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The main purpose of this paper is first to introduce the concept of total asymptotically
nonexpansive mappings and to prove a Δ-convergence theorem for finding a common fixed
point of the total asymptotically nonexpansive mappings and the asymptotically nonexpansive
mappings. The demiclosed principle for this kind of mappings in CAT(0) space is also proved in
the paper. Our results extend and improve many results in the literature.

1. Introduction

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic
triangle inX is at least as “thin” as its comparison triangle in the Euclidean plane. Fixed point
theory in a CAT(0) space was first studied by Kirk [1, 2]. He showed that every nonexpansive
mapping defined on a bounded closed convex subset of a complete CAT(0) space always has
a fixed point. Since then the fixed point theory for variousmappings in CAT(0) space has been
developed rapidly and many papers have appeared [3–10]. On the other hand, Browder [11]
introduced the demiclosed principle which states that if X is a uniformly convex Banach
space, C is a nonempty closed convex subset of X, and if T : C → C is nonexpansive
mapping, then I−T is demiclosed at each y ∈ X, that is, for any sequence {xn} inC conditions
xn → x weakly and (I − T)xn → y strongly imply that (I − T)x = y (where I is the identity
mapping of X). Xu [12] proved the demiclosed principle for asymptotically nonexpansive
mappings in the setting of a uniformly convex Banach space. Nanjaras and Panyanak [13]
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proved the demiclosed principle for asymptotically nonexpansive mappings in CAT(0) space
and obtained a Δ-convergence theorem for the Krasnosel’skii-Mann iteration.

Motivated and inspired by the researches going on in this direction, especially inspired
by Nanjaras and Panyanak, and so forth [13], the purpose of this paper is to introduce
a general mapping, namely, total asymptotically nonexpansive mapping and to prove its
demiclosed principle in CAT(0) space. As a consequence, we construct a hierarchical iterative
algorithm to study the fixed point of the total asymptotically nonexpansive mappings and
obtain a Δ-convergence theorem.

2. Preliminaries and Lemmas

Let (X, d) be a metric space and x, y ∈ X with d(x, y) = l. A geodesic path from x to y is a
isometry c : [0, l] → X such that c(0) = x, c(l) = y. The image of a geodesic path is called
geodesic segment. A space (X, d) is a (uniquely) geodesic space if every two points of X are
joined by only one geodesic segment. A geodesic triangle Δ(x1, x2, x3) in a geodesic metric
space (X, d) consists of three points x1, x2, x3 in X (the vertices of Δ) and a geodesic segment
between each pair of vertices (the edges ofΔ). A comparison triangle for the geodesic triangle
Δ(x1, x2, x3) in (X, d) is a triangle Δ(x1, x2, x3) := Δ(x1, x2, x3) in the Euclidean space R2 such
that dR2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if for each geodesic triangle Δ(x1, x2, x3)
in X and its comparison triangle Δ := Δ(x1, x2, x3) in R2, the CAT(0) inequality

d
(
x, y
) ≤ dE2

(
x, y
)
. (2.1)

is satisfied for all x, y ∈ Δ and x, y ∈ Δ.
In this paper, we write (1 − t)x ⊕ ty for the unique point z in the geodesic segment

joining from x to y such that

d(x, z) = td
(
x, y
)
, d

(
y, z
)
= (1 − t)d

(
x, y
)
. (2.2)

We also denote by [x, y] the geodesic segment joining from x to y, that is, [x, y] = {(1 − t)x ⊕
ty : t ∈ [0, 1]}.

A subset C of a CAT(0) space X is said to be convex if [x, y] ⊂ C for all x, y ∈ C.

Lemma 2.1 (see [14]). A geodesic space X is a CAT(0) space, if and only if the following inequality

d
(
(1 − t)x ⊕ ty, z

)2 ≤ (1 − t)d(x, z)2 + td
(
y, z
)2 − t(1 − t)d

(
x, y
)2 (2.3)

is satisfied for all x, y, z ∈ X and t ∈ [0, 1]. In particular, if x, y, z are points in a CAT(0) space and
t ∈ [0, 1], then

d
(
(1 − t)x ⊕ ty, z

) ≤ (1 − t)d(x, z) + td
(
y, z
)
. (2.4)
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Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X, one sets

r(x, {xn}) = lim sup
n→∞

d(x, xn). (2.5)

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf
x∈X

{r(x, {xn})}, (2.6)

the asymptotic radius rC({xn}) of {xn}with respect to C ⊂ X is given by

rC({xn}) = inf
x∈C

{r(x, {xn})}, (2.7)

the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}, (2.8)

the asymptotic center AC({xn}) of {xn}with respect to C ⊂ X is the set

AC({xn}) = {x ∈ C : r(x, {xn}) = rC({xn})}. (2.9)

Recall that a bounded sequence {xn} in X is said to be regular if r({xn}) = r({un}) for
every subsequence {un} of {xn}.

Proposition 2.2 (see [15]). If {xn} is a bounded sequence in a complete CAT(0) space X and C is a
closed convex subset of X, then

(1) there exists a unique point u ∈ C such that

r(u, {xn}) = inf
x∈C

r(x, {xn}); (2.10)

(2) A({xn}) and AC({xn}) are both singleton.

Lemma 2.3 (see [16]). If C is a closed convex subset of a complete CAT(0) space X and if {xn} is a
bounded sequence in C, then the asymptotic center of {xn} is in C.

Definition 2.4 (see [17]). A sequence {xn} in a CAT(0) space X is said to Δ-converge to x ∈ X
if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case
one writes Δ − limn→∞xn = x and call x the Δ-limit of {xn}.

Lemma 2.5 (see [17]). Every bounded sequence in a complete CAT(0) space always has a Δ-
convergent subsequence.
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Let {xn} be a bounded sequence in a CAT(0) space X and let C be a closed convex
subset of X which contains {xn}. We denote the notation

{xn} ⇀ w iff Φ(w) = inf
x∈C

Φ(x), (2.11)

where Φ(x) := lim supn→∞d(xn, x).
Now one gives a connection between the “⇀” convergence and Δ-convergence.

Proposition 2.6 (see [13]). Let {xn} be a bounded sequence in a CAT(0) space X and let C be a
closed convex subset of X which contains {xn}. Then

(1) Δ − limn→∞xn = x implies that {xn} ⇀ x;

(2) {xn} ⇀ x and {xn} is regular imply that Δ − limn→∞xn = x;

Let C be a closed subset of a metric space (X, d). Recall that a mapping T : C → C is
said to be nonexpansive if

d
(
Tx, Ty

) ≤ d
(
x, y
)
, ∀x, y ∈ X. (2.12)

T is said to be asymptotically nonexpansive if there is a sequence {kn} ⊂ [1,+∞) with
limn→∞ kn = 1 such that

d
(
Tnx, Tny

) ≤ knd
(
x, y
)
, ∀n ≥ 1, x, y ∈ X. (2.13)

T is said to be closed if, for any sequence {xn} ⊂ C with d(xn, x) → 0 and d(Txn, y) →
0, then Tx = y.

T is called L-uniformly Lipschitzian, if there exists a constant L > 0 such that

d
(
Tnx, Tny

) ≤ Ld
(
x, y
)
, ∀x, y ∈ C, n ≥ 1. (2.14)

Definition 2.7. Let (X, d) be a metric space and let C be a closed subset of X. A mapping
T : C → C is said to be ({vn}, {μn}, ζ)−total asymptotically nonexpansive if there exist non-
negative real sequences {vn}, {μn} with vn → 0, μn → 0 (n → ∞) and a strictly increasing
continuous function ζ : [0,+∞) → [0,+∞)with ζ(0) = 0 such that

d
(
Tnx, Tny

) ≤ d
(
x, y
)
+ vnζ

(
d
(
x, y
))

+ μn, ∀n ≥ 1, x, y ∈ C. (2.15)

Remark 2.8. (1) It is obvious that If T is uniformly Lipschitzian, then T is closed.
(2) From the definitions, it is to know that, each nonexpansive mapping is a

asymptotically nonexpansive mapping with sequence {kn = 1}, and each asymptotically
nonexpansive mapping is a total asymptotically nonexpansive mapping with vn = kn − 1,
μn = 0, for all n ≥ 1, and ζ(t) = t, t ≥ 0.
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Lemma 2.9 (demiclosed principle for total asymptotically nonexpansive mappings). Let C
be a closed and convex subset of a complete CAT(0) space X and let T : C → C be a L-uniformly
Lipschitzian and ({vn}, {μn}, ζ)−total asymptotically nonexpansive mapping. Let {xn} be a bounded
sequence in C such that limn→∞ d(xn, Txn) = 0 and xn ⇀ w. Then Tw = w.

Proof. By the definition, xn ⇀ w if and only if AC({xn}) = {w}. By Lemma 2.3, we have
A({xn}) = {w}.

Since limn→∞ d(xn, Txn) = 0, by induction we can prove that

lim
n→∞

d(xn, T
mxn) = 0, ∀m ≥ 1. (2.16)

In fact, it is obvious that, the conclusion is true for m = 1. Suppose the conclusion
holds for m ≥ 1, now we prove that the conclusion is also true for m + 1. In fact, since T is a
L-uniformly Lipschitzian mapping, we have

d
(
xn, T

m+1xn

)
≤ d
(
xn, Txn

)
+ d
(
Txn, TT

mxn

)

≤ d
(
xn, Txn

)
+ Ld

(
xn, T

mxn

)
−→ 0 (as n −→ ∞).

(2.17)

Equation (2.16) is proved. Hence for each x ∈ C and m ≥ 1 from (2.16) we have

Φ(x) := lim sup
n→∞

d(xn, x) = lim sup
n→∞

d(Tmxn, x). (2.18)

In (2.18) taking x = Tmw,m ≥ 1, we have

Φ(Tmw) = lim sup
n→∞

d(Tmxn, T
mw)

≤ lim sup
n→∞

(
d(xn,w) + vmζ(d(xn,w)) + μm

)
.

(2.19)

Let m → ∞ and taking superior limit on the both sides, it gets that

lim sup
m→∞

Φ(Tmw) ≤ Φ(w). (2.20)

Furthermore, for any n,m ≥ 1 it follows from inequality (2.3) with t = 1/2 that

d2
(
xn,

w ⊕ Tmw

2

)
≤ 1

2
d2(xn,w) +

1
2
d2(xn, T

mw) − 1
4
d2(w, Tmw). (2.21)
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Let n → ∞ and taking superior limit on the both sides of the above inequality, for any m ≥ 1
we get

Φ
(
w ⊕ Tmw

2

)2

≤ 1
2
Φ(w)2 +

1
2
Φ(Tmw)2 − 1

4
d(w, Tmw)2. (2.22)

Since A({xn}) = {w}, we have

Φ(w)2 ≤ Φ
(
w ⊕ Tmw

2

)2

≤ 1
2
Φ(w)2 +

1
2
Φ(Tmw)2 − 1

4
d(w, Tmw)2, ∀m ≥ 1, (2.23)

which implies that

d2(w, Tmw) ≤ 2Φ(Tmw)2 − 2Φ(w)2. (2.24)

By (2.20) and (2.24), we have limm→∞ d(w, Tmw) = 0. This implies that limm→∞d(w,
Tm+1w) = 0. Since T is uniformly Lipschitzian, T is uniformly continuous. Hence we have
Tw = w. This completes the proof of Lemma 2.9.

The following proposition can be obtained from Lemma 2.9 immediately which is a
generalization of Kirk and Panyanak [17] and Nanjaras and Panyanak [13].

Proposition 2.10. Let C be a closed and convex subset of a complete CAT(0) space X and let T :
C → C be an asymptotically nonexpansive mapping. Let {xn} be a bounded sequence in C such that
limn→∞d(xn, Txn) = 0 and Δ − limn→∞ xn = w. Then T(w) = w.

Definition 2.11 (see [18]). LetX be a CAT(0) space thenX is uniformly convex, that is, for any
given r > 0, ε ∈ (0, 2] and λ ∈ [0, 1], there exists a η(r, ε) = ε2/8 such that, for all x, y, z ∈ X,

d(x, z) ≤ r
d
(
y, z
) ≤ r

d
(
x, y
) ≥ εr

⎫
⎬

⎭
=⇒ d

(
(1 − λ)x ⊕ λy, z

) ≤
(

1 − 2λ(1 − λ)
ε2

8

)

r , (2.25)

where the function η : (0,∞) × (0, 2] → (0, 1] is called the modulus of uniform convexity of
CAT(0).

Lemma 2.12 (see [14]). If {xn} is a bounded sequence in a complete CAT(0) space with A({xn}) =
{x}, {un} is a subsequence of {xn} withA({un}) = {u}, and the sequence {d(xn, u)} converges, then
x = u.

Lemma 2.13. Let {an}, {bn}, and {δn} be sequences of nonnegative real numbers satisfying the
inequality

an+1 ≤ (1 + δn)an + bn. (2.26)

If Σ∞
n=1δn < ∞ and Σ∞

n=1bn < ∞, then {an} is bounded and limn→∞an exists.
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Lemma 2.14 (see [13]). Let X be a CAT(0) space, x ∈ X be a given point and {tn} be a sequence in
[b, c] with b, c ∈ (0, 1) and 0 < b(1 − c) ≤ 1/2. Let {xn} and {yn} be any sequences in X such that

lim sup
n→∞

d(xn, x) ≤ r, lim sup
n→∞

d
(
yn, x

) ≤ r,

lim
n→∞

d
(
(1 − tn)xn ⊕ tnyn, x

)
= r,

(2.27)

for some r ≥ 0. Then

lim
n→∞

d
(
xn, yn

)
= 0. (2.28)

3. Main Results

In this section, we will prove our main theorem.

Theorem 3.1. Let C be a nonempty bounded closed and convex subset of a complete CAT(0) space X.
Let S : C → C be a asymptotically nonexpansive mapping with sequence {kn} ⊂ [1,∞), kn → 1
and T : C → C be a uniformly L-Lipschitzian and ({vn}, {μn}, ζ)−total asymptotically nonexpansive
mapping such that F = F(S)∩F(T)/= ∅. From arbitrary x1 ∈ C, defined the sequence {xn} as follows:

yn = αnS
nxn ⊕ (1 − αn)xn,

xn+1 = βnT
nyn ⊕

(
1 − βn

)
xn

(3.1)

for all n ≥ 1, where {βn} is a sequence in (0, 1). If the following conditions are satisfied:

(i) Σ∞
n=1vn < ∞;Σ∞

n=1μn < ∞;Σ∞
n=1(kn − 1) < ∞;

(ii) there exists a constant M∗ > 0 such that ζ(r) ≤ M∗r, r ≥ 0;

(iii) there exist constants b, c ∈ (0, 1) with 0 < b(1 − c) ≤ 1/2 such that {αn} ⊂ [b, c];

(iv) Σ∞
n=1 sup{d(z, Snz) : z ∈ B} < ∞ for each bounded subset B of C.

Then the sequence {xn}Δ-converges to a fixed point of F.

Proof. We divide the proof of Theorem 3.1 into four steps.

(I) First we prove that for each p ∈ F the following limit exists

lim
n→∞

d
(
xn, p

)
. (3.2)
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In fact, for each p ∈ F, we have

d
(
yn, p

)
= d
(
αnS

nxn ⊕ (1 − αn)xn, p
)

≤ αnd
(
Snxn, p

)
+ (1 − αn)d

(
xn, p

)

= αnd
(
Snxn, S

np
)
+ (1 − αn)d

(
xn, p

)

≤ αnknd
(
xn, p

)
+ (1 − αn)d

(
xn, p

)

= (1 + αn(kn − 1))d
(
xn, p

)
,

d
(
xn+1, p

)
= d
(
βnT

nyn ⊕
(
1 − βn

)
xn, p

)

≤ βnd
(
Tnyn, p

)
+
(
1 − βn

)
d
(
xn, p

)

= βnd
(
Tnyn, T

np
)
+
(
1 − βn

)
d
(
xn, p

)

≤ βn
(
d
(
yn, p

)
+ vnζ

(
d
(
yn, p

))
+ μn

)
+
(
1 − βn

)
d
(
xn, p

)

≤ βn
(
d
(
yn, p

)
+ vnM

∗d
(
yn, p

)
+ μn

)
+
(
1 − βn

)
d
(
xn, p

)

≤ d
(
xn, p

)
+ βnαn(kn − 1)d

(
xn, p

)
+ βnvnM

∗(1 + αn(kn − 1))d
(
xn, p

)
+ μn

≤ [1 + (kn − 1) + vnM
∗(1 + αn(kn − 1))]d

(
xn, p

)
+ μn.

(3.3)

It follows from Lemma 2.13 that {d(xn, p)} is bounded and limn→∞d(xn, p) exists. Without
loss of generality, we can assume limn→∞d(xn, p) = c ≥ 0.

(II) Next we prove that

lim
n→∞

d(xn, Txn) = 0. (3.4)

In fact, since

d
(
Tnyn, p

)
= d
(
Tnyn, T

np
)

≤ d
(
yn, p

)
+ vnζ

(
d
(
yn, p

))
+ μn

≤ (1 + vnM
∗)d
(
yn, p

)
+ μn

≤ (1 + vnM
∗)(1 + αn(kn − 1))d

(
xn, p

)
+ μn

(3.5)

for all n ∈ N and p ∈ F, we have

lim sup
n→∞

d
(
Tnyn, p

) ≤ c. (3.6)

On the other hand, since

lim
n→∞

d
(
βnT

nyn ⊕
(
1 − βn

)
xn, p

)
= lim

n→∞
d
(
xn+1, p

)
= c, (3.7)
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by Lemma 2.14, we have

lim
n→∞

d
(
Tnyn, xn

)
= 0. (3.8)

From condition (iv), we have

d
(
xn, yn

)
= d(xn, (1 − αn)xn ⊕ αnS

nxn)

≤ αnd(xn, S
nxn) −→ 0 (n −→ ∞).

(3.9)

Hence from (3.8) and (3.9) we have that

d(xn, T
nxn) ≤ d

(
xn, T

nyn

)
+ d
(
Tnyn, T

nxn

)

≤ d
(
xn, T

nyn

)
+ Ld

(
yn, xn

) −→ 0 (n −→ ∞).
(3.10)

By (3.9) and (3.10) it gets that

d(xn+1, T
nxn) = d

((
1 − βn

)
xn ⊕ βnT

nyn, T
nxn

)

≤ (1 − βn
)
d(xn, T

nxn) + βnd
(
Tnyn, T

nxn

)

≤ (1 − βn
)
d(xn, T

nxn) + βnLd
(
yn, xn

) −→ 0 (n −→ ∞).

(3.11)

Hence from (3.10) and (3.11) we have that

d(xn, xn+1) −→ 0 (n −→ ∞). (3.12)

Again since T is uniformly L-Lipschitzian, from (3.10) and (3.12) we have that

d(xn, Txn) ≤ d(xn, xn+1) + d
(
xn+1, T

n+1xn+1

)
+ d
(
Tn+1xn+1, T

n+1xn

)
+ d
(
Tn+1xn, Txn

)

≤ (L + 1)d(xn, xn+1) + d
(
xn+1, T

n+1xn+1

)
+ Ld(Tnxn, xn) −→ 0 (n −→ ∞).

(3.13)

Equation (3.4) is proved.

(III) Now we prove that

wω(xn) :=
⋃

{un}⊂{xn}
A({un}) ⊂ F (3.14)

and wω(xn) consists exactly of one point.
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In fact, let u ∈ wω(xn), then there exists a subsequence {un} of {xn} such thatA({un}) =
{u}. By Lemmas 2.5 and 2.3, there exists a subsequence {νn} of {un} such thatΔ− limn→∞νn =
ν ∈ C. By Lemma 2.9, we have ν ∈ F(T) ⊂ F. By Lemma 2.12, u = ν. This shows that
wω(xn) ⊂ F.

Let {un} be a subsequence of {xn} with A({un}) = {u} and let A({xn}) = {x}. Since
u ∈ wω(xn) ⊂ F and {d(xn, u)} converges, by Lemma 2.12, we have x = u. This shows that
wω(xn) consists of exactly one point.

(IV) Finally we prove {xn}Δ-converges to a point of F.

In fact, it follows from (3.2) that {d(xn, p)} is convergent for each p ∈ F. By (3.4)
limn→∞d(xn, Txn) = 0. By (3.14) wω(xn) ⊂ F and wω(xn) consists of exactly one point. This
shows that {xn}Δ-converges to a point of F.

This completes the proof of Theorem 3.1.
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