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An in-host viral model with cure of infected cells and humoral immunity is studied. We prove that the stability is completely
determined by the basic reproductive number R, and show that the infection-free equilibrium E, is globally asymptotically stable
if and only if R, < 1. Moreover, if R, > 1, the infection equilibrium is locally asymptotically stable when the time delay 7 is small
and it loses stability as the length of the time delay increases past a critical value 7,. Finally, we confirm our analysis by providing

several numerical examples.

1. Introduction

The humoral immunity is a kind of immunologic mechanism
which uses B lymphocytes to produce antigen to prevent
virus and there are evidences to prove that the humoral
immunity is more effective than the cell-mediated immune in
some infections such as malaria infection [1-3]. Many authors
present and develop mathematical systems for the humoral
immunity [4-7]. And the cure of virus is also important
especially in HBV models [8, 9]. In the present paper, we
analyze an in-host viral model with humoral immunity and
intracellular delay, and we incorporate a “cure” of infected
cells into it. We propose the following system:

T'(t) = A - BT () V (t) —dT (t) + bI (t),
I'()=PT OV E)-(a+b) (1),
V' (t) = kI (t) —uV (t) —qB () V (1),

B'(t)=gV(t-1)-cB(t),

where T, I, V, and B represent the uninfected cells, the
infected cells, the virus, and the B cells, respectively. A and
d are assumed as the birth rate and death rate of uninfected
cells. B is the infection rate and kI(¢) represents the number
of free virus which is produced during the average infected
cell life span. a is the death rate of infected cells and u

represents the death rate of virus. g and ¢ represent the birth
rate and death rate of B cells. The B cells neutralization rate is

represented by g.
The following form is taken as the initial conditions:
T©)=¢0),
1(0) =9, (0),
V©) =90, )
B () = ¢, (0)
0 (0)=0, 0e(-1,0), ¢ (0)>0 (i=1,23,4),

where (¢, (0), 9,(0), 95(0), 9,(0)) € C([-7,0], Rio), the space
of continuous functions mapping the interval (-co, 0] into
Rio, and

R = {(xp %2 x5, %,) | x, 2 0,i = 1,2,3,4}. (3)

The organization of this paper is as follows. In the next
section, we will find threshold parameters R, of system
(1) and it determines the existence of the equilibriums.
In Section 3, by structuring suitable Lyapunov functionals
and using LaSalle’s invariance principle we attain the global
stability of the uninfected equilibrium if R, < 1. In Section 4,
we consider the stability of the infected equilibrium and



the occurrence of local Hopf bifurcation. In Section 5, we
present the numerical simulations to illustrate our results.
Finally, we offer concluding remarks in the last section.

2. Existence of Equilibrium

We can easily find that system (1) always has an uninfected
equilibrium E,, = (T, 0,0,0) = ((A/d),0,0,0).
Denote

_ AKB
Ro = ud(a+b)’ (4)

We call R, the basic reproductive number. It is easy to prove
that if R, > 1, model (1) exist an infected equilibrium
E*(T*,I",V*, B*), where

V' = (\/(ﬁcua —(a+b)dgq)’ + 4Agqackp?

—Bcua - (a+b) dgq)

x (2aBgq)”",
(a+Db) b ©)
T*qu V*+u(a+ ),
kpc kB
O
C

* g9 .«2 U_ «
I ==V -V,
ke' Tk

3. Global Attraction of
Infection-Free Equilibrium

Theorem 1. The infection-free equilibrium E, of system (1) is
globally attractive if Ry < 1.

Proof. Let (T(t),I(t),V(t), B(t)) be any positive solution of
system (1) with initial conditions (2).

Define
T-T,)
L) = gk ) ( 0)
2q(a+D) T,
N bgk (T-Ty+1)
2q(a+b)(a+d) T
q 0 6)
+ gk I+ QV + lB2
qa+b) q 2

t

+gB L_T V(&) dE.
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Calculating the derivative of L(t) along positive solutions of
system (1) and noting A = dT, and TV(T-T,) = V(T - T,)*+
T V(T - T,), it follows that

__< gkp dgk(a+d)+bdgk>
~ \gq(a+b) g(a+b)(a+d)
y (T—TO)2 _ abgk 12 (7)
T, q(a+b)(a+4d)
—cB2+%(RO—1)V.

If R, < 1, it follows from (7) that L < 0. The solutions are
limited to the largest invariant subset M of {L(t) = 0}. It is
clear that L(t) = 0 if and only if (T, I, V, B) = (T}, I, Vy, By)-
So we can obtain the global attraction of E, by using LaSalle’s
invariance principle. This completes the proof. O

4. Permanence of the System for R, > 1

Theorem 2. If R, > 1, the infected equilibrium E* of system
(1) is locally asymptotically stable when T = 0.

Proof. The characteristic equation associated with system (1)
at E* is
A+ muA’ + myd?
(8)

- 2
+mA+my +e AT(HZ/\ +n1/\+n0):0.

Noting that T* = ((gq(a + b))/ (kBe)V™ + ((u(a + b))/ (kf3)),
B* = (g/c)V*, we can obtain

my=a+b+c+d+u+qB" +pV",

m,=bd+a(d+pV")
+(u+gB")(d+pV")
tcla+b+d+u+qB" +pV"),

_ (a+c) gqﬁv*z

¢ )
+(autcutac)fV  +cd(a+u+b),

my

my = c(aupV”* +aqBV*B"),
n,=gqv’,
n=gqvV-(a+b+d+pv’),
ny = dgq(a+b)V* +agqpv™’.
If T = 0, (8) becomes

A+ maA? + (my + 1)) A2+ (my +m)) A+ mgy + 1y = 0.
(10)

Then we can obtain m, +n, > 0,m, +n; > 0,m, +n, > 0,and
ms > 0. It follows from Routh-Hurwitz criterion that all roots
of (10) have negative real parts when 7 = 0. This competes the
proof. O
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Let A = iv and then substitute it into (8). Separating the
real and imaginary parts, we will gain

4 2 2 .
Vvi—myV +my = (nzv - no) cos VT — n,; vsin v,
(11

myv’ —myv = (n2v2 - no) sin v + 1, v cos .
Squaring and adding (11) yield

8 2 6
v+ (m3 —2m2)v

+ (mg = 2myms + 2my — ng) v

(12)

5]

2 2

+ (m1 - 2mym, —nj + 2n0n2) v
22

+ (mo - no) =0.

Denote

G(x) = X+ (rré - 2m2) X

+ (mg = 2myms + 2m, — ng) x°
R X (13)
+ (m1 - 2mym, —nj + 2n0n2) X

« (- 2).
We have that
G (x) = 4x° +3 (m§ - 2m2) X
+2 (mi —2my;ms + 2mg, — ng) x (14)
+ (mf = 2mym, — nf + 2n0n2) .

Hence if G(x) = 0 has a positive root x = v?, then A = +ivare
a couple of purely imaginary characteristic roots. Moreover,
for a real practice model with fully known coefficients, the
exactly four roots of G(x) = 0 can be numerically calculated
with the help of computational software such as Matlab. Let
x; (1 <i<k, 1<k <4)Dbethepositive roots of G(x) = 0 and
Vv, = /X

Solving (11) with respect to 7, we can obtain

G 1 <(n2vi6+(—no+n1m3 —nzmz)vf>

2
n2v: + (nyv —ny)

2
+ <(n0m2—n1m1+n2m0) Vi =Ny, ))

2
n2v: + (nyv? —ny)

1
+ —-2jm,
i
(15)
where 1 <i<k;1<k<4j=0,1,2,.... Let
=min{r” [1<i<kj=012..}.  (6)

This means that 7, is the least value of 7 which can be used to
make the characteristic equation have purely imaginary roots.

Theorem 3. G'(vf) and Re[d/\/df]:rg) have the same sign.

Proof. Let the characteristic equation be in the following
form:

fA+gle™ =o. 17)
We can obviously know from (8) that
FA) = A+ mA® + A + my A + my,

(18)
g = nzlz + mA +ny.
Calculating the derivative of (17) with respect to 7, we can
obtain that
dA

= (ffM+gd Me-gye™ 1)

=g\ e Mo,

[dA]l _SWd W e (19)

T
dr =0 gh)er -2 A

_ f ) +g (iv)e™™ 1

g (iv;) e ™7 - i, v,
Therefore,
dr1™!
R[d_]
=Re [ [ (iv,) + g (iv) e ™ ]
R g (ivi) e—iv,-‘r . iVi
=Re fl (ivi) g’ (iv;) ]
R Cr@)) gl
~ Re i ) (‘f, (iv,) - f (iv) N g (iv;) - g (iv,) >]
| Vi fGvy) - f (iv) g(iv;)-g(iv)
~ Re i ) g (iv) g (iv) - f (iv)) '7(”;’)] '
-ivi If (iVi)lz
(20)
Obviously,

, ax1™
sign <Re [ % ] o )

= sign (Im (gl (iv;) - (iv;) = f' (ivy) 7(”’:))) .

(21)
And after some calculations, we can get
Im (9’ (iv;) - g (iv;) = f’ (iv;) - 7 (iVi))
= 4";'7 +3 (—2m2 + mg) vl.s
(22)

2 2
+2- (m2 = 2myms + 2m, — nz) vf

2 2
+ (ml —2mym, —nj + Znonz) v
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FIGURE 1: Equilibrium E,, is globally asymptotically stable if R, < 1.

Therefore, G' (vf) and Re[d/\/d‘r]:r(,) have the same sign.
This completes the proof. l O

Applying Theorems 2 and 3 and the Hopf bifurcation
theorem for functional differential equation [10], we derive
the existence of a Hopf bifurcation as stated in Theorem 4.

Theorem 4. Suppose that G(x) = 0 has at least one simple
positive root and 1, is defined in (16). Then there is a Hopf
bifurcation for the system (1) as s passes upwards through T,
leading to a periodic solution that bifurcates from E*, where

6 4
G _ 1 <<n2vi + (=ny + nyms — nym, ) v; )

2
nvi + (”2";2 - 1g)

2
+ ( (ngmy—nym, +nymy) Vi —hyty >>

2,2 2 2

mv? + (nyv? —ny)

1 . .

+—-2jm, 1<i<k
VA
1

j=0,1,2,....
(23)

5. Numerical Examples

Example 1. For system (1), consider all parameters as follows:
a=01Lb=0I1B=0lc=000,d=02g = 01,
k=0.1,A=1,9=0.001, u = 10, and 7 = 10. In this case, we
can obtain that R, = 0.375 < 1; the global attraction of the
infection-free equilibrium E,, is illustrated by Figure 1.

Example 2. Consider all parameters of system (1) as follows:
a = 241979, b = 2.80472, 3 = 2.34292, ¢ = 2.2057,d =
0.9129, g = 4.2074, k = 2.6415, A = 4.60059, g = 3.738, and
u = 1.3978. In this case, we can obtain that R, = 4.2709 > 1.

(1) When T = 0.75, E* is locally asymptotically stable and
the stability is illustrated by Figure 2.
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FIGURE 2: Equilibrium E* is locally asymptotically stable when 7 is
very small.

FIGURE 3: Delay can destabilize E* and lead to Hopf bifurcation
when 7 increases past a critical value 7.

(2) When 7 = 0.9, the delay can destabilize E* and lead
to Hopf bifurcation. We will show that in Figure 3.

6. Discussions

In this paper, we consider an in-host viral model humoral
immunity. In addition, a “cure” of infected cells is incorpo-
rated. Firstly, it has been shown that if the basic reproductive
number is less than unity, the infection-free equilibrium E,
is globally attractive, and the time delay has no effect on
the dynamics of the system. Then, a detailed analysis on
the local asymptotic stability of the infection equilibrium
E* of the model is carried out. If E* is feasible, the basic
reproduction number of the virus is greater than unity; E* is
globally attractive for any time delay under some parameter
conditions. By taking the discrete time delay as a bifurcation
parameter, it is shown that this system undergoes a sequence
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of Hopf bifurcations and stability switches are observed by
using simulations.
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