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We present and analyze some variants of Cauchy’s methods free from second derivative for
obtaining simple roots of nonlinear equations. The convergence analysis of the methods is
discussed. It is established that the methods have convergence order three. Per iteration the new
methods require two function and one first derivative evaluations. Numerical examples show that
the newmethods are comparable with the well-known existing methods and give better numerical
results in many aspects.

1. Introduction

In this paper, we consider iterative methods to find a simple root α; that is, f(α) = 0 and
f ′(α)/= 0, of a nonlinear equation

f(x) = 0, (1.1)

where f : I ⊂ R → R for an open interval I is a scalar function.
Finding the simple roots of the nonlinear equation (1.1) is one of the most important

problems in numerical analysis of science and engineering, and iterative methods are usually
used to approximate a solution of these equations. We know that Newton’s method is



2 Journal of Applied Mathematics

an important and basic approach for solving nonlinear equations [1, 2], and its formulation
is given by

xn+1 = xn −
f(xn)
f ′(xn)

; (1.2)

this method converges quadratically.
The classical Cauchy’s methods [2] are expressed as

xn+1 = xn − 2

1 +
√
1 − 2Lf(xn)

f(xn)
f ′(xn)

, (1.3)

where

Lf(xn) =
f ′′(xn)f(xn)

f ′2(xn)
. (1.4)

This family of methods given by (1.3) is a well-known third-order method. However,
the methods depend on the second derivatives in computing process, and therefore their
practical applications are restricted rigorously. In the recent years, several methods with free
second derivatives have been developed; see [3–9] and references therein.

In this paper, wewill improve the family defined by (1.3) and obtain a three-parameter
family of second-derivative-free variants of Cauchy’s methods. The rest of the paper is
organized as follows. In Section 2, we describe new variants of Cauchy’smethods and analyze
the order of convergence. In Section 3, we obtain some different iterative methods by taking
several parameters. In Section 4, different numerical tests confirm the theoretical results, and
the new methods are comparable with other known methods and give better results in many
cases. Finally, we infer some conclusions.

2. Development of Methods and Convergence Analysis

Consider approximating the equation f(x) = 0 around the point (xn, f(xn)) by the quadratic
equation in x and y in the following form:

ax2 + by2 + cxy + dx + gy + h = 0. (2.1)

We impose the tangency conditions

y(xn) = f(xn), y′(xn) = f ′(xn), y(wn) = f(wn), (2.2)

where xn is nth iterate and

wn = xn −
f(xn)
f ′(xn)

. (2.3)
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By using the tangency conditions from (2.2), we obtain the value of g is determined in terms
of a, b, c in the following:

g = − af2(xn) + bf2(wn)f
′2(xn) + bf2(xn)f

′2(xn)
f ′2(xn)f(wn)

− cxnf(wn)f
′2(xn) + cf2(xn)f ′(xn) − cf(xn)f(wn)f ′(xn)

f ′2(xn)f(wn)
.

(2.4)

From (2.1), we have

f ′′(xn) ≈ y′′(xn) = −2a + 2bf
′2(xn) + 2cf ′(xn)

2bf(xn) + cxn + g
. (2.5)

Substituting (2.4) into (2.5) yields

f ′′(xn) ≈

[
2a + 2bf

′2(xn) + 2cf ′(xn)
]
f

′2(xn)f(wn)

af2(xn) + bf ′2(xn)
[
f(xn) − f(wn)

]2 + cf(xn)f ′(xn)
[
f(xn) − f(wn)

] . (2.6)

Using (2.6) we can approximate

Lf(xn) =
f ′′(xn)f(xn)

f ′2(xn)

≈

[
2a + 2bf

′2(xn) + 2cf ′(xn)
]
f(xn)f(wn)

af2(xn) + bf ′2(xn)
[
f(xn) − f(wn)

]2 + cf(xn)f ′(xn)
[
f(xn) − f(wn)

] .
(2.7)

We define

Ka,b,c(xn,wn) =

[
2a + 2bf

′2(xn) + 2cf ′(xn)
]
f(xn)f(wn)

af2(xn) + bf ′2(xn)
[
f(xn) − f(wn)

]2 + cf(xn)f ′(xn)
[
f(xn) − f(wn)

] . (2.8)

Using Ka,b,c(xn,wn) instead of Lf(xn), we obtain a new three-parameter family of methods
free from second derivative

xn+1 = xn − 2

1 +
√
1 − 2Ka,b,c(xn,wn)

f(xn)
f ′(xn)

, (2.9)

where a, b, c,∈ R. Similar to the classical Cauchy’s method, a square root is required in (2.9).
However, this may cost expensively, even fail in the case 1 − 2Ka,b,c(xn,wn) < 0. In order to
avoid the calculation of the square roots, we will derive some forms free from square roots
by the Taylor approximation [10].
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It is easy to know that the Taylor approximation of
√
1 − 2Ka,b,c(xn,wn) is

√
1 − 2Ka,b,c(xn,wn) =

∑
k≥0

⎛
⎝

1
2
k

⎞
⎠(−2Ka,b,c(xn,wn))k. (2.10)

Using (2.10) in (2.9), we can obtain the following form:

xn+1 = xn − 2

1 +
∑m

k≥0
( 1/2

k

)
(−2Ka,b,c(xn,wn))k

f(xn)
f ′(xn)

, (2.11)

where a, b, c, β ∈ R,m ≥ 0.
On the other hand, it is clear that

2

1 +
√
1 − 2Ka,b,c(xn,wn)

=
1 −√

1 − 2Ka,b,c(xn,wn)
Ka,b,c(xn,wn)

=
∑
k≥0

⎛
⎝

1
2

k + 1

⎞
⎠(−1)k2k+1Ka,b,c(xn,wn)k.

(2.12)

Then, Using (2.12) in (2.9), we also can construct a new family of iterativemethods as follows:

xn+1 = xn −
⎛
⎝

m∑
k≥0

⎛
⎝

1
2

k + 1

⎞
⎠(−1)k2k+1Ka,b,c(xn,wn)k

⎞
⎠ f(xn)

f ′(xn)
, (2.13)

where a, b, c,∈ R, m ≥ 0.
We have the convergence analysis of the methods by (2.13).

Theorem 2.1. Let α ∈ I be a simple zero of sufficiently differentiable function f : I ⊂ R → R for
an open interval I. If x0 is sufficiently close to α, for m ≥ 1, the methods defined by (2.13) are at least
cubically convergent; as particular cases, if m = 1, a = c = 0 or m ≥ 2, b = c = 0 the methods have
convergence order four.

Proof. Let en = xn − α; we use the following Taylor expansions:

f(xn) = f ′(α)
[
en + c2e

2
n + c3e

3
n + c4e

4
n +O

(
e5n

)]
, (2.14)

where ck = (1/k!)(f (k)(α)/f ′(α)). Furthermore, we have

f ′(xn) = f ′(α)
[
1 + 2c2en + 3c3e2n + 4c4e3n + 5c5e4n +O

(
e5n

)]
. (2.15)
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Dividing (2.14) by (2.15),

f(xn)
f ′(xn)

= en − c2e
2
n + 2

(
c22 − c3

)
e3n +

(
7c2c3 − 4c32 − 3c4

)
e4n +O

(
e5n

)
. (2.16)

From (2.16), we get

wn = xn −
f(xn)
f ′(xn)

= α + c2e
2
n − 2

(
c22 − c3

)
e3n −

(
7c2c3 − 4c32 − 3c4

)
e4n +O

(
e5n

)
. (2.17)

Expanding f(wn), f ′(wn) in Taylor’s series about α and using (2.17), we get

f(wn) = f ′(α)
[
wn − α + c2(wn − α)2 + c3(wn − α)3 + (c4wn − α)4 + · · ·

]

= f ′(α)
[
c2e

2
n + 2

(
c3 − c22

)
e3n +

(
5c32 + 3c4 − 7c2c3

)
e4n +O

(
e5n

)]
,

(2.18)

f ′(wn) = f ′(α)
[
1 + 2c2(wn − α) + 3c3(wn − α)2 + 4c4(wn − α)3 + · · ·

]

= f ′(α)
[
1 + 2c22e

2
n + 4

(
c2c3 − c32

)
e3n +

(
8c42 + 6c2c4 − 11c22c3

)
e4n +O

(
e5n

)]
.

(2.19)

From (2.14) and (2.18), we have

f(xn)f(wn) = f
′2(α)

[
c2e

3
n +

(
2c3 − c22

)
e4n +O

(
e5n

)]
. (2.20)

Because of (2.15), we obtain

f
′2(xn) = f

′2(α)
[
1 + 4c2en +

(
6c3 + 4c22

)
e2n

+(8c4 + 12c2c3)e3n +
(
10c5 + 16c2c4 + 9c23

)
e4n +O

(
e5n

)]
.

(2.21)

From (2.20) and (2.21), we have

f
′2(xn)f(xn)f(wn) = f

′4(α)
[
c2e

3
n +

(
2c3 + 3c22

)
e4n +O

(
e5n

)]
. (2.22)

Because of (2.15) and (2.20), we get

f ′(xn)f(xn)f(wn) = f
′3(α)

[
c2e

3
n +

(
2c3 + c22

)
e4n +O

(
e5n

)]
. (2.23)
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From (2.20), (2.22), and (2.23), we also easily obtain

[
2a + 2bf

′2(xn) + 2cf ′(xn)
]
f(xn)f(wn)

= 2f
′2(α)

[(
ac2 + bc2f

′2(α) + cc2f
′(α)

)
e3n

+
(
2ac3 − ac22 + 3bc22f

′2(α) + 2bc3f
′2(α) + 2cc3f ′(α) + cc22f

′(α)
)
e4n +O

(
e5n

)]
.

(2.24)

Because of (2.14) and (2.18), we get

f2(xn) = f
′2(α)

[
e2n + 2c2e3n +

(
2c3 + c22

)
e4n +O

(
e5n

)]
, (2.25)

f(xn) − f(wn) = f ′(α)
[
en +

(
2c22 − c3

)
e3n +

(
7c2c3 − 5c32 − 2c4

)
e4n +O

(
e5n

)]
. (2.26)

Furthermore, we have

[
f(xn) − f(wn)

]2 = f
′2(α)

[
e2n + 2

(
2c22 − c3

)
e4n +O

(
e5n

)]
. (2.27)

Because of (2.21) and (2.27), we have

f
′2(xn)

[
f(xn) − f(wn)

]2 = f
′4(α)

[
e2n + 4c2e3n +

(
8c22 + 4c3

)
e4n +O

(
e5n

)]
. (2.28)

From (2.14) and (2.15), we also easily have

f(xn)f ′(xn) = f
′2(α)

[
en + 3c2e2n +

(
2c22 + 4c3

)
e3n + (5c4 + 5c2c3)e4n +O

(
e5n

)]
. (2.29)

By a simple manipulation with (2.26) and (2.29), we obtain

f(xn)f ′(xn)
[
f(xn) − f(wn)

]
= f

′3(α)
[
e2n + 3c2e3n +

(
4c22 + 3c3

)
e4n +O

(
e5n

)]
. (2.30)

Substituting (2.25), (2.29), and (2.30) in the denominator of Ka,b,c(xn), we obtain

af2(xn) + bf
′2(xn)

[
f(xn) − f(wn)

]2 + cf(xn)f ′(xn)
[
f(xn) − f(wn)

]

= f
′2(α)

[(
a + bf

′2(α) + cf ′(α)
)
e2n +

(
2ac2 + 4bc2f

′2(α) + 3cc2f ′(α)
)
e3n

+
(
2ac3 + ac22 + 8bc22f

′2(α) + 4bc3f
′2(α) + 4cc22f

′(α) + 3cc3f ′(α)
)
e4n +O

(
e5n

)]
.

(2.31)
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Dividing (2.24) by (2.31) gives us

Ka,b,c(xn,wn)

=

[
2a + 2bf

′2(xn) + 2cf ′(xn)
]
f(xn)f(wn)

af2(xn) + bf ′2(xn)
[
f(xn) − f(wn)

]2 + cf(xn)f ′(xn)
[
f(xn) − f(wn)

]

= 2
(
c2en − (W(a, b, c) − 2c3)e2n +O

(
e3n

))
,

(2.32)

where

W(a, b, c) =
3a + bf

′2(α) + 2cf ′(α)
a + bf ′2(α) + cf ′(α)

c22. (2.33)

Since

∑
k≥0

⎛
⎝

1
2

k + 1

⎞
⎠(−1)k2k+1Ka,b,c(xn,wn)k = 1 +

1
2
Ka,b,c(xn,wn) +

1
2
Ka,b,c(xn,wn)2

+
5
8
Ka,b,c(xn,wn)3 +

7
8
Ka,b,c(xn,wn)4 + · · · .

(2.34)

If we consider m = 1, from (2.12)we obtain

1∑
k≥0

⎛
⎝

1
2

k + 1

⎞
⎠(−1)k2k+1Ka,b,c(xn,wn)k = 1 +

1
2
Ka,b,c(xn,wn)

= 1 + c2en − (W(a, b, c) − 2c3)e2n.

(2.35)

Because of (2.13), we have

xn+1 = xn −
⎛
⎝

1∑
k≥0

⎛
⎝

1
2

k + 1

⎞
⎠(−1)k2k+1Ka,b,c(xn,wn)k

⎞
⎠ f(xn)

f ′(xn)

= xn − en −
(
c22 − W(a, b, c)

)
e3n +O

(
e4n

)
.

(2.36)

From en+1 = xn+1 − α, we have

en+1 = −
(
c22 − W(a, b, c)

)
e3n +O

(
e4n

)
. (2.37)

This means that if m = 1, the methods defined by (2.13) are at least of order three for any
a, b, c ∈ R. Furthermore, we consider that if

c22 = W(a, b, c), (2.38)
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then the methods defined by (2.9) are shown to converge of the order four. From (2.37) and
(2.38), it is obvious that the methods defined by (2.13) are of order four by taking a = c = 0.

If considering m ≥ 2, we from (2.32) have

m∑
k≥0

⎛
⎝

1
2

k + 1

⎞
⎠(−1)k2k+1Ka,b,c(xn,wn)k = 1 +

1
2
Ka,b,c(xn,wn) +

1
2
Ka,b,c(xn,wn)2 +O

(
e3n

)

= 1 + c2en −
(
W(a, b, c) − 2c3 − 2c22

)
e2n +O

(
e3n

)
.

(2.39)

From (2.13), we can obtain

xn+1 = xn −
⎛
⎝

m∑
k≥0

⎛
⎝

1
2

k + 1

⎞
⎠(−1)k2k+1Ka,b,c(xn,wn)k

⎞
⎠ f(xn)

f ′(xn)

= xn − en −
(
3c22 − W(a, b, c)

)
e3n +O

(
e4n

)
.

(2.40)

From (2.40) and en+1 = xn+1 − α, we have

en+1 = −
(
3c22 − W(a, b, c)

)
e3n +O

(
e4n

)
. (2.41)

Thismeans that themethods defined by (2.13) are at least of order three for any a, b, c ∈
R. Furthermore, we consider that if

3c22 = W(a, b, c), (2.42)

then the methods defined by (2.13) are shown to converge of the order four. From (2.41) and
(2.42), it is obvious that the methods defined by (2.13) are of order four by taking b = c =
0.

Similar to the proof of Theorem 2.1, we can prove that for m ≥ 1, the methods defined
by (2.9) and (2.11) are at least cubically convergent; as particular cases, if m = 1, a = c = 0, or
m ≥ 2, b = c = 0, the methods have convergence order four.

3. Some Special Cases

(10) If a = b = c = 1, from (2.8)we obtain

K1,1,1(xn) =

[
2 + 2f

′2(xn) + 2f ′(xn)
]
f(xn)f(wn)

f2(xn) + f ′2(xn)
[
f(xn) − f(wn)

]2 + f(xn)f ′(xn)
[
f(xn) − f(wn)

] . (3.1)
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For m = 1, we obtain from (2.13) a third-order method (LM1)

xn+1 = xn −
(
1 +

1
2
K1,1,1(xn,wn)

)
f(xn)
f ′(xn)

. (3.2)

For m = 2, we obtain from (2.13) a third-order method (LM2)

xn+1 = xn −
(
1 +

1
2
K1,1,1(xn,wn) +

1
2
K1,1,1(xn,wn)2

)
f(xn)
f ′(xn)

. (3.3)

(20) If a = 0, c = 0, from (2.8) we obtain

K0,b,0(xn,wn) =
2f(xn)f(wn)[
f(xn) − f(wn)

]2 . (3.4)

For m = 1, we obtain from (2.13) a fourth-order method [11]

xn+1 = xn −
(
1 +

1
2
K0,b,0(xn,wn)

)
f(xn)
f ′(xn)

. (3.5)

For m = 2, we obtain from (2.13) a third-order method (LM3)

xn+1 = xn −
(
1 +

1
2
K0,b,0(xn,wn) +

1
2
K0,b,0(xn,wn)2

)
f(xn)
f ′(xn)

. (3.6)

(30) If b = 0, c = 0, from (2.8)we obtain

Ka,0,0(xn,wn) =
2f(wn)
f(xn)

. (3.7)

For m = 1, we obtain from (2.13) a third-order method (LM4)

xn+1 = xn −
(
1 +

1
2
Ka,0,0(xn,wn)

)
f(xn)
f ′(xn)

. (3.8)

For m = 2, we also obtain the fourth-order method

xn+1 = xn −
(
1 +

1
2
Ka,0,0(xn,wn) +

1
2
Ka,0,0(xn,wn)2

)
f(xn)
f ′(xn)

, (3.9)

which was obtained in [10].
For m = 3, we obtain a fourth-order method as follows [11]:

xn+1 = xn −
(
1 +

1
2
Ka,0,0(xn,wn) +

1
2
Ka,0,0(xn,wn)2 +

5
8
Ka,0,0(xn,wn)3

)
f(xn)
f ′(xn)

. (3.10)



10 Journal of Applied Mathematics

For m = 4, we obtain the new fourth-order method

xn+1 = xn −
(
1 +

1
2
Ka,0,0(xn,wn) +

1
2
Ka,0,0(xn,wn)2

+
5
8
Ka,0,0(xn,wn)3 +

7
8
Ka,0,0(xn,wn)4

)
f(xn)
f ′(xn)

.

(3.11)

(40) If a = 0, c = 0, for m = 1, we obtain a fourth-order method from (2.11) and (3.4)

xn+1 = xn − 2
2 −K0,b,0(xn,wn)

f(xn)
f ′(xn)

. (3.12)

For m = 2, we obtain from (2.11) a third-order method

xn+1 = xn − 4

4 − 2K0,b,0(xn,wn) −K0,b,0(xn,wn)2
f(xn)
f ′(xn)

. (3.13)

(50) If b = 0, c = 0, from (2.11) we obtain some iterative methods as follows:
For m = 1, we obtain a third-order method (LM5)

xn+1 = xn − 2
2 −Ka,0,0(xn,wn)

f(xn)
f ′(xn)

, (3.14)

where Ka,0,0(xn,wn) is defined by (3.7).
For m = 2, we obtain a fourth-order method (LM6)

xn+1 = xn − 4

4 − 2Ka,0,0(xn,wn) −Ka,0,0(xn,wn)2
f(xn)
f ′(xn)

. (3.15)

For m = 3, we obtain the fourth-order method as follows [10]:

xn+1 = xn − 4

4 − 2Ka,0,0(xn,wn) −Ka,0,0(xn,wn)2 −Ka,0,0(xn,wn)3
f(xn)
f ′(xn)

. (3.16)

4. Numerical Examples

In this section, firstly, we present some numerical test results about the number of iterations
(n) for some cubically convergent iterative methods in Table 1. The following methods were
compared: Newton’s method (NM), the method of Weerakoon and Fernando [12] (WF),
Halley’s method (HM), Chebyshev’s method (CHM), Super-Halley’s method (SHM), and
our new methods (3.2) (LM1), (3.3) (LM2), (3.6) (LM3), (3.8) (LM4), and (3.14) (LM5).

Secondly, we employ our new fourth-order methods defined by (3.15) (LM6) and
the super cubic convergence method by (3.2) (LM1), to solve some nonlinear equations
and compare them with Newton’s method (NM), Newton-secant method [13] (NSM), and
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Table 1: Comparison of various third-order methods and newton’s method.

f(xn) x0
n

NM WF HM CHM SHM LM1 LM2 LM3 LM4 LM5

f1
−0.5 131 6 45 5 40 9 9 7 8 10
2 5 4 3 4 3 3 4 4 4 4

f2
0 4 3 3 3 3 2 3 3 3 3
0.5 4 3 3 3 3 2 3 3 3 3

f3
−3 6 4 4 4 4 3 5 4 4 4
−5 7 5 4 5 4 4 4 5 5 5

f4
1 7 4 5 5 4 4 4 4 5 4
2 6 4 6 7 5 4 4 4 4 4

f5
2.5 6 4 4 4 3 4 4 4 4 4
3.5 7 5 4 5 4 4 4 4 5 5

f6
−0.3 5 3 4 — 4 3 4 4 6 4
2.7 6 4 4 5 4 3 4 4 3 4

f7
1 6 4 4 5 3 3 4 4 16 4
3 6 3 4 4 4 3 4 4 4 4

f8
3.25 8 6 5 6 — 5 4 4 6 5
3.45 11 8 6 7 — 6 5 5 8 7

Table 2: Comparison of the methods and Newton’s method.

f(xn) x0
n NEF

NM NSM OM LM6 LM1 NM NSM OM LM6 LM1

f1
−0.5 131 10 14 27 9 262 30 42 81 27
2 5 4 3 3 3 10 12 9 9 9

f2
0 4 3 2 2 2 8 9 6 6 6
0.5 4 3 2 2 2 8 9 6 6 6

f3
−3 6 4 3 3 3 12 12 9 9 9
−5 7 5 4 4 4 14 15 12 12 12

f4
1 7 4 4 4 4 14 12 12 12 12
2 6 4 4 4 4 12 12 12 12 12

f5
2.5 6 4 3 3 4 12 12 9 9 12
3.5 7 5 4 4 4 14 15 12 12 12

f6
−0.3 5 4 3 4 3 10 12 9 12 9
2.7 6 4 3 3 3 12 12 9 9 9

f7
1 6 4 3 4 3 12 12 9 12 9
3 6 4 3 3 3 12 12 9 9 9

f8
3.25 8 5 5 4 5 16 15 15 12 15
3.45 11 7 6 6 6 22 21 18 18 18

Ostrowski’s method [14] (OM). Displayed in Table 2 are the number of iterations (n) and the
number of function evaluations (NFEs) counted as the sum of the number of evaluations of
the function itself plus the number of evaluations of the derivative.

All computations were done using Matlab7.1. We accept an approximate solution
rather than the exact root, depending on the precision ε of the computer. We use the following
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stopping criteria for computer programs: |f(xn+1)| < ε, we used the fixed stopping criterion
ε = 10−15. In table, “−” is divergence.

We used the following test functions and display the computed approximate zero x∗

[15]:

f1(x) = x3 + 4x2 − 10, x∗ = 1.3652300134140969,

f2(x) = x2 − ex − 3x + 2, x∗ = 0.25753028543986076,

f3(x) = x3 − sin2x + 3 cosx + 5, x∗ = −1.582687045752069901,

f4(x) = sin(x)ex + ln
(
1 + x2

)
, x∗ = 0,

f5(x) = (x − 1)3 − 1, x∗ = 2,

f6(x) = cosx − x, x∗ = 0.73908513321516067,

f7(x) = sin2x − x2 + 1, x∗ = 1.4044916482153411,

f8(x) = ex
2+7x−30 − 1, x∗ = 3.

(4.1)

5. Conclusions

In this paper, we presented some variants of Cauchy’s methods free from second derivative
for solving nonlinear equations. Per iteration the methods require two-function and one
first-derivative evaluations. These methods are at least three-order convergence, if m = 1,
a = c = 0, or m ≥ 2, b = c = 0, the methods have convergence order four, respectively,
and if m = 1, a = b = c = 1, the method has super cubic convergence. We observed from
numerical examples that the proposed methods are efficient and demonstrate equal or better
performance as compared with other well-known methods.
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