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The solution of least squares support vector machines (LS-SVMs) is characterized by a specific
linear system, that is, a saddle point system. Approaches for its numerical solutions such as
conjugate methods Sykens and Vandewalle (1999) and null space methods Chu et al. (2005) have
been proposed. To speed up the solution of LS-SVM, this paper employs the minimal residual
(MINRES) method to solve the above saddle point system directly. Theoretical analysis indicates
that the MINRES method is more efficient than the conjugate gradient method and the null
space method for solving the saddle point system. Experiments on benchmark data sets show
that compared with mainstream algorithms for LS-SVM, the proposed approach significantly
reduces the training time and keeps comparable accuracy. To heel, the LS-SVM based on MINRES
method is used to track a practical problem originated from blast furnace iron-making process:
changing trend prediction of silicon content in hot metal. The MINRES method-based LS-SVM can
effectively perform feature reduction and model selection simultaneously, so it is a practical tool
for the silicon trend prediction task.

1. Introduction

As one kernel method, SVM works by embedding the input data x, z ∈ X into a Hilbert
spaceH by a high-dimensional mappingΦ(·), and then trying to find a linear relation among
the high-dimensional embedded data points [1, 2]. This process is implicitly performed by
specifying a kernel function which satisfies k(x, z) = Φ(x)TΦ(z), that is, the inner product
of the embedded points. Given observed samples {xi, yi}ni=1 with size n, SVM formulates the
learning problem as a variational problem of finding a decision function f that minimizes the
regularized risk functional [3, 4]

min
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where V (·, ·) is called a loss function, λ is the so-called regularization parameter to trade off
the empirical risk with the complexity of f , that is, ‖f‖H, the norm in a reproducing kernel
Hilbert spaceH. By the representer theorem [3, 5], the optimal decision function f satisfying
(1.1) has the form

f(x) =
n∑

i=1

αik(xi, x) + b, (1.2)

where αi ∈ R for i = 1, . . . , n, b ∈ R. This equation can be easily used to tackle a
practical problem if the kernel function is specified. To overcome the high computational
complexity of traditional SVM, an interesting variant of the standard SVM, least squares
support vector machines, has been proposed by Suykens and Vandewalle [6]. In the case
of LS-SVM, the inequality constraints in �2 soft margin SVM are converted into equality
constraints. The model training process of LS-SVM is performed by solving a specific linear
equations, that is, a saddle point system which can be efficiently solved by iterative methods
instead of a quadratic programming problem. Besides computational superiority extensive
empirical studies have shown that LS-SVM is comparable to SVM in terms of generalization
performance [7]; these features make LS-SVM an attractive algorithm and also a successful
alternative to SVM. For the training of the LS-SVM, Van Gestel et al. [7] proposed to
reformulate the n + 1 order saddle point system into two n order symmetric positive definite
systems which can be solved in turn by the conjugate gradient (CG) algorithm. To speed
up the training of LS-SVM, Chu et al. [8] employed the null space method to transform the
saddle point system into a reduced n − 1 order symmetric positive definite system which
was solved with the CG algorithm also. The minimal residual (MINRES) method proposed
by Paige and Saunders is a specialized method for solving a nonsingular symmetric system
[9]. This method can avoid the LU factorization and does not suffer from break-down, so it
is an efficient numerical method for solving symmetric but indefinite systems. The Karush-
Kuhn-Tucker system of LS-SVM is a specified linear system, that is, a saddle point system.
Considering the above point, to speed up the solution of LS-SVM model we employ the
MINRES method to solve the linear system directly. The main contribution of this paper is
to provide a potential alternative to the solution of LS-SVM model. Theoretical analysis of
the three numerical algorithms for the solution of LS-SVM model indicates that the MINRES
method is the optimal choice. Experiments on benchmark data sets show that compared with
the CG method proposed by Suykens et al. and the null space method proposed by Chu et
al., the MINRES solver significantly improves the computational efficiency and at the same
time keeps almost the same generalized performance with the above two methods. To heel,
the MINRES method-based LS-SVM model is constructed and further employed to identify
blast furnace (BF) iron-making process, a complex nonlinear system. Practical application to a
typical real BF indicates that the establishedMINRESmethod-based LS-SVMmodel is a good
candidate to predict the changing trend of the silicon content in BF hot metal with low time
cost. The possible application of this work is to aid the BF operators to judge the inner state of
BF getting hot or chilling in time properly, which can provide a guide for them to determine
the direction of controlling BF in advance. The rest of this paper is organized as follows.
In Section 2, we give a review for LS-SVM. Section 3 presents three numerical solutions for
LS-SVM. It is followed by extensive experimental validations of the proposed method in
Section 4. Section 5 concludes the paper and points out the possible future research.
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2. Formulation of LS-SVM

The primal problem of LS-SVM can be formulated following unified format:

min
w,b,e

1
2
wTw +

C

2

n∑

i=1

e2i

s.t. yi = wTΦ(xi) + b + ei, i = 1, . . . , n,

(2.1)

for both regression analysis and pattern classification. In (2.1) n is the total number of training
samples, xi is the ith input vector, yi is the ith output value/label for regression/classification
problem, ei is the ith error variable, C > 0 is the regularization parameter, and b is the bias
term. The Lagrangian of (2.1) is given below:

L(w, b, e;α) =
1
2
wTw +

C

2

n∑

i=1

e2i −
n∑

i=1

αi

(
wTΦ(xi) + b + ei − yi

)
, (2.2)

where αi is the ith Lagrange multiplier. For the convex program (2.1), it is obvious that
the Slater constraint qualification holds. Therefore, the optimal solution of (2.1) satisfies its
Karush-Kuhn-Tucker system

∂L

∂w
= 0 −→ w =

n∑

i=1

αiΦ(xi),

∂L

∂b
= 0 −→

n∑

i=1

αi = 0,

∂L

∂ei
= 0 −→ αi = Cei, i = 1, . . . , n,

∂L

∂αi
= 0 −→ yi = wTΦ(xi) + b + ei, i = 1, . . . , n.

(2.3)

After eliminating variables w and e the Karush-Kuhn-Tucker system (2.3) can be reformu-
lated following saddle point system [10]:

⎡

⎣K +
1
C
I 1n

1Tn 0

⎤

⎦
[
α
b

]
=
[
y
0

]
, (2.4)

where Kij := k(xi, xj) = Φ(xi)
TΦ(xj), I stands for unit matrix, 1n denotes an n-dimensional

vector of all ones, and y = (y1, . . . , yn)
T.
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3. Solution of LS-SVM

In this section, we give a brief review and some analysis of the three mentioned numerical
algorithms for solution of LS-SVM.

3.1. Conjugate Gradient Methods

The kernel matrix K is a symmetric positive semidefinite matrix and the diagonal term 1/C
is positive, so the matrix H := K + (1/C)I is symmetric and positive definite. Through the
following matrix transformation

MT

⎡

⎣K +
1
C
I 1n

1Tn 0

⎤

⎦MM−1
[
α
b

]
= MT

[
y
0

]
, (3.1)

where

M =
[
I H−11n
0 1

]
, (3.2)

the saddle point system (2.4) can be factorized into a positive definite system [11]

[
H 0
0 1TnH

−11n

][
α +H−11nb

b

]
=
[

y
1TnH

−1y

]
. (3.3)

Suykens et al. suggested the use of the CG method for the solution of (3.3) and
proposed to solve two n order positive definite systems. More exactly, their algorithm can
be described as follows.

Step 1. Employ the CG algorithm to solve the linear equations Hη = 1n and get the
intermediate variable η.

Step 2. Solve the intermediate variable μ fromHμ = y by the CG method.

Step 3. Obtain Lagrange dual variables α = μ − bη and bias term b = 1Tnμ/1
T
nη.

The output of any new data x can subsequently be deduced by computing the decision
function f(x) = wTΦ(x) + b =

∑n
i=1 αik(xi, x) + b.

3.2. Null Space Methods

In what was mentioned previously, to get the intermediate variable η and μ two n order
positive definite systems need to be solved by CG methods. Chu et al. [8] proposed an
interesting method to the numerical solution of LS-SVM by solving one n − 1 order reduced
system of linear equations. The improved method suggested by Chu et al. can be seen as one
kind of null space method. The saddle point system (2.4) can be written as

Hα + 1nb = y, 1nα = 0. (3.4)
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Chu et al. specified a particular solution of 1nα = 0 as α̂ = 0 and the null space of 1nα = 0 as

Z =
[
In−1
−1Tn−1

]
. (3.5)

Through solving the following reduced system of order n − 1 for the auxiliary unknown ν,

ZTHZν = ZTy, (3.6)

the solution of the saddle point system (2.4) can be obtained as α = Zν and b = (1/n)1Tn(y −
Hα).

3.3. Minimal Residual Methods

The vector sequences in the CG method correspond to a factorization of a tridiagonal
matrix similar to the coefficient matrix. Therefore, a breakdown of the algorithm can occur
corresponding to a zero pivot if the matrix is indefinite. Furthermore, for indefinite matrices
the minimization property of the CGmethod is no longer well defined. The MINRES method
proposed by Paige and Saunders [9] is a variant of the CG method that avoids the LU
factorization and does not suffer from breakdown. It minimizes the residual in the �2-norm
which is an efficient numerical algorithm for solving symmetric but indefinite systems; the
corresponding convergence behavior of the MINRES method for indefinite systems has been
analyzed by Van der Vorst [12]. The purpose of this paper is to employ the MINRES method
to solve the saddle point system (2.4) directly. Next we gave a brief review of the MINRES
algorithm. Let x0 be an initial guess for the solution of the symmetric indefinite linear system
Ax = b. One can obtain the iterative sequence xm, m = 1, 2, . . . such that

‖rm‖2 = ‖b −Axm‖2 = min
x∈x0+Km(A,r0)

‖b −Ax‖2, (3.7)

where rm = b −Axm is the mth residual for m = 1, 2, . . ., and

Km(A, r0) = span
{
r0, Ar0, . . . , Am−1r0

}
(3.8)

is the mth Krylov subspace. Lanczos methods can be used to generate an orthonormal basis
of Km(A, r0), and then only two basis vectors are needed to compute xm; see, for example,
[12]. The detailed implementation of the MINRES algorithm can be found in [12].

It has been shown that rounding errors are propagated to the approximate solution
with a factor proportional to the square of the condition number of coefficient matrix [12];
one should be careful with the MINRES method for ill-conditioned systems.

3.4. Some Analysis on These Three Numerical Algorithms

The properties of short recurrences and optimization [12] make the CG method the first
choice for the solution of a symmetric positive definite system. Suykens et al. transformed
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the n + 1 order saddle point system (2.4) into two n order positive definite systems which
are solved by CG methods. However, it is time consuming to solve two n order positive
definite systems with large scales. To overcome this shortcoming, Chu et al. [8] transformed
equivalently the original n + 1 order system into an n order symmetric positive definite
system, and then the CG method can be used. This method can be seen as a null space
method. Unfortunately, the transformation may destroy heavily the sparse structure and
increase greatly the condition number of the original system. This can hugely slow down
the convergence rate of the CG algorithm. Theoretical analysis about the influence of the
transformation on the condition number is indispensable, but it is rather difficult. We leave
it as an open problem. In this paper, the MINRES method is directly applied to solve the
original saddle point problem of n + 1 order. Similar to the CG method, the MINRES method
also has properties of short recurrences and optimization.

In light of the analysis mentioned above, the MINRES method should be the first
choice for the solution of LS-SVM model, since it avoids solving two linear systems and
destroying the sparse structure of the original saddle point system simultaneously.

4. Numerical Implementations

4.1. Experiments on Benchmark Data Sets

In this section we give the experimental test results on the accuracy and efficiency of our
method. For comparison purpose, we implement the CG method proposed by Suykens and
Vandewalle [6] and the null space method suggested by Chu et al. [8]. All experiments
are implemented with MATLAB version 7.8 programming environment running on an IBM
compatible PC under Window XP operating system, which is configured with Intel Core
2.1Ghz CPU and 2G RAM. The generalized used Gaussian RBF kernel k(x, z) = exp(−‖x −
z‖2/σ2) is selected as the kernel function. We use the default setting for kernel width σ2, that
is, set kernel width as the dimension of inputs.

We first compare three algorithms on three benchmark data sets: Boston, Concrete, and
Abalone, which are download from UCI [13]. Each data set is randomly partitioned into 70%
training and 30% test sets. We also list the condition numbers of coefficients matrices solved
by three methods for the analysis of the computing efficiencies. As shown in Tables 1–3 the
condition number for the CG method is the least one and the condition number for the null
space method significantly increases.

The columns of Cond in Tables 1, 2, and 3 show that comparedwith the CGmethod the
condition number for the MINRES method increases a bit, but much less than the condition
number of the null space method. The orders of linear equations solved by the CG method,
the null space method, and the MINRES method are n, n − 1, and n + 1, respectively. The
condition numbers for the CG method and the MINRES method are very close, but we
have to solve two systems of n − 1 order using CG methods. Hence, the running time of
the MINRES method should be less than that of the CG method. CPU column in Tables 1–3
shows that the MINRES method-based LS-SVMmodel costs much less running time than the
CG method and the null space method-based LS-SVM model in all cases of setting C. So the
MINRES method-based LS-SVM model is a preferable algorithm for solving LS-SVM model.
In the next subsection, we will employ the MINRES method-based LS-SVM model to solve a
practical problem.
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Table 1: Experimental results of three methods on Boston data set.

Boston data set, 506 samples, 13-d inputs, σ2 equals 13
log2C Conjugate gradient method Null space method MINRES method

Cond† CPU‡ MSE∗ Cond CPU MSE Cond CPU MSE
−5 4 0.3281 49.1027 366.9451 0.8438 49.1027 45.6283 0.2500 49.1027
−4 8 0.4688 39.4132 369.0926 0.6250 39.4132 31.6150 0.3438 39.4132
−3 15 0.3438 29.7686 388.1770 0.7656 29.7686 26.3388 0.3125 29.7686
−2 28 0.4531 24.2532 460.1920 0.7656 24.2532 29.2813 0.3281 24.2532
−1 60 0.2500 21.0322 474.6254 1.0625 21.0322 61.3493 0.4219 21.0322
0 116 0.3438 15.5875 566.2504 1.2500 15.5875 119.071 0.1875 15.5875
1 234 0.7188 13.6449 946.4564 1.1250 13.6449 239.374 0.4375 13.6449
2 472 0.9531 13.0252 1945.300 1.0625 13.0252 482.447 0.6875 13.0252
3 924 0.9375 10.9810 2244.342 1.4063 10.9810 944.042 0.6406 10.9810
4 1734 1.3594 10.3168 5229.460 1.2500 10.3168 1776.31 0.8906 10.3168
5 3801 1.5469 10.2063 10785.92 1.4844 10.2063 3876.97 1.1406 10.2063
6 7530 2.0469 11.3937 24998.71 1.9063 11.3937 7682.07 1.2969 11.3937
7 14618 2.4531 11.7750 47781.41 2.2188 11.7750 14932.2 1.6875 11.7750
8 29769 3.0625 12.9925 61351.85 2.9844 12.9925 30382.8 2.3750 12.9925
9 58387 3.4063 14.0194 101181.8 3.5938 14.0194 59619.0 2.6875 14.0194
10 119285 4.0313 17.2330 285440.0 4.8281 17.2330 121708 3.5313 17.2330
Cond† denotes the condition number, CPU‡ stands for running time, MSE∗ is mean square error.

4.2. Application on Blast Furnace System

Blast furnace, one kind of metallurgical reactor used for producing pig iron, is often called hot metal.
The chemical reactions and heat transport phenomena take place throughout the furnace as
the solid materials move downwards and hot combustion gases flow upwards. The main
principle involved in the BF iron-making process is the thermochemical reduction of iron
oxide ore by carbon monoxide. During the iron-making period, a great deal of heat energy
is produced which can heat up the BF temperature approaching 2000◦C. The end products
consisting of slag and hot metal sink to the bottom and are tapped periodically for the
subsequent refining. It will take about 6–8 h for a cycle of iron-making [11]. BF iron-making
process is a highly complex nonlinear process with the characteristics of high temperature,
high pressure, concurrence of transport phenomena, and chemical reactions. The complexity
of the BF and the occurrence of a variety of process disturbances have been obstacles for the
adoption of modeling and control in the process. Generally speaking, to control a BF system
often means to control the hot metal temperature and components, such as silicon content,
sulfur content in hot metal, and carbon content in hot metal within acceptable bounds.
Among these indicators, the silicon content often acts as a chief indicator to represent the
thermal state of the BF, an increasing silicon content meaning a heating of the BF while a
decreasing silicon content indicating a cooling of the BF [11, 14]. Thus, the silicon content is a
reliable measure of the thermal state of the BF, and it becomes a key stage to predict the silicon
content for regulating the thermal state of the BF. Therefore, it has been the active research
issue to build silicon prediction model in the recent decades, including numerical prediction
models [15] and trend prediction models [11].

In this subsection, the tendency prediction of silicon content in hot metal is
transformed as a binary classification problem. Samples with increasing silicon content are
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Table 2: Experimental results of three methods on Concrete data set.

Concrete data set, 1030 samples, 8-d inputs, σ2 equals 8
log2C Conjugate gradient method Null space method MINRES method

Cond CPU MSE Cond CPU MSE Cond CPU MSE
−5 7 2.0781 140.8498 738.137223 3.6719 140.8498 51.5204280 1.6406 140.8498
−4 13 2.3594 111.2384 745.054714 3.6563 111.2384 39.7005872 1.8906 111.2383
−3 25 2.8125 89.3458 796.627246 3.8281 89.3458 31.7895802 2.0938 89.3459
−2 50 2.4844 74.4146 850.938881 3.9688 74.4146 51.4318149 2.0469 74.4146
−1 102 3.0000 60.2984 954.604170 4.3906 60.2984 104.293122 2.2969 60.2984
0 199 3.4219 50.4491 1397.13474 4.8438 50.4491 202.202543 2.8281 50.4490
1 399 4.0625 43.5416 1737.97400 5.7188 43.5416 406.110983 3.2500 43.5416
2 787 4.8750 41.5463 2369.65769 6.4219 41.5463 799.643656 3.8594 41.5463
3 1561 6.3125 36.5797 5375.87469 7.3750 36.5797 1586.70628 4.2500 36.5797
4 3197 8.0000 33.4861 7342.75323 8.7188 33.4861 3247.47638 5.0156 33.4861
5 6411 10.3281 33.1452 18274.6591 10.8438 33.1452 6510.73913 6.2188 33.1452
6 12530 13.8750 33.4936 37192.6189 12.9063 33.4936 12732.7611 8.2813 33.4936
7 25614 18.5781 33.8690 73008.8645 15.8594 33.8690 26010.1838 11.0156 33.8690
8 51260 25.1250 32.6925 126475.189 19.5938 32.6925 52056.7280 14.8906 32.6925
9 101053 33.9531 35.1044 249234.605 25.2969 35.1044 102657.615 19.9219 35.1043
10 199734 46.3125 40.4777 557864.123 32.9219 40.4777 202961.396 27.0625 40.4777
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Figure 1: Evolution of silicon content in hot metal.

denoted by +1 whereas a decreasing silicon content is denoted by −1. In the present work,
the experimental data is collected from a medium-sized BF with the inner volume of about
2500m3. The variables closely related to the silicon content are measured as the candidate
inputs for modeling. Table 4 presents the variables information from the studied BF. There
are totally 801 data points collected with the first 601 points as train set and the residual 200
points as testing set. The sampling interval is about 1.5 h for the current BF. Figure 1 illustrates
the evolution of the silicon content in hot metal.

There are in total 15 candidate variables listed in Table 4 from which to select model
inputs. Generally, too many input parameters will increase the complexity of model while
too little inputs will reduce the accuracy of model. A tradeoff has to be taken between the
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Table 3: Experimental results of three methods on Abalone data set.

Abalone data set, 4177 samples, 7-d inputs, σ2 equals 7
log2C Conjugate gradient method Null space method MINRES method

Cond CPU MSE Cond CPU MSE Cond CPU MSE
−5 42.341 20.343 5.3623 2955.9655 39.7344 5.3623 369.9433 12.9531 5.3623
−4 84.059 22.984 5.1143 3028.4495 41.1406 5.1143 332.0862 14.2344 5.1143
−3 167.846 26.343 4.7978 3043.4615 42.6719 4.7978 306.5691 16.0156 4.7978
−2 337.691 33.281 4.6923 3567.1431 46.8125 4.6923 338.1679 18.4688 4.6923
−1 666.823 39.315 4.4360 4888.3227 50.8438 4.4360 667.7842 22.3125 4.4360
0 1327.351 47.531 4.4744 5355.5805 54.6563 4.4744 1329.291 26.2656 4.4744
1 2700.547 58.015 4.4217 9894.2450 59.8438 4.4217 2704.345 34.1719 4.4217
2 5275.703 74.859 4.3948 8239.2388 69.2031 4.3948 5283.506 42.5469 4.3948
3 10709.216 94.765 4.4169 18279.897 80.4219 4.4169 10724.46 54.7813 4.4169
4 21357.750 124.359 4.5053 24472.420 97.7500 4.5053 21388.43 71.3906 4.5053
5 42427.822 177.171 4.6144 105161.60 133.2656 4.6144 42489.70 103.6406 4.6144
6 85153.757 221.468 4.6857 185913.18 155.9219 4.6857 85276.97 129.3750 4.6857
7 171369.064 312.078 4.7145 212162.90 212.4531 4.7145 171614.1 181.8750 4.7145
8 344731.082 430.640 4.8621 705659.56 289.4531 4.8621 345216.0 260.5469 4.8621
9 681509.920 602.765 5.2294 1162595.7 395.6250 5.2294 682494.5 360.5625 5.2294
10 1363883.053 840.625 5.6517 3106655.0 549.4844 5.6517 1365853 488.6250 5.6517

Table 4: A list of input variables.

Variable name [unit] Abbreviation Range F-score Mean accuracy
Latest silicon content (wt%) Si 0.13–1.13 0.1269 81.786%
Sulfur content (wt%) S 0.012–0.077 0.0570 82.857%
Basicity of ingredients (wt%) BI 0.665–1.609 0.0229 81.786%
Feed speed (mm/h) FS 16.725–297.510 0.0132 83.214%
Blast volume (m3/min) BV 1454.30–5580.200 0.0054 83.747%
CO2 percentage in top gas (wt%) CO2 7.921–22.892 0.0048 83.750%
Pulverized coal injection (ton) PCI 0.230–98.533 0.0037 83.214%
CO percentage in top gas (wt%) CO 9.267–27.374 0.0036 82.500%
Blast temperature (◦C) BT 1086.100–1239.700 0.0031 83.571%
Oxygen enrichment percentage (wt%) OEP −0.001–14.688 0.0019 83.393%
H2 percentage in top gas (wt%) H2 2.564–4.065 0.0005 83.214%
Coke load of ingredients (wt%) CLI 2.032–5.071 0.0004 82.857%
Furnace top temperature (◦C) TP 62.703–264.130 0.0002 82.679%
Blast pressure (kPa) BP 59.585–367.780 0.0001 83.214%
Furnace top pressure (kPa) TP 8.585–199.790 0.0001 82.679%

model complexity and accuracy when selecting the inputs. Therefore, it is necessary to screen
out less important variables as inputs from these 15 candidate variables. Here, the inputs are
screened out by an integrative way that combines F-score method [16] for variables ranking
and cross-validation method for variables and model parameters selection.
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F-score is an effective tool for feature selection in data mining and can give feature
ranking by evaluating the discrimination of two sets with real values. For those 15 candidate
variables in Table 4, their F-scores are defined as follows:

Fs(i) =

⎛

⎝ 1
N+ − 1

N+∑

j=1

(
x
(i)
j,+ − x

(i)
+

)2
+

1
N− − 1

N−∑

j=1

(
x
(i)
j,− − x

(i)
−
)2

⎞

⎠

−1

·
((

x
(i)
+ − x(i)

)2
+
(
x
(i)
− − x(i)

)2
)
, i = 1, . . . , d,

(4.1)

where x(i), x(i)
+ and x

(i)
− stand for the mean of the ith attribute of the whole training, positive

and negative examples, respectively, while x(i)
j,+ and x

(i)
j,− are the ith variable of the jth positive

and negative instance, respectively. Hence, a variable ranking can be achieved through F-
score method. Table 4 gives the results of F-scores of all 15 variables, which are ranked
according to the F-score values. As one kernel-based learningmodel, the kernel parameter σ2,
and regularized parameter C play an important role in LS-SVM, so one should pay attention
to selecting proper parameters. Grid search-based ten-fold cross-validation is executed on the
train set for searching the optimal (σ2,C). The searching grid for model parameters is set as

[
2−5, 2−4, . . . , 210

]
×
[
2−5, 2−4, . . . , 210

]
. (4.2)

Mean accuracy in Table 4 stands for the average accuracy under ten-fold cross-
validation experiments of LS-SVM model on some grid points with the best performance.
In the current work, we first select the variable with highest F-score as model input and then
add variables one by one according to their F-scores. Mean accuracy under all kinds of input
variables can be achieved and the results are shown in Table 4. The following are shown by
the mean accuracy column: (1) at the beginning, the mean accuracy increases gradually as
more candidate variables are taken as model inputs; (2) the largest mean accuracy appears
when CO2 is included within the input set; (3) when the mean accuracy is beyond the
maximum, it will fluctuate as the residual variables are added by turns into the input set.
These results indicate that, as the studied BF is concerned, the optimal input set is [Si, S, BI, FS,
BV, CO2]with the model parameters setting (σ2, C) = (29, 28). Table 5 lists the LS-SVMmodel
accuracy including with/without feature and model selection versions on testing set. In the
case of without feature and model selection version, all candidate variables are selected as
inputs, and we use the default setting for LS-SVMmodel; that is, set kernel width σ2 equal to
the dimension of input variable and set regularized parameter C as 1. The information in the
second row of this table, such as 34/42, denotes that there are 42 times predicted results that
are ascending trend, and 34 times predictions are successful. The confidence level of the LS-
SVM model without model and feature selection fluctuates severely between the ascending
and descending prediction from 80.95% to 58.86%. The difference of confidence levels of LS-
SVM model with model and feature selection between ascending and descending prediction
is reduced to 2.19% indicating that model and feature selection procedure enhances the
stability of the LS-SVM model obviously. As the last column of Table 5 shows, TSA of LS-
SVM model with feature and model selection procedure is significantly improved compared
with LS-SVM model without feature and model selection, so the selection procedure is
indispensable for the current practical application. Table 6 lists the running time of three
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Table 5: Predictive results of LS-SVM model with/without feature and model selection.

Inputs (σ2,C) Ascend (99∗) Descend (101) TSA†

15 (15, 1) 34/42 = 80.95% 93/158 = 58.86% 127/200 = 63.5%
6 (29, 28) 73/94 = 77.66% 80/106 = 75.47% 153/200 = 76.5%
99∗ means 99 observations are ascending trend; TSA† stands for testing set accuracy.

Table 6: Running time of three numerical methods on model identification.

Algorithm
Conjugate
gradient
method

Null
space
method

MINRES
method

CPU 1948 2800 1488

mentioned numerical algorithms when performing feature and model selection procedure.
The cost time of the MINRES method is reduced significantly compared with the other
algorithms. In aword, the feature andmodel selection procedure can be effectively performed
for the MINRES method-based LS-SVM, and it is meaningful for practical using.

5. Conclusions and Points of Possible Future Research

In this paper, we have proposed an alternative, that is, the MINRESmethod, to the solution of
LS-SVMmodel which is formulated as a saddle point system. Numerical experiments on UCI
benchmark data sets show that the proposed numerical solution method of LS-SVM model
is more efficient than the algorithms proposed by Suykens and Vandewalle [6] and Chu et
al. [8]. To heel, the MINRES method-based LS-SVM model including feature selection from
extensive candidate and model parameter selection is proposed and employed for the silicon
content trend prediction task. The practical application to a typical real BF indicates that the
proposed MINRES method-based LS-SVM model is a good candidate to predict the trend of
silicon content in BF hot metal with low running time.

However, it should be pointed out that despite the MINRES method-based LS-SVM
model displaying low running time, lack of metallurgical information may be the root to the
limited accuracy of the current prediction model. So there is much work worth investigating
in the future to further improve the model accuracy and increase the model transparency,
such as constructing predictive model by integrating domain knowledge and extracting
rules. The extracted rules can account for the output results with detailed and definite inputs
information, which may further serve for the control purpose by linking the output results
with controlled variables. These investigations are deemed to be helpful to further improve
the efficiency of predictive model.
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