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A construction approach for the 3-band tight wavelet frames by factorization of paraunitary matrix
is developed. Several necessary constraints on the filter lengths and symmetric features of wavelet
frames are investigated starting at the constructed paraunitary matrix. The matrix is a symmetric
extension of the polyphase matrix corresponding to 3-band tight wavelet frames. Further, the
parameterizations of 3-band tight wavelet frames with 3N + 1 filter lengths are established.
Examples of framelets with symmetry/antisymmetry and Sobolev exponent are computed by
appropriately choosing the parameters in the scheme.

1. Introduction

In the theory and applications of wavelets and wavelet frames, certain properties are always
desirable. It is well known that symmetry and high vanishing moments are very important
features of all wavelets. Symmetry, which is also called linear phase in the language of
engineering, is claimed to improve the rate-distortion performance in image compression
[1, 2]. On the one hand, parameterizations of FIR systems are of fundamental importance to
the design of filters with the desired properties [1, 3]. On the other hand, the advantages of
MRA-based tight wavelet frames and their promising features in applications have attracted
a great deal of interest and effort in recent years to extensively study them (e.g., [4-15]).
The main tools for construction and characterization of wavelet frames are the unitary
extension principle (UEP) [16] and its versions generalized such as OEP and MEP [17].
They give sufficient conditions for constructing MRA-based tight and dual wavelet frames.
Many authors have worked on the design of wavelet frames with good properties. Most deals
with 2-band wavelet frames systems, and a few authors have studied M-band framelets [8].
M (> 2)-band wavelets have advantages over dyadic wavelets in some aspects. For example,
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it enables a finer frequency partitioning and can provide a more compact representation of
signals [18-21].

This paper deals with the construction of 3-band tight wavelet frames filters with
prescribed properties using factorization and parameterizations of the paraunitary matrices.
The parameter space describing 3-band wavelets is much richer than that in 2-band case; thus,
it has greater freedom and flexibility. Concretely, with the describing of unitary extension
principle (UEP) in the polyphase representation, we firstly construct a paraunitary matrix
based on the polyphase matrix corresponding to compactly supported wavelet frames with
the least number generators. Further, we establish necessary constraints on the filter lengths
and symmetric features of wavelet frames. Then, we investigate the parameterizations of 3-
band tight wavelet frames with 3N + 1 filter lengths. Finally, examples of 3-band wavelet
frames with symmetry/antisymmetry and good smoothness are given by applying the
proposed scheme.

Throughout this paper, let N and Z denote the sets of all natural numbers and integers,
respectively. Let A*, AT, and Tr(A) denote conjugate transpose, transpose and the trace of A,
respectively. Let A = [aij],;.,, 1 <1 < m; 1 < j < ndenote the m x n matrix with elements
ajj, for convenience, we omit the subscript m x n when m = n. Let I, denotes the n x n
identity matrix and J, denote the n x n exchange matrix with ones on the antidiagonal.
For s > 0, we use W?®(R) denote the Sobolev space consisting of all functions f with
(1 +|w]?)*? f(w) € L2(R). In this paper, we only consider compactly supported wavelet frame
and causal sequence with real finite impulse response (FIR), such sequences can be identified
with Laurent polynomial defined by h(z) = 35, hxz ¥, where 0 and K are the smallest and
largest indices that hy is nonzero, respectively. Assumpsit: h(w) = h(z) and z = . We use
leng(h) = K + 1 to denote the filter length of h.

2. UEP of Tight Framelets in Terms of Polyphase Representation

In this section, we introduce some notation and state needed results that will be used later in
this paper. Let refinable functions ¢° with dilation factor 3 generate a multiresolution analysis
(MRA) {V}};cz of L*(R) and ¥ = {¢,...,¢"} C Vi. Then for real-value sequence hey, ¢,
¢=0,1,2,...,r satisfy

¢ (x) =3 Z hexy’(Bx - k), 2.1)
kez
or equivalently
F° (Bw) = he(w)§" (w), (2.2)

where hy(w) = Sy hexe @ or rewritten he(z) = Xy hexz X, z = 7. hy is called a
refinement mask or the low filter, and hy, € = 1,2, ..., r are called wavelet masks or the high
pass filters of the system, respectively. For notational convenience, refinement mask together
with wavelet masks {hy, hy, ..., h,} is also called combined MRA masks in [7].
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For given ¥ = {¢!,...,¢"} C L%(R), define the wavelet system as X (¥) = {qrf,k,f =
1,...,1; j,k € Z}, where qr]‘.fk =312¢*3Ix-k), j ke Z.

Definition 2.1. The system X (¥) is called an MRA-based 3-band tight wavelet frames of L?(R)
if

1) ¥cw,

(2) X(W¥) is tight wavelet frames, that is,

P = 2 3 S| (£ ) 03

¢=0 jeZ keZ

holds forall f € L*(R). Furthermore, elements (p].e w € =1,...,r are said to be framelets.
If we introduce the following two block matrices: modulation matrix

2k
M(w) = [he (w + —71_)] , (2.4)
3 0<e<r,0<k<2

and polyphase matrix

P(2) = [pen(2)]ococroencar (2.5)
where
Pe (Z)=Lzh€3k+zik =0,....r, n=0,1,2 Z:ei‘” (26)
, \@ keZ '

then we describe the UEP for 3-band tight wavelet frames in terms of modulation matrix and
polyphase matrix as follows.

Lemma 2.2. Let ¢° € L?(R) be a compactly supported refinable function generated by finitely
supported refinement mask ho with q?o (0) = 1. Then for combined MRA masks {ho, h1, ..., h.}, the
system X (W), where ¥ = {¢',..., ¢} defined by (2.1) or (2.2) forms an MRA-based 3-band tight
wavelet frame of L*(R) provided one of the following hold for w € [-ar, 7r].

(a) Modulation matrix M(w) is paraunitary, that is M*(w) M(w) = L.
(b) Polyphase matrix P(z) is paraunitary, that is P*(z)P(z) = I5.
Symmetry and high vanishing moments are very important features of all wavelets.

Definition 2.3. A casual FIR filter q(z) = Y5, qrz " is called symmetric/antisymmetric, if
zKq(z™") = tq(z), t = 1, where K/2 is called the center of q(z).
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Lemma 2.4. Suppose that the mask he(z) = ZII;"O hexz™* is symmetric/antisymmetric, then ¢
defined by (2.1) is symmetric/antisymmetric about Ko /2, respectively, that is, ¢ (K¢ — x) = tgé(x),
where € =0,1,2,...,r.

The vanishing moments of wavelets is related to the order of sum rules.

Definition 2.5. The refinement mask hy(w) has the sum rules of order p, if
hO(‘U)lw:O = 1/ h(()m) (w)|w:2lyr/3 = 0/ l = 1/ 2/ m = 0/ 1/ e /]9 - 1/ (27)
or equivalently

}k;gkkmho,k =0, m=0,1,...,p-1, §=&"". (2.8)

Lemma 2.6. Suppose that the wavelet mask hy(w) satisfies hfgm) (W)|w=0 =0,m=0,1,...,p-1,
then ¢ defined by (2.1) has vanishing moments of order pq, respectively, that is, [ x™¢*dx =0, m =
0,1,...,pe—1. Where€=1,2,...,r.

3. Symmetry Transform

In this section, we will firstly construct a paraunitary matrix based on the polyphase matrix
corresponding to 3-band compactly supported wavelet frames. Further, we will establish
necessary constraints on the filter lengths and symmetric features of wavelet frames.

3.1. Construction of Paraunitary Matrix Based on the Polyphase Matrix

From now on, we only consider the least number wavelet frames with 7 = 3 and for the sake
of convenience, we rewrit refinement mask and wavelet frame mask associated with ¢ and
¢*, € =1,2,3, respectively, that is, h(z) = e, ez ™%, §(2) = Sier k27, f(2) = Sier frz ",
8(z) = Yyez skz ¥, where z = .

Suppose casual FIR filter h, g, f, s are symmetric/antisymmetric and hsisn(2),
faken(2), L3k+n(2), S3k+n(2), 1 = 0,1,2 defined by (2.4). For L € Z, define

h3k(z) hski1(2) hak2(z) hm(z)
_ | &3k (2) $3k+1(2) 3k42(2) gm(2)
AL(z) = f3(2) fak(2) far2(z) fum(2) |’ @1

s3k(2) S3k41(2) S3k+2(2) Sm(2)
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where

$(z) ga(z™) grn(z™)
fac(z) fan(zh) faka(z7h)

sak(z7h) saks1(z7) saksa(z7h)
h3i(z71) haksa (z27) hsraa(271)
fax(z71) fa(z™) fokaa(z)
S3k (Z_l) S3k+1 (Z_l) 53k+2(z_1)
hak(z7') haiea (z271) haea(z7h)

3k (z7") gk (z!) Garaa(zh)|, (3.4)
ssk(z7") saa(z7) sakea(z7)

h3k(z7') hsken (z27) haka(z7h)
gk(z7") gare1(zh) gare2(zh)|
fa(z) fan(z7h) faran(z)

hp(z) = —z7L , (3.2)

gm(z) = z L , (3.3)

fm(z) = _Z_L

sm(z) =zt (3.5)

Then A (z) can be seen as a symmetry paraunitary extension of polyphase matrices P(z)
with r = 3, and have the following theorem and further investigation.

Lemma 3.1. Let M(z), P(z), and Ar(z) are defined in (2.4), (2.5), and (3.1). Then the following
three statements are equivalent.

(@ MT(z)M(z™") = I5;
(b) PT(2)P(z™") = I;
() AL(2)AL(z™) = L.

From the foregoing discussion

h(z) 1
3 -1

= Ya(=) |2 6)

s(z) 0

Further, if h, g, f, s are causal, then for a sufficiently large L, A is also causal. A paraunitary
and causal FIR matrix can be factorized into the products of UgU1(z) - - - Uk(z) [1, 3], where
k € Ny. So far, the construction for FIR filters h, g, f, s converted the design for 4 x 4
paraunitary matrix Ay (z).

3.2, Investigation on Filter Lengths and Symmetry Features

The main content of this section is to investigate the constraint conditions of filter lengths
and symmetric features of wavelet frames in order to discuss the method for construction
framelets with desired properties.

Theorem 3.2. Let h, g, f, s are symmetric/antisymmetric nonzero FIR filters with the centers of
symmetry N/2, K/2,5/2,T/2, respectively, where N, K, S, and T € Z. If M is paraunitary, then



6 Journal of Applied Mathematics

(1) leng(h) = leng(g).
(2) leng(f), leng(s) have the same parity.

Proof. (1) By the conditions of h, g, f, s, we have leng(h) = 2k; + N + 1, leng(g) =2ko + K +1,

leng(f) =2kz +S+1,leng(s) = 2ky + T + 1, where ki, ky, k3, ks € Z. From the paraunitariness

of M, we have |h(z)|* + |g(2)[> + |f (2)|* + |s(z)|* = 1, leng(h) = leng(g). Thus N - K is even.
(2) From the paraunitariness of M, we obtain

h(z)h<212‘1> + g(z)g(zlz’1> + f(z)f(zlz‘1> + s(z)s(zlz‘1> =0, (3.7)
or

h(z_1>h(zlz) + g(z‘l>g(zlz) + f(z_1>f(zlz) + s(z_1>s(zlz) =0, (3.8)
where z; = —=1/2 + (v/3/2)i or z; = =1/2 - (+/3/2)i. From the symmetric of h, g, f, s, we have

h<Z_1>h(le) = (—1)Nh(z)h<21z‘1), g(z“1>g(z1z) = (—1)Kg(z)g<zlz‘1>,

(3.9)
f(z’1>f(zlz) = (—1)Sf(2)f(21zfl>, s(z*1>s(zlz) = (—1)T5(z)s<zlz*1>_

Further,

DOVR@R(2z ") + () g()g(2127) + (D f(2)f (2127) + (-1 s(2)s(z127") =0.

(3.10)
Thus
(1 - (—1)K_N>g(z)g<zlz‘1>+ <1 - (—1)5_N>f(z)f(zlz‘1> +<1 - (—1)T_N>s(z)s<zlz‘1> =0.
(3.11)
Since N - K is even, hence
(1 - (—1)5*N> f(z) f<zlz‘1> + (1 - (—1)T*N>s(z)s(zlz-1) = 0. (3.12)

Obviously, T — N is even when S — N is even. Assume that T — N is even when S — N is odd,
then we have f(z) f(z1 z~1) = 0, which is contradiction since f is nonzero filter. O

Without loss of generality, we give two assumptions of the casual filters h, g, f, s:

(1) leng(h) =leng(g) =leng(f) =leng(s)(mod3);
(2) leng(h) = leng(g) >leng(f) > leng(s).

Then we have the following Theorem.
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Theorem 3.3. Let

3y-1 3y-1 3my-1 3my-1

hz) =Y hz*,  g@)=Y gzt f@=Y izt  s@= Y sz* (313)
k=0 k=0 k=0 k=0

are the causal filters and satisfy hg#0 and y > my > my, y € N. Suppose (3y — 1) /2 is the center of
h(z) and g(z) = toz" @ Vg(z™), f(z) = 1z Cm TV f(z71), 5(z) = bz CmVs(z ), tj =41, j=
0,1,2,3. If M is a paraunitary matrix, then

(1) leng(hak) + v, leng(gsk) + v, leng(fzx) + m1, and leng(szk) + my are even;
Q) to+t; +t+tohita =0, 1+ 9 + (_1))’*"111.1 + (—1)Y7m2t2 + (—1)Y(t0i’1t2 -1)=0;
(3) ArL(z) = Ar,(2) defined by (3.1) with Ly = y + (1/2)(mq + my) —2 is causal, paraunitary,

and satisfies

AL (Z) = Z_(Y_l) d1ag<1, to, tlz"(’”l‘Y), tzZ_(mz_Y)>AL <Z_1>diag(]3, _t0t1t2). (314)
Proof. By the symmetry of h, g, f, s, we have

z 0 Dhse <Z_1> = h3ki2(2), 270V haen <z 1) = hakn (2);
1
)

z 0 gy <Z‘1) =togaaa(z), 2 Vgyen (z = togsk+1(2);
(3.15)
z7m= fop <Zfl> =t fak+2(2), 2 mD <Zfl> =t fak+1(2);
z Mgy <Z_1> = tr5342(2), z Mgy (Z_1> = tr53k41(2).
Take them into h,, defined by (3.2), we have
(231 (z7!) o (z7!) garn(zh)
hu(z) ==z fac(z71) farna(z7) farsa(z7)
[s3c(z7!) sake1(z7h) sarea(z7h)
[ 2 ogakin(z) 2 Hogska1(z) 2V Mtoga(2)
= —z7 527 farin(2) 2™ fake(z) 2™ fak(z)
| 2™ ) S5k40(2) 2™ S50 (2) 2™ Mo sak(2) (3.16)

$3k(2)  ke1(2) $3ks2(2)
=z b zm bz b | fak(z)  fakei(2) faken(2)
S3k+2(2) S3k+1(2) S3k42(2)

= —totl tzZ_(ZL_Y_ml_m2+3) hm <Z_1 ) .
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Similarly, for g, fm, sm defined by (3.3)—(3.5), we also have

gm(Z) = —tltzz’(ZL*Y’M1*mZ+3)gm <Z,1>’
fm(Z) = —totzz_(zL—zY_m2+3)fm <2_1>’ (317)

Sm(z) = —tot 2~ CL2rm*3) g (Z_1>.
Thus, Ar(z) defined by (3.1) satisfies with

Al (z) = Z_(Y—l) d1ag<1, to, tlz—(mr)’), tzz—(mz—)’)>AL <Z—1> dlag <]3, _totltzz—(2L—2}f—m1—m2+4)> )
(3.18)

From the paraunitariness of Ar(z), we obtain leng(h,,) = leng(hsr). Assume that

hy,(z) = @z %+ apz®D 44 (—totltz)z—<l+ leng(hs)-1) | e Z g #0. (3.19)

By symmetric of h, we have z~(* lens(hs)-Dp, (z71) = —tyt1t)h,,(2), which together with (3.17)
leads to 21+ leng(hsk) =1 = 2L — y — my — my + 3; thus, leng(hsi) +y + my +mp = 2L - 21+ 4
is even. Note that 3m; and 3m, have the same parity by Theorem 3.2, hence m; + mj is even,
leng(hsi) +y is even. One can prove similarly that leng(gsx) + 7y, leng(f3x) +m; and leng(s3x) +
m, are all even.

Let Ly = y + (1/2)(my + my) — 2. Then hy,, §m, fin, Sm defined by (3.2)—(3.5) with Lo
satisfy

hw(z) = —totltzz_(y_l)hm <z_1>, gm(z) = —tltzz‘(Y‘l)gm <z‘1 ,
(3.20)
fm(Z) = —tot2Zi(mlil)fm <Zﬁl>, Sm (Z) = —totlz’("’z’l)sm <Zﬁl>.

Note that

leng(h,,) = leng(hak) <y=y-1+1, leng(gm) =leng(gsk) <y=y-1+1,
(3.21)

leng(fm) = leng(fsx) <mp=m—-1+1, leng(sm) = leng(ssk) < mo.

Thus, hy, gm, fm, Sm are casual, A(z) = A, (z) is casual, paraunitary, and satisfies (3.14).
Set z =1and z = -1 in (3.14), then we have

Tr(dlag (1, tQ, t1, tz)) = Tr(diag(]3, —fotltz)),

(3.22)
Tr((—l)_y d1ag(1, to, (—1))/_m1 i‘1, (—1)Y_m2t2)) = Tr(diag(]3, —totltg)),

which imply (2.2). O
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With similar arguments we can prove the others case and present the following two
theorems as follows.

Theorem 3.4. Let

3y 3y 3my 3my
h(z) =Y hez*,  g@=>&z"  f@=Dfiz"  s@)=>D sz (323
k=0 k=0 k=0 k=0

are the causal filters and satisfy ho #0 and y > my > my, y € N. Suppose (3y) /2 is the center of h(z)
and g(z) = toz™g(z™), f(z) = bz f(z7!), s(z) = hz"™s(z7™"), t; =+1,j=0,1,2,3. f M is
a paraunitary matrix, then

(1) y + myq and y + m; are even.

(2) to+ty +ty +totita =0, 1+ 1ty + (1) ™ty + (1), + (=1) (tot1t, — 1) = 0.

(3) Ar(z) = Ar,(2) defined by (3.1) with Ly = y + (1/2)(my + my — 2) is causal, paraunitary
and satisfies

AL(Z) =z d1ag<1, to, tlz"(ml‘Y), tzZ_(mZ_Y)>AL <z‘1>diag(1, Z]z, _totltz). (324)

Theorem 3.5. Let

3y+1 3y+1 3my+1 3my+1

h(z)= Dz, gz) =D&z, f2)= D fiz®,  s(z)= D skz* (3.25)
k=0 k=0 k=0 k=0

are the causal filters and satisfy ho #0 and y > my > my, y € N. Suppose (3y + 1)/2 is the center
of h(z) and g(z) = toz~ @V g(z™), f(z) = iz O f(z71), 5(z) = thz O Dg(z), t; = +1,
j=0,1,2,3. If M is a paraunitary matrix, then

(1) leng(hsk) + v, leng(gsk) + v, leng(fsx) + my, and leng(ssk) + my are even;
(2) to + t1 + t2 + totltz = 0, 1+ i’o + (—1)Y_mlt1 + (—1)Y_m2t2 + (—1)Y(t0t1t2 - 1) = 0,‘

(3) Ar(z) = Ar,(2) defined by (3.1) with Ly = y + (1/2) (i1 + my) is causal, paraunitary and
satisfies

Ar(z) =z 0D diag(l, to, 1z, tzz"(mz‘Y)>AL <z-1)diag( Ja, z, ~totita). (3.26)

So far, we have completed the further extension of the our previous work in [22], that is, we
presented the several necessary constraints on the filter lengths and symmetric features of
wavelet frames. By using these properties, Ar (z) defined by (3.1) can be divided into several
categories according to the different length of masks. Then we can improve the condition of
Ar(z) in the following work and prepare for the parameterizations. This paper is devoted to
give the parameterizations of 3-band tight wavelet frames with 3N + 1 filter lengths.
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4. The Parameterizations for Combined MRA Masks with 3N + 1
Filter Lengths

For simplicity we give the following two assumptions:

(1) leng(h) = leng(g) = 3y+1, leng(f) = leng(s) =3m +1;

2y m=1(mod 3),0<y-m<2.

4.1. The Case of y = 3n+1

For A (z) with L = 6n + 1 in (3.1), denote A(z) = Ar(z), then (3.24) can be converted to
A(z) = z7®D diag(1, to, t1,tz)A<z_1)diag(l,diag(z,Z)fz, —totitr). (4.1)
While
fo+t +t+totitr =0, H=+1,i=1,2,3 (4.2)

imply that

(i) The first case: one of t; is 1 and the other two are —1;

(ii) The second case: one of t; is —1 and the other two are 1.

Lemma 4.1. For A(z) in (4.1), let
B(z) = A(z)diag(1, Ry, 1), (4.3)
where Ry = (v2/2)[1 7], then A(z) satisfies if and only if B(z) satisfies
B(z) = z7V diag(1, to, t1, tz)B<z*1>diag(1, z,—z,—tot1£2). (4.4)

(i) For the first case, without loss of generality, suppose to = 1, t; = t, = -1, (4.4) is
converted to

Z—(3n+1) dlag(l, 1/ _1/ _1)B(Z—1>diag(1/ z,-z, —]_) = B(Z) (45)
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To give the parameterizations of B(z) satisfying (4.5), one defines

(V2 V2 V2 V2]

4 4 4 4
NN
N B e
2 2 0 0 0 0
Wo@=1" " v2 v2[T] 0 o0 0o o
5 7 5 V3 A3 B
vi vaviva| ld T 7 07

T 1 1 1

One can check that Wy(z) is paraunitary and satisfies
Wo(z) = z diag(l, z-l,—z-l,—1>wo <z-1)diag(1, 1,-1,-1).
Lemma 4.2. For B(z) in (4.3), define
E(z) = B(z)Wy(2).
Then E(z) satisfies

E(z) = z*" diag(1,1, —1,—1)E(z‘1>diag(1,1,—1,—1).

z.

11

(4.6)

(4.7)

(4.8)

(4.9)

Lemma 4.3. Let a paraunitary matrix E(z) defined by (4.8), then for n = 0, E(z) have the form of

cosB; pisind; 0 0
P sinf; —picost; O 0
0= 0 0 cosB, pasind,
0 0 sinf, —p;cosbs

where 0 € [~m, ), pj =+1, j € Z

Proof. Letn =0, (4.9) is converted to
E(z) = diag(1,1,-1,-1)E(z)diag(1,1,-1,-1).
If set4 x 4 matrix Py = [a;;],1,j = 1,2,3,4, then we can obtain

2 2 2 2

ap +ap=1, ay +ay =1, ayax + apaxn =0,
2 2 2 2

a3 +az =1, aptay =1, azzags + azas =0,

A13=0a14 =03 =dy =az = azp =dy = dgp = 0.

Assume that aj; = cos 01, az; = cos 0,, then (4.10) is obtained immediately.

(4.10)

(4.11)

(4.12)
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Remark 4.4. For convenience, we only choose the following form of P, in the following:

cosf sinf 0 0
sin@ —cosf® 0 0
b= 0 0 cosO sinf |’ (4.13)

0 0 sinf® -cos@

Lemma 4.5. Let a paraunitary matrix E(z) satisfies (4.8), then for n = 1, E(z) have the form of

0
111 . .
V(z) = 5| [cos a1, sin aq, cos ap, sin a;]
0
1
110], . . 1
+ 5 o [sinay, —cos ay, sin ap, — cos ax |z
1
(4.14)
1
01, . . 2
+ 5l o [sinay, —cosay, —sinay, cosar ]z
=
07
111 . . 3
+ 51 [cos a1, sinay, —cosay, —sinay |z,
| 0 ]
where aj € [~ o), j=1,2.
Proof. When n =1, (4.9) is converted to
E(z) = z3 diag(1, 1, —1,—1)E<z‘1> diag(1,1,-1,-1). (4.15)

Suppose E(z) = A+ Bz '+ Cz 2+ Dz, here A, B,C, D are all 4 x 4 matrices. Let A = [a;;]
then, from the paraunitariness of E(z), we have

[cos a1, sinay, cos ay, sin ay ],
(4.16)

a
b
c
d
e
11f . .
D= 3 o [cosay,sinay, —cos ay, —sinay],
h
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where b, ¢, f, g are all not zeros or a, d, e, h are all not zeros. Now suppose b, ¢, f, g are all
not zeros, thenb=f=1,c=-g=1.
Similarly, B and C are given as follows:

17
110] .. .
B= 5o [sinay, —cosay, sinay, —cos az],
[ 1]
(4.17)
o
11p], . .
C= 5| [sinay, —cosay, —sin ay, cos ay].
[ d]
Equation (4.14) is obtained. O

Theorem 4.6. A causal paraunitary matrix filter E(z) defined by (4.8) for some n € N if and only if
it can be factorized in the form of

E(z) = PoVi(2) -+~ Vu(2), (4.18)

where Py is defined by (4.13) with 0 € [-or, o) and Vi(z), j = 1,2 are defined by (4.14) with
aj € [-m,m),j=1,2.

Proof. If E(z) can be factorized as (4.18), then it is a causal paraunitary filter and satisfies (4.9).
Conversely, we set a paraunitary matrix E,(z) = eg + 1z} + - - + e,27°" satisfies with (4.18),
where n € N. If n =0, it is easy to get that E(z) is Py. Forn € N \ {0}, define

Eni1(z) = En(z)VT (z-l), (4.19)

where V(z) is defined by (4.14). Now we prove that there exists aj, ay such that E,_1(z)
defined by (4.19) is causal. From VT (z!), we only need to prove that there exists a;, a; such
that

ep[sin ay, — cos ay, sin ap, — COS zxz]T =0, (4.20)
eg[sin a1, — cos a1, —sin ay, cos zxz]T =0, (4.21)
eg[cos a1, sin a1, — cos ap, — sin az]T =0, (4.22)
e1[sinay, — cos a1, —sin ay, cos az]T =0, (4.23)
e1[cos a1, sin a1, — cos ap, — sin az]T =0, (4.24)
ex[cos a1, sinay, — cos ap, — sin az]T =0. (4.25)

Let us start by discussing the case ey = 0. Then (4.20)—(4.22) hold. By the symmetry
of E,(z), ej = diag(1,1,-1,-1)es,-; diag(1,1,-1,-1), 0 < j < 3n. By the paraunitariness of
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E,(z), 6165,#1 = 0. Then we have e; diag(1,1,-1, —1)elT = 0, rank(ey) < 2. For simplicity, we
only consider the case rank(e;) = 1 in the following. Let e; = u;[cos 61, sin 01, cos 6,,sin 6,],
u; € R*, 01,0, € [~a, ). Then for a; = 0y, ay = 05, (4.23) and (4.24) hold. Let Q = e,
[cos By, sin B;, — cos By, —sin B;]", by the paraunitariness of E,(z), e1 es +eel =0.Then we
have u; QT + Qu{ = 0. Itis clear that Q = 0 since u; #0. Then (4.25) holds for a; = 01, a; = 6,.

If eg #0, we have eoegn =0and e3, = diag(l,1,-1,-1)epdiag(1,1,-1,-1). Leteg = uy
[cos B1,5in B4, cos O, sin 6,], then (4.20)—(4.22) hold for ay = 61, a; = 6,. Similarly, when
e1 = up[-sinby,cosbq,—sinb,,cosb,], (4.23), and (4.24) hold for a; = 61, a = 6,. Let
Q = ez[cosay, sin ay, — cos ap, — sin az]T, from the paraunitariness of E, (z), we have elegn_l +
ezegn = 0. Thus, u,QT + ng = 0. It is clear that Q = 0 since u; #0. So (4.25) holds for a; = 61,
ay = 92.

So E,_1(z) is causal and E,,_1(z) can be factorized in the form of E,_1(z) = PyVi(z) - --
Viu-1(z). Thus, E,(z) can be factorized in the form of E, (z) = PyVi(2) - - - V,-1(2) by induction
assumption. The proof of Theorem 4.6 is complete. O

Therefore, we have the following corollary.

Corollary 4.7. Let h(z), g(z), f(2), s(z) is symmetric or antisymmetric. If M is a paraunitary
matrix, then h(z), g(z), f(z), s(z) can be factorized as

h(z) “1++2z71+222-273
20| - VB (Y (| 1o V2 v
M fa)| 12 Vi <Z > Vi (z ) 1— ozl 42225 |/ (4.26)
s(z) 1++2z 1 —+22z2-238
or thecaseof to=1,t1 =t, = -1;
h
h(z) ~1++2z71++222-28
S| By (o (| e Va2
? fa)| 12 Vovi <Z > Vi (Z ) 1= 221+ 222 — 25 | (4.27)
s(z) 1+2z71—\2z2- 73
or the case of to = =1, t1 = 1, to = =1, where Vo = diag(1, ]2, 1) P;
g
h(z) ~1++v2z 1 +4/2272-273
] I ST WA M
© fz)] 12 toVi <Z ) Vi (Z > 1= Vo2l 4322 — 23 |7 (4.28)

s(z) 1+v2z =222 -273

for the case of tg = t; = =1, t, = 1, where Uy = diag(1, J3) .
Where Py is defined by (4.13) with 6 € [~ o) and V;(z) are defined by (4.14) with a; €
[=or, o).
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(ii) For the second case, without loss of generality, suppose tg = 1,t; = 1, , = -1, then
E(z) defined by (4.8) satisfies

E(z) = 2" diag(1,1,1, —1)E(z-1)diag(1, 1,-1,1). (4.29)

Let n = 0in (4.29), then one can get an orthogonal matrix Qo as follows:

cos@ 0 0 —ppsinf
| 0 pp O 0
Q=119 % p3 0
sin@ 0 0 pjcosf

(4.30)

Then one has the following results.

Theorem 4.8. Let E(z) is a causal paraunitary matrix filter and satisfies (4.29) for some n € N, then
E(z) cannot be factorized in the form of

E(z) = QoVi(z) -+~ Vau(z), (4.31)
for Qq defined by (4.30) with © € [-or, o) and Vi(z), j = 1,2 defined by (4.14) with a; € [~ ),
j=1,2

Proof. Suppose E(z) can be factorized in the form of (4.31). Then when n = 1, we have
Vi(z) = z 3 diag(1,1,1,-1)V} <z’1)diag(1, 1,-1,1); (4.32)

when n = 2, we have

Va(z) = 23 diag(1,1,-1,1)V; <z‘1>diag(1, 1,-1,1). (4.33)
However, (4.33) is in contradiction with (4.32). O

4.2, The Case of y =3n+2
We have the following results.

Theorem 4.9. E(z) is a causal paraunitary matrix filter defined by (4.8) for some n € N if and only
if it can be factorized in the form of

E(z) = P1V2(2)V3(2) -~ Va(2), (4.34)
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where P is defined by the following with 6; € [-or, o), j = 1,2

cosB; sinB; cosB, sin6O,
1| cosB; sinf; cosB, sinb,
Pi(z) = 2 |-2sin6; 2cos6H; 0 0
0 0 —-2sin6, 2cos b,
(4.35)
cosB; sinf; —cosB, —sinb,
1 —cosB; —sinf; cosB, sinbO, o1
2 0 0 0 0 !
0 0 0 0

and Vj(z) are defined by (4.14) with a; € [~ur, ).

Corollary 4.10. Let h(z), g(z), f(z), s(z) is symmetric or antisymmetric. If M is a paraunitary
matrix, then h(z), g(z), f(z), s(z) can be factorized as

h(z) TV, AT, R S
-1- -1_ 2 _ -3

(1) %; - §P1(Z)Vz<z3> (@) [ \/?ZZ— L ffzz_z Al ase
s(2) 1+v2z71 =222 -2

forthecasety=-1,t =1,t, =-1;

h(z)
(2) ?Eig - \1/_26d1ag(1/ 1/]2)P1(Z)V2 <Z3> .
s(z)

()

“1+v2z1+4/222-273
-1-v2z1-42z2-273
1-42z 1 +/222-2z3 |’
142z 1 —2z2-273
(4.37)

for the case of ty = t; = =1, t, = 1. Where P\(z) is defined by (4.35) with 0 € [~ur, o) and V;(z) are

defined by (4.14) with aj € [~or, 7).

Remark 4.11. In the case of ty = 1,t; = t, = —1, we cannot construct a paraunitary matrix P; (z).
The reason is similarly as Theorem 4.8 when ty =1,t; = t, = —1.

4.3. The Case of y =3n+3

In this situation, we cannot also construct the corresponding paraunitary matrix.

5. Examples

In this section, we will construction some examples of 3-band wavelet frames with
symmetry/antisymmetry by applying the parameterizations of masks h, g, f, s provided
in Corollarys 4.7 and 4.10.
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Example 5.1. Let h, g, f, s be the filters given by (4.36) with n = 1. Then

h(z) = 2—46 [(— cos 01 —sin 0y + cos 0, +sin6,) + \ﬁ(cos 61 —sin 6, — cos 0, +sin 6,)z

+ \/E(cos 01 —sin 6, + cos B, — sin 0,)z 2 — 2(cos By + sin 61 + cos B, + sin 6,)z >
+ \@(cos 0 —sin 01 + cos 6, — sin 62)2’4 + \@(cos 01 —sin Oy — cos O, + sin 92)2’5

+(—cos 01 —sin 07 + cos B, + sin 92)2"6] ,

g(z) = 2—46 [(— cos 601 —sin By + cos 0, +sin6,) + \fZ(COS 61 —sin6; — cos 0, +sin 6,)z*
+ \@(cos 01 —sin 01 + cos 6, — sin 62)2"2 - \@(cos 01 —sin 01 + cos 6, — sin 92)2"4

+\f2(cos 01 —sin 0y — cos 6, + sin 92)2_5 — (= cos 01 — sin By + cos B, + sin 92)2_6] ,

f(z) = ;%6 [(2511101 —2¢0861) +V2(-2sin6; —2cos )z + V2(-2sin 6; — 2 cos 61)2’2]

+(2sinB; —2cos6;)z2,

s(z) = \2/746 [(—25in61 +2c0s07) +V2(2sin6; +2cos 0;)z™! +v/2(-2sin 0; — 2 cos 91)2‘2]

+(2sin6; —2cos 6;)z .
(5.1)

For h(1) = 1, g(1) = f(1) = s(1) = 0, h(k) = 0, k = -1/2 + (+/3/2)i, we have cos6; =
—v/3/6(v/2-2),sin0; = —/3/6(2 +1/2), cos 0, = 0, sin B, = £1/1 — 2. Let h has sum rules of
order 2, such as i’ (k) = 0, then we can get thatsin 8, = —/3/18(2+5v/2), cos 8, = —/3/18(-2+
5/2). Thus

1 1 2 4
hy= - T hy = 9 hy = 5 hs = 5 hy = hy, hs = hy, he = hy,
IS 2o . _ -
8o 18’ g1 9’ D= 9’ g =Y, 84 = — &, g5 = =41, 86 = — 8o,
V2 V2
fo= - f1=?, fo=f1, f3 = fo,
V2 _ 52 o o
50 = 1—, 51 F' Sp = —S1, S3 = —5S0,

(5.2)

The resulting symmetric refinable function ¢ € WO81%(R). See Figure 1 for the graphs of ¢,
¢!, ¢?, and ¢°.
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Figure 1: (a) Refinable function ¢ € WO815(R) with symmetry, (b) framelets ¢! with antisymmetry, and
(c) and (d) ¢? symmetry and ¢> with antisymmetry, respectively.

Example 5.2. Let h, g, f, s be the filters given by (4.26) withn = 1. For h(1) =1, g(1) = f(1) =
s(1) =0, h(k) =0, k = =1/2+ (+/3/2)i, let a; = sin®, a, = cosH, b; = sinB;, b, = cos b,
c1 = sinB,, ¢; = cos 0,, then we have

a

6
a = — % <—b2 + M - \/EbZ - \/2_7217%>’ (53)

b1 =1/1-13, by = by,
1= +\/1-¢3, Cy = 0.

Let h has sum rules of order 2, such as h'(k) = 0, then we can get that sinf = —0.8625,
cos 8 = —-0.5061, sin a1 = 0.7645, cos a1 = —0.6447, sina, = —0.5172, cos a, = —0.8559.
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Figure 2: (a) Refinable function ¢ € WO3M8(R) with symmetry, (b) framelets ¢! with symmetry, and (c)
and (d) g2 symmetry and ¢ with antisymmetry, respectively.

Thus
ho = 0.1314, hy =0.1333, hy =0.2176, hs = —0.0550, hy =-0.1091,
hs = 0.0915, he = 0.1806, h; =hs,..., h12 = ho,
g = —0.0771, g1 =-0.0782, g =-0.1277, g5 =0.1590, g1 = —0.1858,
g5 = 0.1560, hg = 0.3077, 7 =g5.-.,812= 80, 54)
fo=10.0771, f1=0.0782, f2=0.1277, f3=0.0295, fa=-0.1058,
f5 =0.1560, f6=0, fr=~fs,-.., fu=—fo,
so = 0.1314, s1 =0.1333, sy = 0.2176, s3 = —0.1656, s4 = 0.1091,
ss = —0.0915, s =0, S7 = —Ss5,...,812 = —S(.

The resulting symmetric refinable function ¢ € W938(R). See Figure 2 for the graphs of ¢,

¢!, ¢?, and ¢°.
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