pulse) and the theoretical curve (blue
curve). We note that in Figure 6 we used the normalized
coordinates.

It results in a good agreement (correlation factor 0.81)
between theoretical model and the experimental data.

6. Chaoticity through Turbulence and
Stochasticization via Nondifferentiability

Through the fractal velocities field, V
𝐹
, the specific fractal

potential𝑄 is ameasure of nondifferentiability of the complex
system particle trajectories, that is, of their chaoticity.

Since the position vector of the particle is assimilatedwith
a stochastic process of Wiener type (for details see [11–13], 𝜓
is not only the scalar potential of a complex speed (through
ln𝜓) in the frame of fractal hydrodynamics but also density of
probability (through |𝜓|2) in the frame of a Schrödinger-type
theory.

It results in the equivalence between the formalism of the
fractal hydrodynamics and the one of the Schrödinger-type
equation.Moreover, the chaoticity, either through turbulence
in the fractal hydrodynamics approach or through stochas-
ticization in the Schrödinger-type approach, is generated
only by the nondifferentiability of the movement trajecto-
ries in a fractal space. In this way the nondifferentiabil-
ity becomes a “control parameter” of the complex system
dynamics.

0.00 0.05 0.10 0.15 0.20
0

2

4

6

8
(Correlation factor 0.81)

J

𝜏

Figure 6: The theoretical (blue) and experimental (red) curves of
the ionic oscillations of the normalized current density, 𝐽, with
normalized time, 𝜏, in a laser produced aluminium plasma at a laser
power of 40mJ/pulse.

6.1. Full and Fractional Speed Scalar Potential Revivals in the
Infinite SquareWell: Various Criteria of Evolution to Chaos

6.1.1. Infinite Square Well System. Let us consider that the
external perturbation applied to complex system simulates, in
our opinion, one-dimension squarewell system.After solving
the time-dependent Schrödinger-type equation according
to the method described in [23] we obtain the discrete
eigenvalues

𝐸

𝑛
= 2𝑚

0
D
2
(

𝑛𝜋

𝑎

)

2

, D =

𝜆

2

𝜏

(

𝑑𝑡

𝜏

)

(2/𝐷𝐹)−1

(37)

and the eigenfunctions

𝜙

𝑛
=

{

{

{

{

{

{

{

{

{

(

2

𝑎

)

1/2

sin(𝑛𝜋𝑥
𝑎

) , 𝑛 even |𝑥| ≤ 𝑎
2

,

(

2

𝑎

)

1/2

cos(𝑛𝜋𝑥
𝑎

) , 𝑛 odd |𝑥| ≤ 𝑎
2

,

(38)

where 𝑎 is thewell’s width and𝑚
0
is the restmass of the fractal

fluid particle.

6.1.2. Time Scales. Some time scales of a speed potential
evolution are contained in the coefficients of the Taylor series
of the quantized energy levels 𝐸

𝑛
around the main energy 𝐸

𝑛

(see method from [34])

𝐸

𝑛
= 𝐸

𝑛
+ 4𝜋𝑚

0
D[

𝑛 − 𝑛

𝑇

𝛼

+

(𝑛 − 𝑛)

2

𝑇

𝛽

+ ⋅ ⋅ ⋅ ] , (39)

where often the zero of energy is shifted to remove the 𝐸
𝑛

term. Regrouping the infinite square well energies (17a)–(17c)
in this form gives

𝐸

𝑛
= 𝐸

1
𝑛

2
= 𝐸

1
𝑛

2
+ 2𝐸

1
𝑛 (𝑛 − 𝑛) + 𝐸

1
(𝑛 − 𝑛)

2
. (40)
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And comparing (39) and (40) we relate

𝑇

𝛼
=

2𝜋𝑚

0
D

𝑛𝐸

1

,

𝑇

𝛽
=

4𝜋𝑚

0
D

𝐸

1

.

(41)

We note that the time scale 𝑇
𝛽
does not depend on the

mean energy level 𝑛. This will provide us with a “universal”
time scale for describing speed potential evolution that does
not depend on the particle average energy.

6.1.3. Time Evolution. Wewrite the particle’s time 𝑡 = 0 speed
scalar potential in the infinite square well as

𝜓 (𝑥, 𝑡 = 0) = 𝜓

𝑖
(𝑥) . (42)

We expand this speed scalar potential using the energy
eigenstate basis

𝜓

𝑖
(𝑥) =

∞

∑

𝑛=1

𝑐

𝑛
𝜙

𝑛
(𝑥) (43)

with

𝑐

𝑛
= ∫

+∞

−∞

𝜙

𝑛
(𝑥) 𝜓

𝑖
(𝑥) 𝑑𝑥. (44)

Using the time scale 𝑇
𝛽
, the time evolution in the energy

eigenstate basis was found from Schrödinger-type equation
to be

𝜓 (𝑥, 𝑡) = ∑

𝑛

exp[−2𝜋𝑖 ( 𝑡

𝑇

𝛽

)𝑛

2
] 𝑐

𝑛
𝜙

𝑛
(𝑥) . (45)

6.1.4. Simulation of the Evolution to Chaos Criteria. Now,
the full and fractional revivals formalism may be applied.
Full and fractional revivals of a speed scalar potential in
the infinite square well occur when a speed scalar potential
evolves in time to a state that can be described as a collection
of spatially distributed subspeed scalar potentials that each
closely reproduces the initial speed scalar potential shape; see
for details [34]. Therefore, the full and fractional revivals of a
speed scalar potential in the infinite square well impliy either

𝜓 (𝑥, 𝑡 = 𝑡

0
+ 2

𝑘
𝑇

𝛽
) = 𝜓 (𝑥, 𝑡 = 𝑡

0
) (46)

or

𝜓(𝑥, 𝑡

0
+

𝑝

𝑞

𝑇

𝛽
) = 𝜓 (𝑥, 𝑡 = 𝑡

0
) (47)

for any time 𝑡
0
and 𝑘,𝑝, and 𝑞 integers. In any of the situations

above, either for 𝑡 = 𝑇
𝐹
= 2

𝑘
𝑇

𝛽
or for 𝑡 = 𝑇SH = (𝑝/𝑞)𝑇𝛽, we

can introduce Reynolds-type criterions

Re
𝐹
=

𝑉

𝐹
𝐿

𝐹

]
𝐹

= 2

𝑘
,

ReSH =
𝑉SH𝐿SH
]SH

=

𝑝

𝑞

,

(48)

where

𝐸

1
≡ 𝐸

𝐹/SH =
1

2

𝑚

0
𝑉

2

𝐹/SH, (49a)

𝐿

𝐹/SH = 𝑉𝐹/SH𝑇𝐹/SH, (49b)

]
𝐹/SH = 8𝜋

𝜆

2

𝜏

(

𝑑𝑡

𝜏

)

(2/𝐷𝐹)−1

(49c)

have the usual signification from fluid mechanics [24]. Up
to the values Re𝑐

𝐹/SH the fractal fluids become turbulent.
Then through 𝑇

𝐹
/𝑇

𝛽
= 2

𝑘 and Re
𝐹
= 𝑉

𝐹
𝐿

𝐹
/]
𝐹
= 2

𝑘 it
is formally simulated through the criterion of evolution to
chaos via Feigenbaum scenario (cascade of period doubling
bifurcations), while through 𝑇

𝛽
/𝑇SH = 𝜔SH/𝜔𝛽 = 𝑞/𝑝 with

𝑝 > 𝑞 and ReSH = 𝑉SH𝐿SH/]SH = 𝑝/𝑞 the criterion of
evolution to chaos via a cascade of subharmonic bifurcations.

We admit that in any of these two situations mentioned
above the fractal velocity (7c) is null, since 𝜌 = |𝜓|2 = const;
meanwhile the differential velocity (7b) is not zero, since the
phase 𝑆 is not constant, with the increase of the systems phase
incoherence being associated with the increase in turbulence
of fractal fluid.

We note that in the standard model (Landau’s scenario
[24, 35]) the Fourier spectrum is always discrete and cannot
approximate a continuum spectrum than that in case of a
large number of frequencies that will generate an unlimited
number of spectral components as a result of their beats
which appear thanks to the presence of nonlinearities in
the system. Yet, considering standard model, the flow can
never be truly chaotic, because, in case of multiple periodic
functions, correlations tend to be not null but having an oscil-
lating character. Therefore, Landau’s scenario can describe
transition towards chaotic behaviour only in a system with
an infinite number of degrees of freedom, such as a fluid. In
our case, because the Reynolds numbers (48) present scale
dependencies (49c), when 𝑑𝑡 → 0 for 𝐷

𝐹
≤ 2, the fractals

physical values that describe the dynamics of the system are
no longer defined. So, in this approximation, a simulation of a
systemwith an infinite number of degrees of freedom is used.

We note that the results from the present paragraph
permit the chaoticity and self-structuring control by means
of nondifferentiability. Thus the experimental results on
the formation, dynamics, and evolution towards chaos of
complex space charge structures that emerge in front of a
positively biased electrode immersed in a quiescent plasma
from [20] are in agreement with our previous theoretical
results.

7. Conclusions

In the present paper, we propose a new topic in the control
of complex systems dynamics using the nondifferentiabil-
ity of complex system movement curves. This topic was
developed through the scale relativity approach. Considering
the dynamics of complex system entities that take place
on fractal curves, we show that the control of different
behaviours of these systems implies nondifferentiability. The
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main conclusions of the present paper are as follows: (i)
the geodesics equations in the form of a Navier-Stokes-type
equation are obtained. It results in the rheologic properties of
the complex system which implies memory and so forth; (ii)
considering that the fractal fluid flows are irrotational, fractal
hydrodynamics equations are obtained. These equations are
formed from the density andmomentum conservations laws,
wih the presence of nondifferentiability being induced by
the fractal potential; (iii) a barotropic-type behaviour of the
complex system is numerically simulated using FHequations.
In this way we highlight the self-multiplication mechanism
of the substructures that constitute the complex system; (iv)
the implications of self-similarity in the dynamics of the
complex system are presented; (v) the chaoticity through
turbulence and stochaticization via nondifferentiability are
obtained; (vi) these previous behaviours can simulate the
standard properties of the complex system.

In this way, standard properties of complex systems
such as emergence, self-organisation, and adaptability are
controlled through nondifferentiability of motion curves of
the sub-systems that compose the complex system. We note
that general aspects of the dynamics control of the complex
system are described in [36], while the concrete cases of this
control are presented in [37–39].

Appendices

A. Consequences of Nondifferentiability

The nondifferentiability implies the following [12–14, 19–22].
(i) A continuous and a nondifferentiable curve (or almost

nowhere differentiable) is explicitly scale dependent. This
means that its length tends to infinity, when the scale interval
tends to zero. Therefore, a continuous and nondifferentiable
space is fractal, in the general meaning given by Mandelbrot
to this concept [11].

(ii) Physical quantities will be expressed through fractal
functions, namely, through functions that are dependent both
on spatial and temporal coordinates and on resolution scale.
The invariance of the physical quantities in relation with the
resolution scale generates special types of transformations,
called resolution scale transformations. Particularly, the dif-
ferentiality of the generalized spatial coordinates,X, takes the
form

𝑑X = 𝑑x + 𝑑𝜉, (A.1)

where 𝑑x is the classical differential element and 𝑑𝜉 is a
differential fractal one.

(iii) There is infinity of fractal curves (geodesics) relating
to any couple of points (or starting from any point) and
applied for any scale. The phenomenon can be easily under-
stood at the level of fractal surfaces, which, in their turn, can
be described in terms of fractal distribution of conic points of
positive and negative infinite curvatures. As a consequence,
we have replaced velocity on a particular geodesic by fractal
velocity field of the whole infinite ensemble of geodesics.
This representation is similar to that of fluid mechanics
where the motion of the fluid is described in terms of its

velocity field, density, and pressure. We will, indeed, recover
the fundamental equations of fluid mechanics (Euler and
continuity equations), but we will write them in terms of
a density of probability (as defined by the set of geodesics)
instead of a density of matter and adding an additional term
of quantum pressure (the expression of fractal geometry).

(iv)The local differential time invariance is broken, so the
time-derivative of the fractal field 𝑄 can be written twofold:

𝑑

+
𝑄

𝑑𝑡

= lim
Δ𝑡󳨀→0+

𝑄 (𝑡 + Δ𝑡) − 𝑄 (𝑡)

Δ𝑡

,

𝑑

−
𝑄

𝑑𝑡

= lim
Δ𝑡󳨀→0−

𝑄 (𝑡) − 𝑄 (𝑡 − Δ𝑡)

Δ𝑡

.

(A.2)

Both definitions are equivalent in the differentiable case
𝑑𝑡 → −𝑑𝑡. In the nondifferentiable situation, these defini-
tions are no longer valid, since limits are not defined any-
more. Fractal theory defines physics in relationship with the
function behaviour during the “zoom” operation on the time
resolution 𝛿𝑡, which is here identified with the differential
element 𝑑𝑡 (substitution principle), which is considered an
independent variable. The standard field 𝑄(𝑡) is therefore
replaced by fractal field𝑄(𝑡, 𝑑𝑡), explicitly dependent on time
resolution interval, whose derivative is not defined at the
unnoticeable limit 𝑑𝑡 → 0. As a consequence, this leads to
the two derivatives of the fractal field 𝑄 as explicit functions
of the two variables 𝑡 and 𝑑𝑡

𝑑

+
𝑄

𝑑𝑡

= lim
Δ𝑡󳨀→0+

𝑄 (𝑡 + Δ𝑡, Δ𝑡) − 𝑄 (𝑡, Δ𝑡)

Δ𝑡

,

𝑑

−
𝑄

𝑑𝑡

= lim
Δ𝑡󳨀→0−

𝑄 (𝑡, Δ𝑡) − 𝑄 (𝑡 − Δ𝑡, Δ𝑡)

Δ𝑡

.

(A.3)

Notation “+” corresponds to the forward process, while
“−” to the backward one.

Let us particularize (A.3) for the spatial coordinates. 𝑡
results in

𝑑

±
X = 𝑑

±
x + 𝑑
±
𝜉. (A.4)

Since, according to [12–14, 19–22], we can write

⟨𝑑

±
𝑋

𝑖
⟩ = 𝑑

±
𝑥

𝑖 (A.5)

from (A.4) by averaging, it results in

⟨𝑑𝜉

𝑖

±
⟩ = 0. (A.6)

(v) The differential fractal part satisfies the fractal equa-
tion:

𝑑

±
𝜉

𝑖
= 𝜆

𝑖

±
(

𝑑𝑡

𝜏

)

1/𝐷𝐹

,
(A.7)

where 𝜆𝑖
±
are some constant coefficients, 𝑑𝑡 is the time

differential, 𝜏 is the reference time scale, and𝐷
𝐹
is a constant

fractal dimension.We note that the use of any Kolmogorov or
Hausdorff definition [12–14, 19–22] can be accepted for fractal
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dimension, but once a certain definition is admitted, it should
be used until the end of analyzed dynamics.

(vi) The local differential time reflection invariance is
recovered by combining the twoderivatives,𝑑

+
/𝑑𝑡 and𝑑

−
/𝑑𝑡,

in the complex operator:

̂

𝑑

𝑑𝑡

=

1

2

(

𝑑

+
+ 𝑑

−

𝑑𝑡

) −

𝑖

2

(

𝑑

+
− 𝑑

−

𝑑𝑡

) .
(A.8)

Applying this operator to the “position vector,” a complex
velocity yields

̂V =
̂

𝑑X
𝑑𝑡

=

1

2

(

𝑑

+
X + 𝑑

−
X

𝑑𝑡

) −

𝑖

2

(

𝑑

+
X − 𝑑

−
X

𝑑𝑡

)

=

V
+
+ V
−

2

− 𝑖

V
+
− V
−

2

= V
𝐷
− 𝑖V
𝐹

(A.9)

with

V
𝐷
=

V
+
+ V
−

2

,

V
𝐹
=

V
+
− V
−

2

.

(A.10)

The real part,V
𝐷
, of the complex velocitŷV represents the

standard classical velocity, which does not depend on resolu-
tion, while the imaginary part, V

𝐹
, is a new quantity coming

from fractality.

B. Covariant Derivative

Let us now assume that curves describing movements of
complex systems (continuous but nondifferentiable) are
immersed in a 3-dimensional space and thatX of components
𝑋

𝑖
(𝑖 = 1, 3) is the position vector of a point on the curve. Let

us also consider the fractal field 𝑄(X, 𝑡) and expand its total
differential up to the second order:

𝑑

±
𝑄 =

𝜕𝑄

𝜕𝑡

𝑑𝑡 + ∇𝑄 ⋅ 𝑑

±
X + 1

2

𝜕

2
𝑄

𝜕𝑋

𝑖
𝜕𝑋

𝑗
𝑑

±
𝑋

𝑖
𝑑

±
𝑋

𝑗
.

(B.1)

Relations (B.1) are valid in any point both for the spatial
manifold and for the points X on the fractal curve selected
in relations (B.1). Hence, the forward and backward average
values of these relations take the form

⟨𝑑

±
𝑄⟩ = ⟨

𝜕𝑄

𝜕𝑡

𝑑𝑡⟩ + ⟨∇𝑄 ⋅ 𝑑

±
X⟩

+

1

2

⟨

𝜕

2
𝑄

𝜕𝑋

𝑖
𝜕𝑋

𝑗
𝑑

±
𝑋

𝑖
𝑑

±
𝑋

𝑗
⟩.

(B.2)

The following aspects should be mentioned: the mean
value of function 𝑄 and its derivatives coincide with them-
selves, and the differentials 𝑑

±
𝑋

𝑖 and 𝑑𝑡 are independent;
therefore, the average of their products coincides with the
product of averages. Consequently, (B.2) becomes

𝑑

±
𝑄 =

𝜕𝑄

𝜕𝑡

𝑑𝑡 + ∇𝑄⟨𝑑

±
X⟩ + 1

2

𝜕

2
𝑄

𝜕𝑋

𝑖
𝜕𝑋

𝑗
⟨𝑑

±
𝑋

𝑖
𝑑

±
𝑋

𝑗
⟩

(B.3)

or more, using (A.4) and (A.6),

𝑑

±
𝑄 =

𝜕𝑄

𝜕𝑡

𝑑𝑡 + ∇𝑄 ⋅ 𝑑

±
X + 1

2

𝜕

2
𝑄

𝜕𝑋

𝑖
𝜕𝑋

𝑗

× (𝑑

±
𝑋

𝑖
𝑑

±
𝑋

𝑗
+ ⟨𝑑

±
𝜉

𝑖
𝑑

±
𝜉

𝑗
⟩) .

(B.4)

Even if the average value of the fractal coordinate 𝑑
±
𝜉

𝑖 is
null (see (A.6)), for higher order of fractal coordinate average,
the situation can still be different. Let us focus on the
averages ⟨𝑑

±
𝜉

𝑖
𝑑

±
𝜉

𝑗
⟩. If 𝑖 ̸= 𝑗, these averages are zero due to the

independence of 𝑑
±
𝜉

𝑖 and 𝑑
±
𝜉

𝑗. So, using (A.7), we can write

⟨𝑑

±
𝜉

𝑖
𝑑

±
𝜉

𝑗
⟩ = 𝜆

𝑖

±
𝜆

𝑗

±
(

𝑑𝑡

𝜏

)

(2/𝐷𝐹)−1

(

𝑑𝑡

𝜏

) .
(B.5)

Then, (B.4) may be written as follows:

𝑑

±
𝑄 =

𝜕𝑄

𝜕𝑡

𝑑𝑡 + 𝑑

±
x ⋅ ∇𝑄 + 1

2

𝜕

2
𝑄

𝜕𝑋

𝑖
𝜕𝑋

𝑗
𝑑

±
𝑥

𝑖
𝑑

±
𝑥

𝑗

+

1

2

𝜕

2
𝑄

𝜕𝑋

𝑖
𝜕𝑋

𝑗
𝜆

𝑖

+
𝜆

𝑗

+
(

𝑑𝑡

𝜏

)

(2/𝐷𝐹)−1

(

𝑑𝑡

𝜏

) .

(B.6)

If we divide by 𝑑𝑡 and neglect the terms containing differ-
ential factors, (B.6) is reduced to

𝑑

±
𝑄

𝑑𝑡

=

𝜕𝑄

𝜕𝑡

+ V
±
∇𝑄 +

1

2

𝜕

2
𝑄

𝜕𝑋

𝑖
𝜕𝑋

𝑗

𝜆

𝑖

−
𝜆

𝑗

−

𝜏

(

𝑑𝑡

𝜏

)

(2/𝐷𝐹)−1

.

(B.7)
These relations also allow us to define the operators:

𝑑

±

𝑑𝑡

=

𝜕

𝜕𝑡

+ V
±
⋅ ∇ +

𝜆

𝑖

+
𝜆

𝑗

+

2𝜏

(

𝑑𝑡

𝜏

)

(2/𝐷𝐹)−1
𝜕

2

𝜕𝑋

𝑖
𝜕𝑋

𝑗
.

(B.8)

Under these circumstances, let us calculate ̂𝑑𝑄/𝑑𝑡. Taking
into account (B.8), (A.8), and (A.9), we will obtain

̂

𝑑𝑄

𝑑𝑡

=

1

2

[

𝑑

+
𝑄

𝑑𝑡

+

𝑑

−
𝑄

𝑑𝑡

− 𝑖 (

𝑑

+
𝑄

𝑑𝑡

−

𝑑

−
𝑄

𝑑𝑡

)]

=

𝜕𝑄

𝜕𝑡

+

̂V ⋅ ∇ + (𝑑𝑡/𝜏)
(2/𝐷𝐹)−1

4𝜏

⋅ [(𝜆

𝑖

+
𝜆

𝑗

+
+ 𝜆

𝑖

−
𝜆

𝑗

−
) − 𝑖 (𝜆

𝑖

+
𝜆

𝑗

+
− 𝜆

𝑖

−
𝜆

𝑗

−
)]

𝜕

2
𝑄

𝜕𝑋

𝑖
𝜕𝑋

𝑗
.

(B.9)
This relation also allows us to define the fractal operator:
̂

𝑑

𝑑𝑡

=

𝜕

𝜕𝑡

+

̂V ⋅ ∇ + (𝑑𝑡/𝜏)
(2/𝐷𝐹)−1

4𝜏

⋅ [(𝜆

𝑖

+
𝜆

𝑗

+
+ 𝜆

𝑖

−
𝜆

𝑗

−
) − 𝑖 (𝜆

𝑖

+
𝜆

𝑗

+
− 𝜆

𝑖

−
𝜆

𝑗

−
)]

𝜕

2
𝑄

𝜕𝑋

𝑖
𝜕𝑋

𝑗
.

(B.10)
Particularly, by choosing

𝜆

𝑖

+
𝜆

𝑗

+
= −𝜆

𝑖

−
𝜆

𝑗

−
= 2𝜆

2
𝛿

𝑖𝑗
, (B.11)

where 𝜆 is the reference length scale, the fractal operator
(B.10) (covariant derivative) takes the usual form:

̂

𝑑

𝑑𝑡

=

𝜕

𝜕𝑡

+

̂V ⋅ ∇ − 𝑖𝜆
2

𝜏

(

𝑑𝑡

𝜏

)

(2/𝐷𝐹)−1

Δ.
(B.12)
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[24] E. M. Lifshiët̀ıs and L. D. Landau, Fluid Mechanics, Pergamon
Press, 1987.

[25] G. V. Munceleanu, V.-P. Paun, I. Casian-Botez, and M. Agop,
“The microscopic-macroscopic scale transformation through a
chaos scenario in the fractal space-time theory,” International
Journal of Bifurcation andChaos, vol. 21, no. 2, pp. 603–618, 2011.

[26] P. Nica, M. Agop, S. Gurlui, C. Bejinariu, and C. Focsa,
“Characterization of aluminum laser produced plasma by target
current measurements,” Japanese Journal of Applied Physics, vol.
51, Article ID 106102, 10 pages, 2012.

[27] P. Nica, P. Vizureanu, M. Agop et al., “Experimental and theo-
retical aspects of aluminum expanding laser plasma,” Japanese
Journal of Applied Physics, vol. 48, no. 6, Article ID066001, 2009.

[28] O. C. Zienkievicz and R. L. Taylor, The Finite Element Method,
McGraw-Hill, New York, NY, USA, 1991.

[29] C. Ursu, O. G. Pompilian, S. Gurlui et al., “Al
2
O
3
ceram-

ics under high-fluence irradiation: plasma plume dynam-
ics through space- and time-resolved optical emission spec-
troscopy,” Applied Physics A, vol. 101, no. 1, pp. 153–159, 2010.

[30] O. G. Pompilian, S. Gurlui, P. Nemec, V. Nazabal, M. Ziskind,
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