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In this paper we prove the equivalence and the strong convergence of an explicit Mann iterative
process and a modified implicit iterative process for asymptotically φ-strongly pseudocontractive
mappings in a uniformly smooth Banach space.

1. Introduction

Let X be a Banach space and X∗ the dual space of X. Let J denote the normalized duality
mapping formX into 2X

∗
given by J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2} for all x ∈ X, where

〈·, ·〉 denotes the generalized duality pairing.
In 1972, Goebel and Kirk [1] introduced the class of asymptotically nonexpansive map-

pings as follows.

Definition 1.1. Let K be a subset of a Banach space X. A mapping T : K → K is said
asymptotically nonexpansive if, for each x, y ∈ K,

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥, (1.1)

where {kn}n ⊂ [1,∞) is a sequence of real numbers converging to 1.

Their scope was to extend the well-known Browder’s fixed point theorem [2] to this
class of mappings.



2 Journal of Applied Mathematics

This class is really more general than the class of nonexpansive mappings (see [1]).
In 1991, Schu [3] introduced the class of asymptotically pseudocontractive mappings.

Definition 1.2 (see [3]). Let X be a normed space, K ⊂ X, and {kn}n ⊂ [1,∞). A mapping
T : K → K is said to be asymptotically pseudocontractive with the sequence {kn}n if and
only if limn→∞kn = 1 and, for all n ∈ N and all x, y ∈ K, there exists j(x − y) ∈ J(x − y) such
that

〈

Tnx − Tny, j
(

x − y
)〉 ≤ kn

∥
∥x − y

∥
∥
2
, (1.2)

where J is the normalized duality mapping.

Obviously every asymptotically nonexpansive mapping is asymptotically pseudocon-
tractive but the converse is not valid: it is well known that T : [0, 1] → [0, 1] defined by
Tx = (1 − x2/3)3/2 is not Lipschitz but asymptotically pseudocontractive [4].

In [3], Schu proved the following.

Theorem 1.3 (see [3]). Let H be a Hilbert space and A ⊂ H closed and convex; L > 0; T : A → A
completely continuous, uniformly L-Lipschitzian and asymptotically pseudocontractive with sequence
{kn}n ∈ [1,∞); qn := 2kn − 1 for all n ∈ N;

∑

n(q
2
n − 1) < ∞; {αn}n, {βn}n ∈ [0, 1]; ε ≤ αn ≤ βn ≤ b

for all n ∈ N, some ε > 0 and some b ∈ (0, L−2[
√
1 + L2 − 1]); x1 ∈ A; for all n ∈ N define

zn := βnT
n(xn) +

(

1 − βn
)

xn,

xn+1 := αnT
n(zn) + (1 − αn)xn.

(1.3)

Then, {xn}n converges strongly to some fixed point of T .

From 1991 to 2009, no fixed point theorem for asymptotically pseudocontractive
mappings had been proved. First Zhou, in [5], completed this lack in the setting of Hilbert
spaces proving (1) a fixed-point theorem for an asymptotically pseudocontractive mapping
that is also uniformly L-Lipschitzian and uniformly asymptotically regular; (2) that the set of
fixed points of T is closed and convex; (3) the strong convergence of a CQ-iterative method.
The literature on asymptotical-type mappings is wide (see e.g., [6–11]).

In 1974, Deimling [12], studying the zeros of accretive operators, introduced the class
of ϕ-strongly accretive operators.

Definition 1.4. An operator A defined on a subset K of a Banach space X is called ϕ-strongly
accretive if

〈

Ax −Ay, j
(

x − y
)〉 ≥ ϕ

(∥
∥x − y

∥
∥
)∥
∥x − y

∥
∥, (1.4)

where ϕ : R
+ → R

+ is a strictly increasing function such that ϕ(0) = 0 and j(x−y) ∈ J(x−y).

Note that, in the special case in which ϕ(t) = kt, k ∈ (0, 1), we obtain a strongly
accretive operator.

Since an operator A is a strongly accretive operators if and only if (I −A) is a strongly
pseudocontractive mappings (i.e., 〈(I −A)x− (I −A)y, j(x−y)〉 ≤ k‖x−y‖2, k < 1), taking in
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account Definition 1.4, it is natural to study the class of ϕ-pseudocontractive mappings, that
is, the maps such that

〈

Tx − Ty, j
(

x − y
)〉 ≤ ∥

∥x − y
∥
∥
2 − ϕ

(∥
∥x − y

∥
∥
)∥
∥x − y

∥
∥, (1.5)

where ϕ : R
+ → R

+ is a strictly increasing function such that ϕ(0) = 0. Of course the set of
fixed points for this mappings contains, at most, only one point.

Here our attention is on the class of the asymptotically φ-strongly pseudocontractions
define as follows.

Definition 1.5. If X is a Banach space and K is a subset of X, a mapping T : K → K is said
asymptotically φ-strongly pseudocontraction if

〈

Tnx − Tny, j
(

x − y
)〉 ≤ kn

∥
∥x − y

∥
∥
2 − φ

(∥
∥x − y

∥
∥
)

, (1.6)

where j(x − y) ∈ J(x − y), {kn}n ⊂ [1,∞) is converging to one and φ : [0,∞) → [0,∞) is
strictly increasing and such that φ(0) = 0.

One can note that if T has fixed points then it is unique. In fact if x, z are fixed points
for T , then, for every n ∈ N,

‖x − z‖2 = 〈

Tnx − Tnz, j(x − z)
〉 ≤ kn

∥
∥x − y

∥
∥
2 − φ

(∥
∥x − y

∥
∥
)
, (1.7)

so, passing n to +∞, it results

‖x − z‖2 ≤ ‖x − z‖2 − φ
(∥
∥x − y

∥
∥
)

=⇒ −φ(∥∥x − y
∥
∥
) ≥ 0. (1.8)

Since φ : [0,∞) → [0,∞) is strictly increasing and φ(0) = 0, then x = z.
We now give two examples.

Example 1.6. The mapping Tx = x/(x + 1), where x ∈ [0, 1], is asymptotically φ-strongly
pseudocontraction with kn = 1, for all n ∈ N and φ(t) = t3/(1 + t). However, T is not strongly
pseudocontractive, see [13].

Example 1.7. The mapping Tx = x/(1 + αx), where x ∈ [0, 1] and α is closing to zero,
is asymptotically φ-strongly pseudocontraction with kn = 1 + 1/αn, for all n ∈ N and
φ(x) = x3/(1 + x). However, T is not strongly pseudocontractive and nor is the φ-strongly
pseudocontraction.

Proof. First we prove that T is not strongly pseudocontractive. For arbitrary k < 1, there exists
x, y ∈ [0, 1], such that

1
(1 + αx)

(

1 + αy
) > k. (1.9)
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So we have

〈

Tx − Ty, j
(

x − y
)〉

=
1

(1 + αx)
(

1 + αy
)

(

x − y
)2

> k
∥
∥x − y

∥
∥
2
. (1.10)

Next we prove that T is not φ-strongly pseudocontractive. Taking y = 0, we have, for all
x ∈ [0, 1],

〈

Tx − Ty, j
(

x − y
)〉

=
x2

(1 + αx)

∥
∥x − y

∥
∥
2 − φ

(∥
∥x − y

∥
∥
)

=
x2

1 + x
,

(1.11)

Therefore, T is not φ-strongly pseudocontractive. Finally, we prove that T is asymptotically
φ-strongly pseudocontraction.

For arbitrary x, y ∈ [0, 1], without loss of generality, let x > y. Then,

〈

Tnx − Tny, j
(

x − y
)〉

=

(

x − y
)2

(1 + αnx)
(

1 + αny
) ,

kn
∥
∥x − y

∥
∥
2 − φ

(∥
∥x − y

∥
∥
)

=
(

1 +
1
αn

)
(

x − y
)2 −

(

x − y
)3

1 +
(

x − y
)

=

[

1 +
1
αn

−
(

x − y
)

1 +
(

x − y
)

]

(

x − y
)2

=
1 + 1/αn + 1/αn

(

x − y
)

1 +
(

x − y
)

(

x − y
)2
.

(1.12)

We only need to prove that

1 + x − y ≤ (1 + αnx)
(

1 + αny
)
[

1 +
1
αn

+
1
αn

(

x − y
)
]

. (1.13)

Using x > y, this is easy.

Let us consider the well-knownMann iterative process defined as follows: for any given
z0 ∈ X, the sequence {zn}n defined by

zn+1 = (1 − αn)zn + αnT
nzn, n ≥ 0. (1.14)
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We can also introduce a modified implicit iterative process as follows: suppose T is con-
tinuous, (w′

n)n is bounded, and let z′0 be an initial point. Thus, we define

z′n =
(

1 − αn − γn
)

z′n−1 + αnT
nz′n + γnw

′
n, n ≥ 1, (1.15)

where {αn}n is a real sequence in [0, 1] satisfying αnkn < 1 for all n ≥ 1.
The algorithm is well defined. In fact, if T is a continuous asymptotically strongly φ-

pseudocontraction, for every fixed n, the mapping Sn defined by Snx := (1 − αn − γn)zn−1 +
αnT

nx + γnwn is such that

〈

Snx − Sny, j
(

x − y
)〉

=
〈

Tnx − Tny, j
(

x − y
)〉 ≤ αnkn

∥
∥x − y

∥
∥
2, (1.16)

that is, Sn is a continuous strongly pseudocontraction, for every fixed n. Then (see
Theorem 13.1 in [14]), there exists a unique fixed-point of Sn for each n.

This modified implicit method is inspired to a wide literature.
In 1995, Liu [15] introduced the following modified Ishikawa method:

yn =
(

1 − βn
)

xn + βnT
nxn + vn,

xn+1 = (1 − αn)xn + αnT
nyn + un, n ≥ 0,

(1.17)

and he called it Ischikawa iteration process with errors (obviously posing βn = 0, he obtains
the Mann iteration process with errors). This new class of methods with errors was studied,
among the others, also by Chang in [16] in 2001, Chang et. al [17] in 2006, Gu in [18], Huang
in [19], and Huang and Bu in 2007 [20].

In 2001, Chidume and Osilike [21] proved the strong convergence of the iterative
method

yn = anxn + bnSxn + cnun,

xn+1 = a′
nxn + b′nSync

′
nvn,

(1.18)

where an + bn + cn = a′
n + b′n + c′n = 1, Sx = x − Tx + f (T a φ-strongly accretive operator), and

f ∈ X, to a solution of the equation Tx = f . Note that Chidume and Osilike did not use term
with errors to indicate their methods.

In 2003, Chidume and Zegeye [22] studied the following iterative method:

xn+1 = (1 − αn)xn + αnTxn − αnθn(xn − x1), (1.19)

where T is a Lipschitzian pseudocontractive map with fixed points. The authors proved the
strong convergence of the method to a fixed point of T under opportune hypotheses on the
control sequences (θn)n, (λn)n.

If we pose wn = z0 in (1.14) and γn = αnθn, the modified Mann iterative process
coincides with the Chideme and Zegeye’s iterative method.

In this paper, we prove the equivalence between the implicit and the explicit modified
Mann iterative method which involves an asymptotically φ-strongly pseudocontractive
mapping.
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2. Preliminaries

Throughout this paper, we will assume that X is a uniformly smooth Banach space. It is well
known that, if X is uniformly smooth, then the duality mapping J is single-valued and is
norm to norm uniformly continuous on any bounded subset of X. In the sequel, we shall
denote the single-valued duality mapping by j.

For the sake of completeness, we recall some definitions and conclusions.

Definition 2.1. An X is said to be a uniformly smooth Banach space if the smooth module of
X,

ρX(t) = sup
{
1
2
(∥
∥x − y

∥
∥ +

∥
∥x + y

∥
∥
) − 1 : ‖x‖ ≤ 1,

∥
∥y

∥
∥ ≤ t

}

, (2.1)

satisfies limt→ 0(ρX(t)/t) = 0.

Lemma 2.2 (see [23]). Let X be a Banach space, and let J : X → 2X
∗
be the normalized duality

mapping. Then, for any x, y ∈ X, we have

∥
∥x + y

∥
∥
2 ≤ ‖x‖2 + 2

〈

y, j
(

x + y
)〉

, ∀j(x + y
) ∈ J

(

x + y
)

. (2.2)

Next lemma is a key for our proofs.

Lemma 2.3 (see [19]). Let φ : [0,∞) → [0,∞) be a strictly increasing function with φ(0) = 0,
and let {an}n, {bn}n, {cn}n, and {en}n be nonnegative real sequences such that

lim
n→∞

bn = 0, cn = o(bn),
∞∑

n=1

bn = ∞, lim
n→∞

en = 0. (2.3)

Suppose that there exists an integerN1 > 0 such that

a2
n+1 ≤ a2

n − 2bnφ(|an+1 − en|) + cn, ∀n ≥ N1, (2.4)

then limn→∞an = 0.

Proof. The proof is the same as in [19] but changing, in (2.4), (an+1 − en)with |an+1 − en|.

Lemma 2.4 (see [24]). Let {sn}n, {cn}n ⊂ R+, {an}n ⊂ (0, 1), and {bn}n ⊂ R be sequences such
that

sn+1 ≤ (1 − an)sn + bn + cn, (2.5)

for all n ≥ 0. Assume that
∑

n cn < ∞. Then, the following results hold.

(1) If bn ≤ βan (where β ≥ 0), then {sn}n is a bounded sequence.

(2) If we have
∑

n an = ∞ and lim supn(bn/an) ≤ 0, then sn → 0 as n → ∞.
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Remark 2.5. If, in Lemma 2.3, we choose en = 0, for all n, φ(t) = kt2 (k < 1), then the inequality
(2.4) becomes

a2
n+1 ≤ a2

n − 2bnka2
n+1 + cn =⇒

a2
n+1 ≤

1
1 + 2bnk

a2
n +

cn
1 + 2bnk

≤
(

1 − 2bnk
1 + 2bnk

)

a2
n +

cn
1 + 2bnk

,
(2.6)

where αn := 2bnk/(1+2bnk) and βn := cn/(1+2bnk). In the hypotheses of Lemma 2.3, αn → 0
as n → ∞,

∑

n αn = ∞ and lim supn(βn/αn) = 0. So we reobtain Lemma 2.4 in the case cn = 0.

3. Main Results

The ideas of the proofs of our main theorems take in account the papers of Chang and
Chidume et al. [16, 21, 25].

Theorem 3.1. Let X be a uniformly smooth Banach space, and let T : X → X be asymptotically
φ-strongly pseudocontractive mapping with fixed point x∗ and bounded range.

Let {vn}n be the sequence defined by

v0 ∈ X,

vn+1 = (1 − αn)vn + αnT
nvn, n ≥ 0,

(3.1)

where {αn}n ⊂ [0, 1] satisfies

(i) limn→∞αn = 0,

(ii)
∑∞

n=1 αn = ∞.

Then, for any initial point v0 ∈ X, the sequence {vn}n strongly converges to x∗.

Proof. By the boundedness of the range of T and by Lemma 2.4, we have that {vn}n is
bounded.

By Lemma 2.2, we observe that

‖vn+1 − x∗‖2 ≤ (1 − αn)2 ‖vn − x∗‖2 + 2αn

〈

Tnvn − x∗, j(vn+1 − x∗)
〉

≤ (1 − αn)2 ‖vn − x∗‖2 + 2αn

〈

Tnvn − x∗, j(vn+1 − x∗) − j(vn − x∗)
〉

+ 2αn

〈

Tnvn − x∗, j(vn − x∗)
〉

≤ (1 − αn)2 ‖vn − x∗‖2 + 2αn

〈

Tnvn − x∗, j(vn+1 − x∗) − j(vn − x∗)
〉

+ 2αnkn‖vn − x∗‖2 − 2αnφ(‖vn − x∗‖)

=
(

1 + α2
n − 2αn

)

‖vn − x∗‖2 + 2αn

〈

Tnvn − x∗, j(vn+1 − x∗) − j(vn − x∗)
〉

+ 2αnkn‖vn − x∗‖2 − 2αnφ(‖vn − x∗‖)

= ‖vn − x∗‖2 +
(

α2
n − 2αn + 2αnkn

)

‖vn − x∗‖2 − 2αnφ(‖vn − x∗‖) + 2αnμn,

(3.2)
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where μn := 〈Tnvn − x∗, j(vn+1 − x∗) − j(vn − x∗)〉. Let

M := max
{

sup
n

‖vn − x∗‖, sup
n

‖Tnvn − x∗‖
}

. (3.3)

We have

‖vn+1 − x∗‖2 ≤ ‖vn − x∗‖2 +
(

α2
n + 2αn(kn − 1)

)

M − 2αnφ(‖vn − x∗‖) + 2αnμn

= ‖vn − x∗‖2 − αnφ(‖vn − x∗‖) − αn

[

φ(‖vn − x∗‖) − 2μn − (αn + 2(kn − 1))M
]

,

(3.4)

so we can observe the following.

(1) μn → 0 as n → ∞. In fact from the inequality

|‖vn+1 − x∗‖ − ‖vn − x∗‖| ≤ ‖vn+1 − vn‖ ≤ αnM −→ 0, as n −→ ∞, (3.5)

and, since j is norm to norm uniformly continuous, then

j(‖vn+1 − x∗‖) − j(‖vn − x∗‖) −→ 0, as n −→ ∞. (3.6)

(2) infn(‖vn − x∗‖) = 0. In fact, if we suppose that σ := infn(‖vn − x∗‖) > 0, by the
monotonicity of φ,

φ(‖vn − x∗‖) ≥ φ(σ) > 0. (3.7)

Thus, by (1) and by the hypotheses on αn and kn, the value −αn[φ(‖vn −x∗‖)−2μn −
(αn+2(kn−1))M] is definitively negative. In this case, we conclude that there exists
N > 0 such that, for every n > N,

‖vn+1 − x∗‖2 ≤ ‖vn − x∗‖2 − αnφ(‖vn − x∗‖) ≤ ‖vn − x∗‖2 − αnφ(σ) (3.8)

and so

αnφ(σ) ≤ ‖vn − x∗‖2 − ‖vn+1 − x∗‖2 ∀n > N. (3.9)

In the same manner, we obtain that

φ(σ)
m∑

i=N

αi ≤
m∑

i=N

[

‖vi − x∗‖2 − ‖vi+1 − x∗‖2
]

= ‖vN − x∗‖2 − ‖vm − x∗‖2. (3.10)

By the hypothesis
∑

n αn = ∞, the previous is a contradiction and it follows that
infn(‖vn − x∗‖) = 0.
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Then, there exists a subsequence {vnk}k of {vn}n that strongly converges to x∗. This
implies that, for every ε > 0, there exists an index nk(ε) such that, for all j ≥ nk(ε), ‖vnj −x∗‖ < ε.

Now, we will prove that the entire sequence {vn}n converges to x∗. Since the sequences
in (3.4) are null sequences but

∑

n αn = ∞, then, for every ε > 0, there exists an index n(ε)
such that, for all n ≥ n(ε), it results that

|αn| < 1
2M

min
{

ε,
φ(ε/2)

2

}

, |kn − 1| < φ(ε/2)
8M

,
∣
∣μn

∣
∣ <

φ(ε/2)
8

. (3.11)

So, fixing ε > 0, let n∗ > max(nk(ε), n(ε)) with n∗ = nj for a certain nj . We will prove, by
induction, that ‖vn∗+i − x∗‖ < ε for every i ∈ N. Let i = 1, if not, it results that ‖vn∗+1 − x∗‖ ≥ ε.
Thus,

ε ≤ ‖vn∗+1 − x∗‖ ≤ ‖vn∗ − x∗‖ + αn∗ < ‖vn∗ − x∗‖ + ε

2M
M = ‖vn∗ − x∗‖ + ε

2
, (3.12)

that is, ‖vn∗ − x∗‖ > ε/2. By the strict increasing of φ, then φ(‖vn∗ − x∗‖) > φ(ε/2). By (3.4), it
results

‖vn∗+1 − x∗‖2 < ε2 − αn∗φ(‖vn∗ − x∗‖) − αn∗
[

φ(‖vn∗ − x∗‖) − 2μn∗ − (αn∗ + 2(kn∗ − 1))M
]

.

(3.13)

We can note that

2μn∗ + (αn∗ + 2(kn∗ − 1))M ≤ φ(ε/2)
4

+
(
φ(ε/2)
4M

+
φ(ε/2)
4M

)

M, (3.14)

so

φ(‖vn∗ − x∗‖) − 2μn∗ − (αn∗ + 2(kn∗ − 1))M ≥ φ
(ε

2

)

− 3φ(ε/2)
4

> 0. (3.15)

Moreover, φ(‖vn∗ − x∗‖) > φ(ε/2)/2 > 0, it results that

‖vn∗+1 − x∗‖2 ≤ ε2. (3.16)

This is absurd. Thus, ‖vn∗+1 − x∗‖ < ε.
In the same manner, by induction, one obtains that, for every i ≥ 1, ‖vn∗+i − x∗‖ < ε. So

‖vn − x∗‖ → 0.

Remark 3.2. Our result is similar to Schu’s theorem. However, our results hold in a more gen-
eral setting of uniformly smooth Banach spaces, while the Schu’s result holds for completely
continuous, uniformly Lipschitzian mappings which are asymptotically pseudocontractive.



10 Journal of Applied Mathematics

Theorem 3.3. Let X be a uniformly smooth Banach space, and let T : X → X be a continuous and
asymptotically φ-strongly pseudocontractive mapping with fixed point x∗ and bounded range.

Let {zn} and {z′n} be the sequences defined by (1.14) and (1.15), respectively, where
{αn}, {γn} ⊂ [0, 1] are null sequences satisfying

(H1) limn→∞αn = 0 and γn = o(αn),

(H2)
∑∞

n=1 αn = ∞,

and such that αnkn < 1, for every n ∈ N.
Let us suppose moreover that the sequences {wn},{w′

n} are bounded in X.
Then, for any initial point z′0, z0 ∈ X, the following two assertions are equivalent.

(i) The Mann iteration sequence (1.14) converges to the fixed point x∗.

(ii) The modified implicit iteration sequence (1.15) converges to the fixed point x∗.

Proof. By the boundedness of the range of T and by Lemma 2.4, one obtains that our schemes
are bounded. Let us define

M = sup
n

{‖Tnzn − Tnz′n‖, ‖Tnzn − zn‖, ‖Tnz′n − z′n‖,
∥
∥Tnz′n − z′n−1

∥
∥

‖zn+1 − z′n‖,
∥
∥w′

n − z′n−1
∥
∥, ‖w′

n‖

}

. (3.17)

By the iteration schemes (1.14) and (1.15), we have

∥
∥zn+1 − z′n

∥
∥
2 ≤ ∥

∥(1 − αn)
(

zn − z′n−1
)

+ αn

(

Tnzn − Tnz′n
)

+ γn
(

z′n−1 −w′
n

)∥
∥
2

≤ (1 − αn)2
∥
∥zn − z′n−1

∥
∥
2 + 2

〈

αn

(

Tnzn − Tnz′n
)

+ γn
(

z′n−1 −w′
n

)

, j
(

zn+1 − z′n
)〉

≤ (1 − αn)2
∥
∥zn − z′n−1

∥
∥
2 + 2αn

〈

Tnzn − Tnz′n, j
(

zn − z′n
)〉

+ 2αn

〈

Tnzn − Tnz′n, j
(

zn+1 − z′n
) − j

(

zn − z′n
)〉

+ 2γnM2

≤ (1 − αn)2
∥
∥zn − z′n−1

∥
∥
2 + 2αnkn

∥
∥zn − z′n

∥
∥
2

− 2αnφ
(∥
∥zn − z′n

∥
∥
)

+ 2αnMσn + 2γnM2,

(3.18)

where σn = ‖j(zn+1 − z′n) − j(zn − z′n)‖. By (1.14), we have

∥
∥
(

zn+1 − z′n
) − (

zn − z′n
)∥
∥ = ‖zn+1 − zn‖ = ‖αn(Tnzn − zn)‖ ≤ αnM. (3.19)
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It follows from (H1) that ‖(zn+1 − z′n) − (zn − z′n)‖ → 0 as n → ∞, which implies that σn → 0
as n → ∞. Moreover, for all n ≥ 0,

∥
∥zn − z′n

∥
∥
2 ≤ (∥

∥zn − z′n−1
∥
∥ +

∥
∥z′n−1 − z′n

∥
∥
)2

≤ (∥
∥zn − z′n−1

∥
∥ + αn

∥
∥Tnz′n − z′n−1

∥
∥ + γn

∥
∥w′

n − z′n−1
∥
∥
)2

≤ [∥
∥zn − z′n−1

∥
∥ +

(

αn + γn
)

M
]2

=
∥
∥zn − z′n−1

∥
∥
2 +

(

αn + γn
)[

2M
∥
∥zn − z′n−1

∥
∥ +

(

αn + γn
)

M2
]

≤ ∥
∥zn − z′n−1

∥
∥
2 + 3

(

αn + γn
)

M2.

(3.20)

Again by the boundedness of all components, we have that

∥
∥z′n − z′n−1

∥
∥ =

∥
∥αn

(

Tnz′n − z′n−1
)

+ γn
(

w′
n − z′n−1

)∥
∥ ≤ (

αn + γn
)

M, (3.21)

and so
∥
∥zn+1 − z′n

∥
∥ =

∥
∥
(

zn − z′n
)

+
(

z′n − z′n−1
) − αn

(

zn − z′n−1
)

+ αn

(

Tnzn − Tnz′n
)

+ γn
(

z′n−1 −w′
n

)∥
∥

≤ ∥
∥zn − z′n

∥
∥ +

∥
∥z′n − z′n−1

∥
∥ + αn

∥
∥zn − z′n−1

∥
∥ + αn

∥
∥Tnzn − Tnz′n

∥
∥ + γn

∥
∥z′n−1 −w′

n

∥
∥

≤ ∥
∥zn − z′n

∥
∥ + 3

(

αn + γn
)

M.

(3.22)

Hence, we have that ‖zn − z′n‖ ≥ ‖zn+1 − z′n‖ − en, where en = 3(αn + γn)M. Note that en → 0
as n → ∞. As in proof of Theorem 3.1, we distinguish two cases:

(i) the set of index for which ‖zn+1 − z′n‖ − en ≤ 0 contains infinite terms,

(ii) the set of index for which ‖zn+1 − z′n‖ − en ≤ 0 contains finite terms.

In the first case (i), we can extract a subsequence such that ‖znk − z′nk−1‖ → 0, as k → ∞.
Substituting (3.20) in (3.18), we have that

∥
∥zn+1 − z′n

∥
∥
2 ≤

(

1 + α2
n − 2αn

)∥
∥zn − z′n−1

∥
∥
2 + 2αnkn

∥
∥zn − z′n−1

∥
∥
2 + 6

(

αn + γn
)

M2αnkn

− 2αnφ
(∥
∥zn − z′n

∥
∥
)

+ 2αnMσn + 2γnM2

≤ ∥
∥zn − z′n−1

∥
∥
2 +

(

α2
n + 2αn(kn − 1)

)∥
∥zn − z′n−1

∥
∥
2 + 6

(

αn + γn
)

M2αnk

− 2αnφ
(∥
∥zn − z′n

∥
∥
)

+ 2αnMσn + 2γnM2

≤ ∥
∥zn − z′n−1

∥
∥
2 − αnφ

(∥
∥zn − z′n

∥
∥
)

+ 2γnM2

− αn

[

φ
(∥
∥zn − z′n

∥
∥
) − αnM

2 − 2M2(kn − 1) − 6
(

αn + γn
)

M2k − 2Mσn

]

=
∥
∥zn − z′n−1

∥
∥
2 − αnφ

(∥
∥zn − z′n

∥
∥
)

+ 2γnM2

− αn

[

φ
(∥
∥zn − z′n

∥
∥
) − 7kαnM

2 − 2M2(kn − 1) − 6γnM2k − 2Mσn

]

,

(3.23)
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where k = supnkn. Again by (3.20), for every ε > 0, there exists an index l such that, if j > l,

∥
∥
∥znj − z′nj−1

∥
∥
∥ < ε,

∥
∥
∥znj − z′nj

∥
∥
∥ < 2ε. (3.24)

By hypotheses on the control sequence, with the same ε > 0, there exists an indexN such that
definitively

|αn| < min
{

ε

12M
,
φ(ε/2)

56M2k

}

,

∣
∣γn

∣
∣ < min

{
ε

12M
,
φ(ε/2)

48M2k

}

,

∣
∣
∣
∣

γn
αn

∣
∣
∣
∣
<

φ(ε/2)
4M2

,

|kn − 1| < φ(ε/2)
16M2

,

|σn| <
φ(ε/2)
16M

.

(3.25)

So take n∗ > max{nl,N}with n∗ = nj for a certain j.
We can prove that ‖zn+1 − z′n‖ → 0 as n → ∞ proving that, for every i ≥ 0 it results

‖zn∗+i − z′n∗+i−1‖ < ε.
Let i = 1. If we suppose that ‖zn∗+1 − z′n∗‖ ≥ ε, it results that

ε ≤ ∥
∥zn∗+1 − z′n∗

∥
∥ ≤ ∥

∥zn∗ − z′n∗
∥
∥ + 3

(

αn∗ + γn∗
)

M <
∥
∥zn∗ − z′n∗

∥
∥ +

ε

2
, (3.26)

so ‖zn∗ − z′n∗‖ > ε/2. In consequence of this, φ(‖zn∗ − z′n∗‖) > φ(ε/2).
In (3.23), we note that

7kαn∗M2 + 2M2(kn∗ − 1) + 6γn∗M2k + 2Mσn∗

≤ 7kM2 φ(ε/2)

56M2k
+ 2M2φ(ε/2)

16M2
+ 6M2k

φ(ε/2)

48M2k
+ 2M

φ(ε/2)
16M

=
φ(ε/2)

8
4 =

φ(ε/2)
2

,

(3.27)

so

φ
(∥
∥zn∗ − z′n∗

∥
∥
) − 7kαn∗M2 − 2M2(kn∗ − 1) − 6γn∗M2k − 2Mσn∗ ≥ φ(ε/2)

2
, (3.28)

Hence, in (3.23), remains

∥
∥zn∗+1 − z′n∗

∥
∥
2 ≤ ε2 − αn∗φ

(∥
∥zn∗ − z′n∗

∥
∥
)

+ 2γn∗M2. (3.29)
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In the same manner,

φ
(∥
∥zn∗ − z′n∗

∥
∥
) − 2

γn∗

αn∗
M2 > φ

(ε

2

)

− φ(ε/2)
2

> 0, (3.30)

so

∥
∥zn∗+1 − z′n∗

∥
∥
2 ≤ ε2. (3.31)

This is absurd. By the same idea and by using the induction method, we obtain that
‖zn∗+i − z′n∗+i−1‖ < ε, for every i ≥ 0. This assure that ‖zn+1 − z′n‖ → 0. In the second case
(ii), definitively, ‖zn+1 − z′n‖ − en ≥ 0, then, from the strict increasing function φ, we have

φ
(∥
∥zn − z′n

∥
∥
) ≥ φ

(∥
∥zn+1 − z′n

∥
∥ − en

)

. (3.32)

Substituting (3.32) and (3.20) into (3.18) and simplifying, we have

∥
∥zn+1 − z′n

∥
∥
2 ≤ ∥

∥zn − z′n−1
∥
∥
2 + α2

n

∥
∥zn − z′n−1

∥
∥
2 + 2αn(kn − 1)

∥
∥zn − z′n−1

∥
∥
2

+ 6αnkn
(

αn + γn
)

M2 − 2αnφ
(∥
∥zn+1 − z′n

∥
∥ − en

)

+ 2αnσnM + 2γnM2

≤ ∥
∥zn − z′n−1

∥
∥
2 − 2αnφ

(∥
∥zn+1 − z′n

∥
∥ − en

)

+ α2
nM

2

+ 2αn(kn − 1)M2 + 6αnkn
(

αn + γn
)

M2 + 2αnσnM + 2γnM2.

(3.33)

By virtue of Lemma 2.3, we obtain that limn→∞‖zn − z′n−1‖ = 0.

References

[1] K. Goebel and W. A. Kirk, “A fixed point theorem for asymptotically nonexpansive mappings,” Pro-
ceedings of the American Mathematical Society, vol. 35, pp. 171–174, 1972.

[2] F. E. Browder, “Nonexpansive nonlinear operators in a Banach space,” Proceedings of the National Acad-
emy of Sciences of the United States of America, vol. 54, pp. 1041–1044, 1965.

[3] J. Schu, “Iterative construction of fixed points of asymptotically nonexpansive mappings,” Journal of
Mathematical Analysis and Applications, vol. 158, no. 2, pp. 407–413, 1991.

[4] E. U. Ofoedu, “Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocon-
tractive mapping in real Banach space,” Journal of Mathematical Analysis and Applications, vol. 321, no.
2, pp. 722–728, 2006.

[5] H. Zhou, “Demiclosedness principle with applications for asymptotically pseudo-contractions in Hil-
bert spaces,” Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 9, pp. 3140–3145, 2009.

[6] L.-C. Ceng, Q. H. Ansari, and J.-C. Yao, “Strong and weak convergence theorems for asymptotically
strict pseudocontractive mappings in intermediate sense,” Journal of Nonlinear and Convex Analysis. An
International Journal, vol. 11, no. 2, pp. 283–308, 2010.
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