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The dynamic response of an elastic strip foundation lying on elastic soil with saturated substrata is greatly affected by pore pressure
induced by a rocking moment. In this paper, we explore the mixed boundary-value problem of the rocking vibration of an elastic
strip foundation on elastic soil with saturated substrata via Biot dynamic equations. First, the wave equations concerning both the
single-phase elastic layer and the saturated half-space are solved using a Fourier integral transform technique. The dual integral
equations of the rocking vibration of an elastic strip foundation are established according to themixed boundary conditions. Finally,
the relationship of the dynamic compliance coefficient with the dimensionless frequency is obtained by applying Simpson’s rule to
conduct numerical calculation. We also analyse the influences of the elastic layer’s thickness and elastic characteristic parameters
of the foundation on the rocking vibration.

1. Introduction

Dynamic interaction between structural foundations and the
underlying soil, both in theory and in practice, is widely stud-
ied in the field of geotechnical engineering and has important
implications in power machine design and fundamental
analysis of foundations under seismic loads. To simplify the
boundary-value problem, in the early theoretical studies, the
soil under the forced vibration of the foundation was often
assumed to be a single-phase linear elastic medium [1–6].

However, soil is generally a two-phasematerial consisting
of a solid skeleton and pores, which are filled with fluid. Such
materials are commonly known as poroelastic materials in
mechanics literature. After Biot established a theory of prop-
agation of elastic waves in a fluid-saturated porous solid [7, 8]
in 1956, the research significance on vibration characteristics
of foundation on saturated soil became apparent. Lin [9] stud-
ied the vertical and rocking vibrations of an elastic circular
plate lying on a single-phase viscoelastic medium. Iguchi and
Luco [10] studied the dynamic response of a massless flexible
circular plate supported on a layered viscoelastic half-space,
obtaining the vertical and rocking impedance of the flexible

plate and the numerical solution of contact stress beneath the
plate. Halpern and Christiano [11, 12] evaluated compliance
functions for the harmonic rocking and vertical motions
of rigid permeable and impermeable plates bearing on a
poroelastic half-space. Kassir and Xu [13] studied the mixed
boundary-value problemof the vibration of a rigid strip foun-
dation on a fluid-saturated porous half-space. Jin and Liu
[14, 15] analysed the dynamic response of a rigid disk on a
saturated half-space subjected to harmonic horizontal and
rocking excitation. Li [16] studied the vertical vibration of a
rigid strip foundation on saturated soil. Finally, a parametric
study byMa et al. [17] examined the influences of dimension-
less frequency, dynamic permeability, and Poisson’s ratio on
saturated soil under a rocking rigid strip footing.

Most of the results reported previously concern the dyna-
mic interaction between the rigid structural foundation and
the underlying saturated half-space. As research advances in
this field of mechanics, a more realistically analytical model
becomes increasingly necessary. In fact, the soil of the earth’s
surface, because of differences in structure and sedimenta-
tion, usually has an apparent stratification, formed naturally
over the course of history. During foundation construction,
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underlying soil is routinely reinforced via a variety of meth-
ods, inevitably leading to some degree of soil stratification.
In practice, the underlying soil will have different physical
properties (porosity, permeability, etc.), which have a layered
distribution in depth. In researching dynamic interactions of
soil and a structural foundation, considering the underlying
soil as a homogeneous elastic or saturated medium is not
sufficiently accurate. Taking into account the presence of
groundwater, the soil below the groundwater level should be
considered as saturated soil and the soil above the ground-
water level may be regarded as an ideal, single-phase elastic
layer. As for the structural foundation, assuming it to be an
elastic body is more accurate than assuming it to be a rigid
body.

Based on the Biot theory of elastic waves in fluid-satu-
rated porous medium, Philippacopoulos [18] studied the ver-
tical vibration of a rigid circular disk resting on a saturated
layered half-space. Bougacha et al. [19, 20] analysed the
dynamic stiffness coefficients of rigid strip and circular foun-
dations on a saturated layered half-space using spatially semi-
discrete finite element technology. Rajapakse and Senjun-
tichai [21] presented an exact stiffness matrix method to
evaluate the dynamic response of a multilayered poroelastic
medium due to time-harmonic loads and fluid sources
applied in the interior of the layered medium. Yang et al. [22]
neglected the fluid inertia force exerted on the soil skeleton as
proposed in the works of Zienkiewicz et al. [23] and studied
the steady state response of an elastic soil layer and a saturated
layered half-space. Chen [24] explored the characteristics
of vertical vibration of both rigid and elastic circular plates
on elastic soils with saturated substrata, utilising the Hankel
transform to solve the wave equations. Furthermore, the tor-
sional and rocking vibration characteristics of a rigid circular
plate on elastic soil with saturated substrata were studied
by Wang [25] and Fu [26], respectively, and the effects of
the thickness of the elastic layer and the vibration frequency
on the plate’s dynamics were analysed. The previously listed
literature reviews do not present a study of the dynamics
between a vibrating elastic strip foundation and elastic soil
with saturated substrata.

In this paper, a novel study is presented tomake up a defi-
ciency.The wave equations concerning both the single-phase
elastic layer and the saturated half-space are solved using a
Fourier integral transform technique. Then, the dual integral
equations of the rocking vibration of an elastic strip foun-
dation are established according to mixed boundary condi-
tions. The dynamic compliance coefficient’s variation curve
with the dimensionless frequency is obtained by applying
Simpson’s rule to conduct numerical calculation, and the
effects of the elastic layer’s thickness and the elastic charac-
teristic parameters of the foundation on the rocking vibration
are analysed.

2. The Dynamic Equations and Their Solutions

Soil and water weight are ignored; the soil is considered to be
isotropic and the water incompressible.This paper studies the
plane strain problem for an infinite-length stripwith a footing
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𝑧
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Figure 1: Description of the model and coordinate system.

of width 2𝑏 and an elastic layer thickness of𝐻
𝑛
. The centre of

the footing is subjected to a harmonic moment force,𝑀𝑒
𝑖𝜔𝑡,

with 𝜔 denoting circular frequency. The horizontal direction
is established as the x-axis and the vertical direction as the z-
axis, and the origin of the coordinate is placed at the interface
of the elastic soil and the saturated soil. The model is shown
in Figure 1.

2.1.TheDynamic Equations of Elastic Layer under Plane Strain.
The wave equations of the elastic layer are
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where 𝑢 and 𝑤 are the horizontal and vertical displacements
of the soil skeleton, respectively; 𝜎

𝑥𝐿
and 𝜎
𝑧𝐿
are the horizon-

tal and vertical normal stresses, respectively; and 𝜌
𝐿
is single-

phase elastic soil density.
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where 𝐺
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and 𝜇
𝐿
are the shear modulus and Poisson’s ratio of

single-phase elastic soil, respectively.
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2.2. The Dynamic Equations of Saturated Half-Space under
Plane Strain. The basic dynamic equations of saturated half-
space are:
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where 𝑢 and 𝑤 are the horizontal and vertical displacements
of the soil skeleton, respectively;𝑤

𝑥
and𝑤

𝑧
are the horizontal

and vertical displacements of water relative to the soil skele-
ton; 𝜎

𝑥
and 𝜎
𝑧
are the horizontal and vertical effective normal

stresses, respectively; 𝑝
𝑓
is the excess pore pressure; 𝜌 is the

mass density of the saturated soil with 𝜌 = (1 − 𝑛)𝜌
𝑠
+ 𝑛𝜌
𝑓
;

𝜌
𝑠
and 𝜌
𝑓
are the densities of the soil and water, respectively;

and 𝑛 is the porosity of the saturated soil.
The equations of stress and displacement are
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where 𝐺 and 𝜇 are the shear modulus and Poisson’s ratio of
the saturated soil, respectively.

2.3.The Solutions of theDynamic Equations. For a simple har-
monic load, the displacement, stress, and excess pore pressure
may be expressed as
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Here, 𝜔 is the circular frequency. The Fourier transform
can be written as:
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Combining (1a)-(1b) and (2a)–(2c) and utilising the
Fourier transform, we can obtain the solutions of the single-
phase elastic layer as follows:
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where
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Similarly, combining (3a)–(3e) and (4a)–(4c) and util-
ising the Fourier transform, we obtain the solutions of the
saturated half-space as follows:
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Equations (7a)–(7e) can be further transformed as below:
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1
ch𝑞
𝐿
𝑧 + 𝐵
1
sh𝑞
𝐿
𝑧, (12c)

𝑖𝜏
∗

𝑥𝑧𝐿
(𝜁, 𝑧) = 2𝐴

1
𝜁𝑞
𝐿
𝐻
𝐿
𝐺
𝐿
sh𝑞
𝐿
𝑧 + 𝐴
2
(
𝐹
𝐿

𝜁
+
𝜁

𝐹
𝐿

)𝐺
𝐿
sh𝐹
𝐿
𝑧

+ 2𝐵
1
𝜁𝑞
𝐿
𝐻
𝐿
𝐺
𝐿
ch𝑞
𝐿
𝑧

+ 𝐵
2
(
𝐹
𝐿

𝜁
+
𝜁

𝐹
𝐿

)𝐺
𝐿
ch𝐹
𝐿
𝑧,

(12d)

𝜎
∗

𝑧𝐿
(𝜁, 𝑧) = − 2𝐺

𝐿
[𝐴
1
(𝑞
2

𝐿
𝐻
𝐿
+

𝜇
𝐿

1 − 2𝜇
𝐿

) ch𝑞
𝐿
𝑧

+ 𝐴
2
ch𝐹
𝐿
𝑧 + 𝐵
1

× (𝑞
2

𝐿
𝐻
𝐿
+

𝜇
𝐿

1 − 2𝜇
𝐿

) sh𝑞
𝐿
𝑧

+𝐵
2
sh𝐹
𝐿
𝑧] .

(12e)
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3. The Mixed Boundary-Value Problem of
the Rocking Vibration of an Elastic Strip
Foundation on Elastic Soil with Saturated
Substrata and Boundary Conditions

It is assumed that the contact between the elastic strip foun-
dation and the saturated soil is smooth and that the surface
of the saturated soil is pervious.The boundary conditions are
expressed as

𝑤 (𝑥, 0) = 𝑥𝜙 − Δ (𝑥) |𝑥| ≤ 𝑏, (13a)

𝜏
𝑥𝑧𝐿

(𝑥, −𝐻
𝑛
) = 0 −∞ < 𝑥 < ∞, (13b)

[𝑤 (𝑥, 0)]
𝐿
= 𝑤 (𝑥, 0) −∞ < 𝑥 < ∞, (13c)

[𝑢 (𝑥, 0)]
𝐿
= 𝑢 (𝑥, 0) −∞ < 𝑥 < ∞, (13d)

𝜏
𝑥𝑧𝐿

(𝜁, 0) = 𝜏
𝑥𝑧
(𝜁, 0) −∞ < 𝑥 < ∞, (13e)

𝜎
𝑧𝐿
(𝜁, 0) = 𝜎

𝑧
(𝜁, 0) −∞ < 𝑥 < ∞, (13f)

𝑝
𝑓
(𝜁, 0) = 0 −∞ < 𝑥 < ∞, (13g)

𝜎
𝑧𝐿
(𝑥, −𝐻

𝑛
) = 0 |𝑥| > 𝑏, (13h)

where 𝜎
𝑧
and 𝜏
𝑥𝑧

are the normal stress and the shear stress of
the soil skeleton, respectively; 𝑝

𝑓
is the pore pressure;𝑤 is the

contact surface displacement between the strip foundation
and underlying soil; 𝜙 is the rotation of the centre of the strip
foundation; and Δ(𝑥) is the deflection of the strip foundation
relative to the centre.

Combining (9a)–(9f) and (12a)–(12e) and applying the
Fourier transform to (13b)–(13h), we can obtain the following
relationships:

2𝐴
1
𝜁𝑞
𝐿
𝐻
𝐿
𝐺
𝐿
sh (−𝑞

𝐿
𝐻
𝑛
) + 𝐴
2
(
𝐹
𝐿

𝜁
+
𝜁

𝐹
𝐿

)𝐺
𝐿
sh (−𝐹

𝐿
𝐻
𝑛
)

+ 2𝐵
1
𝜁𝑞
𝐿
𝐻
𝐿
𝐺
𝐿
ch (−𝑞

𝐿
𝐻
𝑛
)

+ 𝐵
2
(
𝐹
𝐿

𝜁
+
𝜁

𝐹
𝐿

)𝐺
𝐿
ch (−𝐹

𝐿
𝐻
𝑛
) = 0,

(14a)

𝐵
1
𝑞
𝐿
𝐻
𝐿
+
𝐵
2

𝐹
𝐿

+ 𝐴
0
𝑞𝐻 + 𝐵

0
𝜁𝑁 +

𝐶
0

𝐹
= 0, (14b)

−𝐴
1
𝜁𝐻
𝐿
−
𝐴
2

𝜁
+ 𝐴
0
𝜁𝐻 + 𝐵

0
𝜁𝑁 +

𝐶
0

𝜁
= 0, (14c)

2𝐵
1
𝜁𝑞
𝐿
𝐻
𝐿
𝐺
𝐿
+ 𝐵
2
(
𝐹
𝐿

𝜁
+
𝜁

𝐹
𝐿

)𝐺
𝐿
+ 2𝐴
0
𝜁𝑞𝐻𝐺

+ 2𝐵
0
𝜁
2

𝑁𝐺 + 𝐶
0
(
𝐹

𝜁
+
𝜁

𝐹
)𝐺 = 0,

(14d)

− 2𝐺
𝐿
[𝐴
1
(𝑞
2

𝐿
𝐻
𝐿
+

𝜇
𝐿

1 − 2𝜇
𝐿

) + 𝐴
2
]

+2𝐺[𝐴
0
(𝑞
2

𝐻+
𝜇

1 − 2𝜇
)+𝐵
0
𝜁
2

𝑁+𝐶
0
] − 𝐴

0
𝐸 − 𝐵

0
= 0

(14e)

𝐴
0
𝐸 + 𝐵

0
= 0. (14f)

From (14f) we can obtain

𝐵
0
= −𝐴

0
𝐸. (15)

Utilising the Fourier transform on (12b) and (12e) gives

−2𝐺
𝐿
[𝐴
1
(𝑞
2

𝐿
𝐻
𝐿
+

𝜇
𝐿

1 − 2𝜇
𝐿

) ch (−𝑞
𝐿
𝐻
𝑛
) + 𝐴
2
ch (−𝐹

𝐿
𝐻
𝑛
)

+ 𝐵
1
(𝑞
2

𝐿
𝐻
𝐿
+

𝜇
𝐿

1 − 2𝜇
𝐿

) sh (−𝑞
𝐿
𝐻
𝑛
)

+𝐵
2
sh (−𝐹

𝐿
𝐻
𝑛
) ] = 𝜎

∗

𝑧
(𝜁, 0) ,

(16a)

𝐴
1
𝑞
𝐿
𝐻
𝐿
sh (−𝑞

𝐿
𝐻
𝑛
) +

𝐴
2
sh (−𝐹

𝐿
𝐻
𝑛
)

𝐹
𝐿

+

𝐵
1
𝑞
𝐿
𝐻
𝐿
ch (−𝑞

𝐿
𝐻
𝑛
) +

𝐵
2
ch (−𝐹

𝐿
𝐻
𝑛
)

𝐹
𝐿

= 𝑤
∗

(𝜁, 0) .

(16b)

Substituting (15) into (14b), (14c), (14d), and (14e), then
(16a), (14a), (14b), (14c), (14d), and (14e) may be transformed
into the following matrix form:

[
[
[
[
[
[
[

[

𝑇
11

𝑇
12

𝑇
13

𝑇
14

𝑇
15

𝑇
16

𝑇
21

𝑇
22

𝑇
23

𝑇
24

𝑇
25

𝑇
26

𝑇
31

𝑇
32

𝑇
33

𝑇
34

𝑇
35

𝑇
36

𝑇
41

𝑇
42

𝑇
43

𝑇
44

𝑇
45

𝑇
46

𝑇
51

𝑇
52

𝑇
53

𝑇
54

𝑇
55

𝑇
56

𝑇
61

𝑇
62

𝑇
63

𝑇
64

𝑇
65

𝑇
66

]
]
]
]
]
]
]

]

⋅

[
[
[
[
[
[
[

[

𝐴
1

𝐵
1

𝐴
2

𝐵
2

𝐴
0

𝐶
0

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[

[

𝜎
∗

𝑧
(𝜁, 0)

0

0

0

0

0

]
]
]
]
]
]
]

]

.

(17)

The expression of each element of matrix𝑇 can be seen in the
appendix.

The displacement of the strip foundation surface can be
expressed in the following matrix form:

[Γ
1
Γ
2
Γ
3
Γ
4
Γ
5
Γ
6
] [𝐴
1
𝐵
1
𝐴
2
𝐵
2
𝐴
0
𝐶
0
]
𝑇

= 𝑤
∗

(𝜁, 0) ,

(18)
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where

Γ
1
= 𝑞
𝐿
𝐻
𝐿
sh (−𝑞

𝐿
𝐻
𝑛
) ,

Γ
2
= 𝑞
𝐿
𝐻
𝐿
ch (−𝑞

𝐿
𝐻
𝑛
) ,

Γ
3
=
sh (−𝐹

𝐿
𝐻
𝑛
)

𝐹
𝐿

,

Γ
4
=
ch (−𝐹

𝐿
𝐻
𝑛
)

𝐹
𝐿

,

Γ
5
= Γ
6
= 0.

(19)

Establishing the following equations by the matrix 𝑇 and
the matrix Γ gives

𝑇 ⋅ 𝑋 = Γ, (20)

where𝑋 is a 6 × 1matrix.
We find from (17) and (18) that the element 𝑋

1
in the

first row of thematrix𝑋 denotes the relationship between the
displacement and stress on the strip foundation surface.Thus,
when

𝑤
∗

(𝜁, 0) = 𝑓 (𝜁) ⋅ 𝜎
∗

𝑧
(𝜁, 0) (21)

we obtain𝑓(𝜁) = 𝑋
1
, thereby expressing every element in

matrix 𝑋 by solving (20). We can obtain𝑓(𝜁) and find that
𝑓(𝜁) and 1/𝜁 are infinitesimal of the same order when 𝜁 →

∞.
Using the Fourier inverse transform and combining (21),

we obtain

𝑤 (𝑥, 0) =
1

2𝜋
∫

∞

−∞

𝑤
∗

(𝜁, 0) 𝑒
−𝑖𝜁𝑥

𝑑𝜁

=
1

𝜋
∫

∞

0

𝑓 (𝜁) 𝜎
∗

𝑧
(𝜁, 0) sin (𝜁𝑥) 𝑑𝜁.

(22)

Additionally,

𝜎
𝑧
(𝑥, 0) =

1

2𝜋
∫

∞

−∞

𝜎
∗

𝑧
(𝜁, 0) 𝑒

−𝑖𝜁𝑥

𝑑𝜁

=
1

𝜋
∫

∞

0

𝜎
∗

𝑧
(𝜁, 0) sin (𝜁𝑥) 𝑑𝜁.

(23)

The dual integral equations of the rocking vibration of an
elastic strip foundation on elastic soil with saturated substrata

are as follows:

∫

∞

0

𝑓 (𝜁) �̃�
∗

𝑧
(𝜁, 0) sin (𝜁𝑥) 𝑑𝜁

+ 𝛿𝑏
2

(6𝑥
3

− 𝑥
2

)

× ∫

∞

0

(1 + 𝜌ℎ̃𝜔
2

𝑓 (𝜁) /𝐺)

𝜁

�̃�
∗

𝑧
(𝜁, 0) cos 𝜁𝑑𝜁

− 𝛿𝑏
2

𝑥
2

∫

∞

0

(1 + 𝜌ℎ̃𝜔
2

𝑓 (𝜁) /𝐺)

𝜁
2

�̃�
∗

𝑧
(𝜁, 0) sin 𝜁𝑑𝜁

− 𝛿𝑏
2

𝑥∫

∞

0

(1 + 𝜌ℎ̃𝜔
2

𝑓 (𝜁) /𝐺)

𝜁
3

�̃�
∗

𝑧
(𝜁, 0) 𝑑𝜁

− 𝑏
2

𝛿∫

∞

0

(1+𝜌ℎ̃𝜔
2

𝑓 (𝜁) /𝐺)

𝜁
4

�̃�
∗

𝑧
(𝜁, 0) (sin 𝜁𝑥 − 2) 𝑑𝜁

= 𝜋𝑥𝜙𝑏
2

0 ≤ |𝑥| ≤ 1,

∫

∞

0

�̃�
∗

𝑧
(𝜁, 0) sin (𝜁𝑥) 𝑑𝜁 = 0 |𝑥| > 1,

(24)

where 𝜙 is the rotation of the centre of the strip foundation
and𝐷

𝑓
is the flexural stiffness of the foundation.

Simpson’s rule is used to conduct numerical calculation.
The dynamic compliance coefficient, 𝐶

𝑀
, of the rocking

vibration of a strip foundation can be expressed as follows
[27]:

𝐶
𝑀
=

1

𝑏𝑎
0

. (25)

Defining 𝑓
1
= Re[𝐶

𝑀
] and 𝑓

2
= Im[𝐶

𝑀
], we can obtain

foundation stiffness 𝐾 = 𝑓
1
/(𝑓
2

1
+ 𝑓
2

2
) and the damping

coefficient of the foundation 𝐶 = −𝑓
2
/(𝑓
2

1
+ 𝑓
2

2
)𝑏
0
. Here,

𝑏
0
= 𝑏𝜔√𝜌/𝐺 is the dimensionless frequency.

4. Verifications and Numerical
Example Analysis

The rocking vibration solution of an elastic strip foundation
on elastic soil with saturated substrata can be degenerated to
the single-phase elastic half-space case by defining 𝜌

𝑓
= 0,

𝛿 = 0, and 𝐻
𝑛
= 0. The foundation parameters for the

degenerated case are 𝑏 = 2m, 𝐺 = 35MPa, 𝑛 = 0.35, and
𝜌
𝑠
= 2650 kg/m3. The variation of the dynamic compliance

coefficient 𝐶
𝑀

with dimensionless frequency 𝑏
0
is analysed

and is then compared with the numerical results by Luco
and Westmann [5] when 𝜇 is 0.25. In Figure 2, “∘” represents
the numerical results obtained by Luco and Westmann [5]
when 𝜇 is 0.25. Both of the results derived from Figure 2
are consistent and verify the feasibility and accuracy of the
calculating methods described in this paper. Meanwhile, the
rigid foundation is considered as a special case of the elastic
foundation when 𝛿 equals zero.
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Figure 2: The dynamic compliance coefficient versus the dimensionless frequency. (a) Real part of 𝐶
𝑀
versus the dimensionless frequency

and (b) imaginary part of 𝐶
𝑀
versus the dimensionless frequency.
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Figure 3: The dynamic compliance coefficient 𝐶
𝑀

of different single-phase elastic layer thicknesses (𝐻
𝑛
). (a) Real part of 𝐶

𝑀
versus the

dimensionless frequency and (b) imaginary part of 𝐶
𝑀
versus the dimensionless frequency.

Concerning the rocking vibration of an elastic strip foun-
dation on elastic soil with saturated substrata, the physical
and mechanical parameters of a single-phase elastic layer are
𝐺
𝐿
= 35MPa, 𝜇

𝐿
= 0.45, and 𝜌

𝐿
= 1722.5 kg/m3; for a

saturated half-space, 𝑛 = 0.35, 𝐺 = 35MPa, 𝑘
𝑑
= 10
−5m/s,

𝜌
𝑓
= 1000 kg/m3, 𝜌

𝑠
= 2650 kg/m3, and 𝜇 = 0.25. The

dynamic compliance coefficient 𝐶
𝑀
changes over the dimen-

sionless frequency, the state of which is calculated when

𝐻
𝑛
= 0, 0.2, 1.0, and 2.0m for 𝛿 = 10, and the calculation

results are shown in Figure 3. Meanwhile, the dynamic com-
pliance coefficient 𝐶

𝑀
changes over the dimensionless fre-

quency, the state of which is calculated when 𝛿 = 0.0, 0.1, 10,
and 1000 for𝐻

𝑛
= 0.2, and the calculation results are shown

in Figure 4.
We can see from Figure 3 that 𝐶

𝑀
decreases with an

increase in the elastic layer thickness, which indicates that
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Figure 4: The dynamic compliance coefficient 𝐶
𝑀
for different 𝛿. (a) Real part of 𝐶

𝑀
versus the dimensionless frequency and (b) imaginary

part of 𝐶
𝑀
versus the dimensionless frequency.

the presence of elastic soil can reduce the vibration to the
foundation. Meanwhile, in the given parameters for the real
part of 𝐶

𝑀
, as 𝑏
0
increases, the real part of 𝐶

𝑀
decreases, but

the curve tends to flatten. For the imaginary part of 𝐶
𝑀
, as 𝑏
0

increases, the imaginary part of 𝐶
𝑀

first decreases and then
increases, finally becoming smooth.

For the rocking vibration of an elastic strip foundation on
elastic soil with saturated substrata, the curves of 𝐶

𝑀
are

essentially coincident when 𝛿 = 0.0 and 0.1, which can be
seen from Figure 4. The curve for 𝛿 = 0.0 is the one of the
dynamic compliance coefficients of the rocking vibration of a
rigid strip foundation on elastic soil with saturated substrata.
Therefore, it can be inferred that the rocking vibration of
an elastic and a rigid strip foundation on elastic soil with
saturated substrata has the similar dynamic characteristics in
variations of 𝑏

0
when 𝛿 ≤ 0.1. It is also demonstrated that

the real part of 𝐶
𝑀

is greatly influenced by variations in 𝑏
0

when 𝑏
0
< 2.8 and that the imaginary part of 𝐶

𝑀
is greatly

influenced by variations in 𝑏
0
when 𝑏

0
< 3.6. However, when

𝑏
0
exceeds the critical values (2.8 for the real part of 𝐶

𝑀
and

3.6 for the imaginary part of 𝐶
𝑀
), the curve of 𝐶

𝑀
tends

to flatten and 𝐶
𝑀

is only slightly influenced by variations in
the dimensionless frequency 𝑏

0
. Figure 4 also shows that the

dynamic compliance coefficient curve obtained when 𝛿 = 10
and 1000 is remarkably different from the one obtained when
𝛿 = 0.0 and 0.1, and the absolute values concerning both the
real parts and imaginary parts of the dynamic compliance
coefficient when 𝛿 = 10 and 1000 are larger than the ones
when 𝛿 = 0.0 and 0.1. Moreover, it can be seen from Figure 4
that when 𝛿 is large, the variation of the dynamic compliance
coefficient curve with the dimensionless frequency 𝑏

0
tends

to be smooth. However, for an average quantity of 𝛿, the
variation of the absolute values of the real parts and imaginary
parts of 𝐶

𝑀
with 𝑏

0
is significant. Thus, under ordinary

circumstances (𝛿 = 10), we must consider effects exerted by
the dimensionless frequency 𝑏

0
.

5. Conclusions

In this paper, an analytical solution for the rocking vibration
of an elastic strip foundation on elastic soil with saturated
substrata is developed. The solution is based on dual integral
equations, which are formulated from Biot’s equations of
dynamic poroelasticity by means of the Fourier transform in
combination with mixed boundary conditions. Validation of
the analytical solution for dry soil is based on the solution
presented by Luco and Westmann [5].

Our conclusions of this study are as follows. (1)The dyna-
mic compliance coefficient 𝐶

𝑀
decreases with an increase in

the elastic layer thickness, which indicates that the presence
of elastic soil can reduce the vibration to the foundation. (2)
The real part of dynamic compliance coefficient𝐶

𝑀
is greatly

influenced by variations in the dimensionless frequency 𝑏
0

when 𝑏
0
< 2.8, and the imaginary part of 𝐶

𝑀
is greatly

influenced by variations in the dimensionless frequency 𝑏
0

when 𝑏
0
< 3.6. (3) When the flexural stiffness of the elastic

foundation is comparatively large or when 𝛿 ≤ 0.1, the
influence of 𝛿 on the rocking vibration can be ignored. (4)
When 𝛿 > 0.1 and as 𝛿 increases, the rocking vibration of
the elastic foundation changes significantly, and the absolute
values of both the real parts and imaginary parts of 𝐶

𝑀

increase.
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Appendix

Expressions for each element of the matrix 𝑇 appearing pre-
viously are given by

𝑇
11
= −2𝐺

𝐿
(𝑞
2

𝐿
𝐻
𝐿
+

𝜇
𝐿

1 − 2𝜇
𝐿

) ch (−𝑞
𝐿
𝐻
𝑛
) ,

𝑇
12
= −2𝐺

𝐿
(𝑞
2

𝐿
𝐻
𝐿
+

𝜇
𝐿

1 − 2𝜇
𝐿

) sh (−𝑞
𝐿
𝐻
𝑛
) ,

𝑇
13
= −2𝐺

𝐿
ch (−𝐹

𝐿
𝐻
𝑛
) ,

𝑇
14
= −2𝐺

𝐿
sh (−𝐹

𝐿
𝐻
𝑛
) ,

𝑇
15
= 0,

𝑇
16
= 0,

𝑇
21
= 2𝜁𝑞

𝐿
𝐻
𝐿
𝐺
𝐿
sh (−𝑞

𝐿
𝐻
𝑛
) ,

𝑇
22
= 2𝜁𝑞

𝐿
𝐻
𝐿
𝐺
𝐿
ch (−𝑞

𝐿
𝐻
𝑛
) ,

𝑇
23
= (

𝐹
𝐿

𝜁
+
𝜁

𝐹
𝐿

)𝐺
𝐿
sh (−𝐹

𝐿
𝐻
𝑛
) ,

𝑇
24
= (

𝐹
𝐿

𝜁
+
𝜁

𝐹
𝐿

)𝐺
𝐿
ch (−𝐹

𝐿
𝐻
𝑛
) ,

𝑇
25
= 0,

𝑇
26
= 0,

𝑇
31
= 0,

𝑇
32
= 𝑞
𝐿
𝐻
𝐿
,

𝑇
33
= 0,

𝑇
34
=

1

𝐹
𝐿

,

𝑇
35
= 𝑞𝐻 − 𝜁𝑁𝐸,

𝑇
36
=
1

𝐹
,

𝑇
41
= −𝜁𝐻

𝐿
,

𝑇
42
= 0,

𝑇
43
= −

1

𝜁
,

𝑇
44
= 0,

𝑇
45
= 𝜁𝐻 − 𝜁𝑁𝐸,

𝑇
46
=
1

𝜁
,

𝑇
51
= 0,

𝑇
52
= 2𝜁𝑞

𝐿
𝐻
𝐿
𝐺
𝐿
,

𝑇
53
= 0,

𝑇
54
= (

𝐹
𝐿

𝜁
+
𝜁

𝐹
𝐿

)𝐺
𝐿
,

𝑇
55
= 2𝜁𝑞𝐻𝐺 − 2𝜁

2

𝑁𝐺𝐸,

𝑇
56
= (

𝐹

𝜁
+
𝜁

𝐹
)𝐺,

𝑇
61
= −2𝐺

𝐿
(𝑞
2

𝐿
𝐻
𝐿
+

𝜇
𝐿

1 − 2𝜇
𝐿

) ,

𝑇
62
= 0,

𝑇
63
= −2𝐺

𝐿
,

𝑇
64
= 0,

𝑇
65
= 2𝐺[(𝑞

2

𝐻 +
𝜇

1 − 2𝜇
) − 𝜁
2

𝑁𝐸] ,

𝑇
66
= 2𝐺.

(A.1)
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