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We prove the existence of fixed point and uniqueness of quasi-contractive mappings in modular
metric spaces which was introduced by Ćirić

1. Introduction and Preliminaries

In this paper, we prove the existence and uniqueness of fixed points of quasi-contractive
mappings in modular metric spaces which develop the theory of metric spaces generated
by modulars. Throughout the paper X is a nonempty set and λ > 0. The notion of a metric
modular was introduced by Chistyakov [1] as follows.

Definition 1.1. A function ω : (0,∞) ×X ×X → [0,∞] is said to be a metric modular on X (or,
simply, a modular if no ambiguity arises) if it satisfies three axioms:

(i) for any x, y ∈ X, ωλ(x, y) = 0 for all λ > 0 if and only if x = y;

(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0, and x, y ∈ X;

(iii) ωλ+μ(x, y) ≤ ωλ(x, z) +ωμ(z, y) for all λ, μ > 0 and x, y ∈ X.

Definition 1.2. Let (X, ω) be a metric modular space.
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(1) A sequence {xn} in Xω is said to be ω-convergent to a point x ∈ X if, for all λ > 0,

ωλ(xn, x) −→ 0 (1.1)

as n → ∞.

(2) A subset C of Xω is said to be ω-closed if the ω-limit of a ω-convergent sequence of
C always belongs to C.

(3) A subset C of Xω is said to be ω-complete if every ω-Cauchy sequence in C is ω-
convergent and its ω-limit is in C.

Definition 1.3. The metric modular ω is said to have the Fatou property if

ωλ

(
x, y

) ≤ lim inf
n→∞

ω
(
xn, y

)
(1.2)

for all y ∈ Xω and λ ∈ (0,∞), where {xn} ω-converges to x.

2. Main Results

Definition 2.1. Let (X, ω) be a metric modular space, and let C be a nonempty subset of Xω.
The self-mapping T : C → C is said to be quasi-contraction if there exists 0 < k < 1 such that

ωλ

(
T(x), T

(
y
)) ≤ kmax

{
ωλ

(
x, y

)
, ωλ(x, T(x)), ωλ

(
y, T

(
y
))
, ωλ

(
x, T

(
y
))
, ωλ

(
T(x), y

)}

(2.1)

for any x, y ∈ X and λ ∈ (0,∞).

Let T : C → C be a mapping, and let C be a nonempty subset of Xω. For any x ∈ C,
define the orbit

O(x) =
{
x, T(x), T2(x), . . .

}
(2.2)

and its ω-diameter by

δω(x) = diam(O(x)) = sup{ωλ(Tn(x), Tm(x)) : n,m ∈ N)}. (2.3)

Lemma 2.2. Let (X, ω) be a metric modular space, and let C be a nonempty subset of Xω. Let T :
C → C be a quasi-contractive mapping, and let x ∈ C be such that δω(x) < ∞. Then, for any n ≥ 1,
one has

δω(T(x)) ≤ knδω(x), (2.4)

where k is the constant associated with the mapping of T . Moreover, one has

ωλ(Tn(x), Tn+m(x)) ≤ knδω(x) (2.5)
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for any n,m ≥ 1 and λ ∈ (0,∞).

Proof. For each n,m ≥ 1, we have

ωλ

(
Tn(x), Tm(y

)) ≤ kmax
{
ωλ

(
Tn−1(x), Tm−1(y

))
, ωλ

(
Tn−1(x), Tn(x)

)
,

ωλ

(
Tm−1(y

)
, Tm(y

))
, ωλ

(
Tn−1(x), Tm(y

))
, ωλ

(
Tn(x), Tm−1(y

))}

(2.6)

for any x, y ∈ C and λ ∈ (0,∞). This obviously implies that

δω(Tn(x)) ≤ kδω
(
Tn−1(x)

)
(2.7)

for any n ≥ 1. Hence, for any n ≥ 1, we have

δω(Tn(x)) ≤ knδω(x). (2.8)

Moreover, for any n,m ≥ 1, we have

ωλ(Tn(x), Tn+m(x) ≤ δω(Tn(x)) ≤ knδω(x). (2.9)

This completes the proof.

The next lemma is helpful to prove the main result in this paper.

Lemma 2.3. Let (X, ω) be a modular metric space, and let C be a ω-complete nonempty subset of
Xω. Let T : C → C be quasi-contractive mapping, and let x ∈ C be such that δω(x) < ∞. Then
{Tn(x)} ω-converges to a point ν ∈ C. Moreover, one has

ωλ(Tn(X) − ν) ≤ knδω(x) (2.10)

for all n ≥ 1 and λ ∈ (0,∞).

Proof. From Lemma 2.2, we know that {Tn(x)} is a ω-Cauchy sequence in C. Since C is ω-
complete, then there exists ν ∈ C such that {Tn(x)} ω-converges to ν. Since

ωλ(Tn(x), Tn+m(x)) ≤ knδω(x) (2.11)

for any n,m ≥ 1 and ω satisfies the Fatou property, and letting m → ∞, we have

ωλ(Tn(x), ν) ≤ lim inf
m→∞

ωλ(Tn(x), Tn+m(x)) ≤ knδω(x). (2.12)

This completes the proof.
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Next, we prove that ν is, in fact, a fixed point of T and it is unique provided some extra
assumptions.

Theorem 2.4. Let T,C, and x be as in Lemma 2.3. Suppose thatωλ(ν, T(ν)) < ∞ andωλ(x, T(x)) <
∞ for all λ ∈ (0,∞). Then the ω-limit of {Tn(x)} is a fixed point of T , that is, T(ν) = ν. Moreover, if
ν∗ is any fixed point of T in C such that ωλ(ν, ν∗) < ∞ for all λ ∈ (0,∞), then one has ν = ν∗.

Proof. We have

ωλ(T(x), T(ν)) ≤ kmax{ωλ(x, ν), ωλ(x, T(x)), ωλ(ν, T(ν)), ωλ(x, T(ν)), ωλ(T(x), ν)}.
(2.13)

From Lemma 2.3, it follows that

ωλ(T(x), T(ν)) ≤ kmax{δω(x), ωλ(ν, T(ν)), ωλ(x, T(ν))}. (2.14)

Suppose that, for each n ≥ 1,

ωλ(Tn(x), T(ν)) ≤ max{knδω(x), kωλ(ν, T(ν)), knωλ(x, T(ν))}. (2.15)

Then we have

ωλ

(
Tn+1(x), T(ν)

)

≤ kmax
{
ωλ(Tn(x), ν), ωλ

(
Tn(x), Tn+1(x)

)
, ωλ(ν, T(ν)), ωλ(Tn(x), T(ν)), ωλ

(
Tn+1(x), ν

)}
.

(2.16)

Hence we have

ωλ

(
Tn+1(x), T(ν)

)
≤ kmax{knδω(x), kωλ(ν, T(ν)), ωλ(Tn(x), T(ν))}. (2.17)

Using our previous assumption, we get

ωλ

(
Tn+1(x), T(ν)

)
≤ max

{
kn+1δω(x), kωλ(ν, T(ν)), kn+1ωλ(x, T(ν))

}
. (2.18)

Thus, by induction, we have

ωλ(Tn(x), T(ν)) ≤ max{knδω(x), kωλ(ν, T(ν)), knωλ(x, T(ν))} (2.19)

for any n ≥ 1 and λ ∈ (0,∞). Therefore, we have

lim sup
n→∞

ωλ(Tn(x), T(x)) ≤ ω(ν, T(ν)) (2.20)
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for all λ ∈ (0,∞). Using the Fatou property for the metric modular ω, we get

ωλ(ν, T(ν))lim inf
n→∞

ωλ(Tn(x), T(ν)) ≤ kω(ν, T(ν)) (2.21)

for all λ ∈ (0,∞). Since k < 1, we get ωλ(ν, T(ν)) = 0 for all λ ∈ (0,∞), and so T(ν) = ν.
Let ν∗ be another fixed point of T such that ωλ(ν, ν∗) < ∞ for all λ ∈ (0,∞). Then we

have

ωλ(ν, ν∗) = ωλ(T(ν), T(ν∗)) ≤ kωλ(ν, ν∗), (2.22)

which implies that

ωλ(ν, ν∗) = 0 (2.23)

for all λ ∈ (0,∞). Hence ν = ν∗. This complete the proof.
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