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A construction approach for the 3-band tight wavelet frames by factorization of paraunitarymatrix
is developed. Several necessary constraints on the filter lengths and symmetric features of wavelet
frames are investigated starting at the constructed paraunitary matrix. The matrix is a symmetric
extension of the polyphase matrix corresponding to 3-band tight wavelet frames. Further, the
parameterizations of 3-band tight wavelet frames with 3N + 1 filter lengths are established.
Examples of framelets with symmetry/antisymmetry and Sobolev exponent are computed by
appropriately choosing the parameters in the scheme.

1. Introduction

In the theory and applications of wavelets and wavelet frames, certain properties are always
desirable. It is well known that symmetry and high vanishing moments are very important
features of all wavelets. Symmetry, which is also called linear phase in the language of
engineering, is claimed to improve the rate-distortion performance in image compression
[1, 2]. On the one hand, parameterizations of FIR systems are of fundamental importance to
the design of filters with the desired properties [1, 3]. On the other hand, the advantages of
MRA-based tight wavelet frames and their promising features in applications have attracted
a great deal of interest and effort in recent years to extensively study them (e.g., [4–15]).
The main tools for construction and characterization of wavelet frames are the unitary
extension principle (UEP) [16] and its versions generalized such as OEP and MEP [17].
They give sufficient conditions for constructing MRA-based tight and dual wavelet frames.
Many authors have worked on the design of wavelet frames with good properties. Most deals
with 2-band wavelet frames systems, and a few authors have studiedM-band framelets [8].
M(≥ 2)-band wavelets have advantages over dyadic wavelets in some aspects. For example,
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it enables a finer frequency partitioning and can provide a more compact representation of
signals [18–21].

This paper deals with the construction of 3-band tight wavelet frames filters with
prescribed properties using factorization and parameterizations of the paraunitary matrices.
The parameter space describing 3-bandwavelets is much richer than that in 2-band case; thus,
it has greater freedom and flexibility. Concretely, with the describing of unitary extension
principle (UEP) in the polyphase representation, we firstly construct a paraunitary matrix
based on the polyphase matrix corresponding to compactly supported wavelet frames with
the least number generators. Further, we establish necessary constraints on the filter lengths
and symmetric features of wavelet frames. Then, we investigate the parameterizations of 3-
band tight wavelet frames with 3N + 1 filter lengths. Finally, examples of 3-band wavelet
frames with symmetry/antisymmetry and good smoothness are given by applying the
proposed scheme.

Throughout this paper, letN andZ denote the sets of all natural numbers and integers,
respectively. Let A∗, AT , and Tr(A) denote conjugate transpose, transpose and the trace of A,
respectively. Let A = [aij]m×n, 1 ≤ i ≤ m; 1 ≤ j ≤ n denote the m × n matrix with elements
aij , for convenience, we omit the subscript m × n when m = n. Let In denotes the n × n
identity matrix and Jn denote the n × n exchange matrix with ones on the antidiagonal.
For s ≥ 0, we use Ws(R) denote the Sobolev space consisting of all functions f with
(1 + |ω|2)s/2 ̂f(ω) ∈ L2(R). In this paper, we only consider compactly supportedwavelet frame
and causal sequence with real finite impulse response (FIR), such sequences can be identified
with Laurent polynomial defined by h(z) =

∑K
k=0 hkz

−k, where 0 and K are the smallest and
largest indices that hk is nonzero, respectively. Assumpsit: h(ω) = h(z) and z = eiω. We use
leng(h) = K + 1 to denote the filter length of h.

2. UEP of Tight Framelets in Terms of Polyphase Representation

In this section, we introduce some notation and state needed results that will be used later in
this paper. Let refinable functions ψ0 with dilation factor 3 generate a multiresolution analysis
(MRA) {Vj}j∈Z of L2(R) and Ψ = {ψ1, . . . , ψr} ⊂ V1. Then for real-value sequence h�,k, ψ� ,
� = 0, 1, 2, . . . , r satisfy

ψ�(x) = 3
∑

k∈Z
h�,kψ

0(3x − k), (2.1)

or equivalently

ψ̂�(3ω) = h�,k(ω)ψ̂0(ω), (2.2)

where h�(ω) =
∑

k∈Z h�,ke
−ikω or rewritten h�(z) =

∑

k∈Z h�,kz
−k, z = e−iω. h0 is called a

refinement mask or the low filter, and h� , � = 1, 2, . . . , r are called wavelet masks or the high
pass filters of the system, respectively. For notational convenience, refinement mask together
with wavelet masks {h0, h1, . . . , hr} is also called combined MRA masks in [7].



Journal of Applied Mathematics 3

For given Ψ = {ψ1, . . . , ψr} ⊂ L2(R), define the wavelet system as X(Ψ) = {ψ�j,k, � =

1, . . . , r; j, k ∈ Z}, where ψ�
j,k

= 3j/2ψ�(3jx − k), j, k ∈ Z.

Definition 2.1. The systemX(Ψ) is called anMRA-based 3-band tight wavelet frames of L2(R)
if

(1) Ψ ⊂ V1,

(2) X(Ψ) is tight wavelet frames, that is,

∥

∥f
∥

∥

2
L2(R) =

r
∑

�=0

∑

j∈Z

∑

k∈Z

∣

∣

∣

〈

f, ψ�j,k

〉∣

∣

∣ (2.3)

holds for all f ∈ L2(R). Furthermore, elements ψ�
j,k
, � = 1, . . . , r are said to be framelets.

If we introduce the following two block matrices: modulation matrix

M(ω) =
[

h�

(

ω +
2kπ
3

)]

0≤�≤r,0≤k≤2
, (2.4)

and polyphase matrix

P(z) =
[

p�,n(z)
]

0≤�≤r,0≤n≤2, (2.5)

where

p�,n(z) =
1√
3

∑

k∈Z
h�,3k+nz

−k, � = 0, . . . , r, n = 0, 1, 2, z = eiω, (2.6)

then we describe the UEP for 3-band tight wavelet frames in terms of modulation matrix and
polyphase matrix as follows.

Lemma 2.2. Let ψ0 ∈ L2(R) be a compactly supported refinable function generated by finitely
supported refinement mask h0 with ψ̂0(0) = 1. Then for combined MRA masks {h0, h1, . . . , hr}, the
system X(Ψ), where Ψ = {ψ1, . . . , ψr} defined by (2.1) or (2.2) forms an MRA-based 3-band tight
wavelet frame of L2(R) provided one of the following hold for ω ∈ [−π,π].

(a) Modulation matrixM(ω) is paraunitary, that isM∗(ω)M(ω) = I3.

(b) Polyphase matrix P(z) is paraunitary, that is P ∗(z)P(z) = I3.

Symmetry and high vanishing moments are very important features of all wavelets.

Definition 2.3. A casual FIR filter q(z) =
∑K

k=0 qkz
−k is called symmetric/antisymmetric, if

z−Kq(z−1) = tq(z), t = ±1, where K/2 is called the center of q(z).
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Lemma 2.4. Suppose that the mask h�(z) =
∑K�

k=0 h�,kz
−k is symmetric/antisymmetric, then ψ�

defined by (2.1) is symmetric/antisymmetric about K�/2, respectively, that is, ψ�(K� − x) = tψ�(x),
where � = 0, 1, 2, . . . , r.

The vanishing moments of wavelets is related to the order of sum rules.

Definition 2.5. The refinement mask h0(ω) has the sum rules of order p, if

h0(ω)|ω=0 = 1, h
(m)
0 (ω)|ω=2lπ/3 = 0, l = 1, 2, m = 0, 1, . . . , p − 1, (2.7)

or equivalently

∑

k

ξkkmh0,k = 0, m = 0, 1, . . . , p − 1, ξ = e2πi/3. (2.8)

Lemma 2.6. Suppose that the wavelet mask h�(ω) satisfies h
(m)
�

(ω)|ω=0 = 0, m = 0, 1, . . . , p − 1,
then ψ� defined by (2.1) has vanishing moments of order p� , respectively, that is,

∫

xmψ�dx = 0, m =
0, 1, . . ., p� − 1. Where � = 1, 2, . . . , r.

3. Symmetry Transform

In this section, we will firstly construct a paraunitary matrix based on the polyphase matrix
corresponding to 3-band compactly supported wavelet frames. Further, we will establish
necessary constraints on the filter lengths and symmetric features of wavelet frames.

3.1. Construction of Paraunitary Matrix Based on the Polyphase Matrix

From now on, we only consider the least number wavelet frames with r = 3 and for the sake
of convenience, we rewrit refinement mask and wavelet frame mask associated with φ and
ψ� , � = 1, 2, 3, respectively, that is, h(z) =

∑

k∈Z hkz
−k, g(z) =

∑

k∈Z gkz
−k, f(z) =

∑

k∈Z fkz
−k,

s(z) =
∑

k∈Z skz
−k, where z = eiω.

Suppose casual FIR filter h, g, f , s are symmetric/antisymmetric and h3k+n(z),
f3k+n(z), g3k+n(z), s3k+n(z), n = 0, 1, 2 defined by (2.4). For L ∈ Z, define

AL(z) =

⎡

⎢

⎢

⎣

h3k(z) h3k+1(z) h3k+2(z) hm(z)
g3k(z) g3k+1(z) g3k+2(z) gm(z)
f3k(z) f3k+1(z) f3k+2(z) fm(z)
s3k(z) s3k+1(z) s3k+2(z) sm(z)

⎤

⎥

⎥

⎦

, (3.1)
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where

hm(z) = −z−L
∣

∣

∣

∣

∣

∣

g3k
(

z−1
)

g3k+1
(

z−1
)

g3k+2
(

z−1
)

f3k
(

z−1
)

f3k+1
(

z−1
)

f3k+2
(

z−1
)

s3k
(

z−1
)

s3k+1
(

z−1
)

s3k+2
(

z−1
)

∣

∣

∣

∣

∣

∣

, (3.2)

gm(z) = z−L

∣

∣

∣

∣

∣

∣

h3k
(

z−1
)

h3k+1
(

z−1
)

h3k+2
(

z−1
)

f3k
(

z−1
)

f3k+1
(

z−1
)

f3k+2
(

z−1
)

s3k
(

z−1
)

s3k+1
(

z−1
)

s3k+2
(

z−1
)

∣

∣

∣

∣

∣

∣

, (3.3)

fm(z) = −z−L
∣

∣

∣

∣

∣

∣

h3k
(

z−1
)

h3k+1
(

z−1
)

h3k+2
(

z−1
)

g3k
(

z−1
)

g3k+1
(

z−1
)

g3k+2
(

z−1
)

s3k
(

z−1
)

s3k+1
(

z−1
)

s3k+2
(

z−1
)

∣

∣

∣

∣

∣

∣

, (3.4)

sm(z) = z−L

∣

∣

∣

∣

∣

∣

h3k
(

z−1
)

h3k+1
(

z−1
)

h3k+2
(

z−1
)

g3k
(

z−1
)

g3k+1
(

z−1
)

g3k+2
(

z−1
)

f3k
(

z−1
)

f3k+1
(

z−1
)

f3k+2
(

z−1
)

∣

∣

∣

∣

∣

∣

. (3.5)

Then AL(z) can be seen as a symmetry paraunitary extension of polyphase matrices P(z)
with r = 3, and have the following theorem and further investigation.

Lemma 3.1. Let M(z), P(z), and AL(z) are defined in (2.4), (2.5), and (3.1). Then the following
three statements are equivalent.

(a) MT (z)M(z−1) = I3;

(b) PT (z)P(z−1) = I3;

(c) AT
L(z)AL(z−1) = I4.

From the foregoing discussion

⎡

⎢

⎢

⎣

h(z)
g(z)
f(z)
s(z)

⎤

⎥

⎥

⎦

=
√
3
3
AL

(

z3
)

⎡

⎢

⎢

⎣

1
z−1

z−2

0

⎤

⎥

⎥

⎦

. (3.6)

Further, if h, g, f , s are causal, then for a sufficiently large L,AL is also causal. A paraunitary
and causal FIR matrix can be factorized into the products of U0U1(z) · · ·Uk(z) [1, 3], where
k ∈ N0. So far, the construction for FIR filters h, g, f , s converted the design for 4 × 4
paraunitary matrix AL(z).

3.2. Investigation on Filter Lengths and Symmetry Features

The main content of this section is to investigate the constraint conditions of filter lengths
and symmetric features of wavelet frames in order to discuss the method for construction
framelets with desired properties.

Theorem 3.2. Let h, g, f , s are symmetric/antisymmetric nonzero FIR filters with the centers of
symmetryN/2, K/2, S/2, T/2, respectively, whereN, K, S, and T ∈ Z. IfM is paraunitary, then
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(1) leng(h) = leng(g).

(2) leng(f), leng(s) have the same parity.

Proof. (1) By the conditions of h, g, f, s, we have leng(h) = 2k1 +N + 1, leng(g) = 2k2 +K + 1,
leng(f) = 2k3 + S + 1, leng(s) = 2k4 + T + 1, where k1, k2, k3, k4 ∈ Z. From the paraunitariness
ofM, we have |h(z)|2 + |g(z)|2 + |f(z)|2 + |s(z)|2 = 1, leng(h) = leng(g). ThusN −K is even.

(2) From the paraunitariness ofM, we obtain

h(z)h
(

z1z
−1
)

+ g(z)g
(

z1z
−1
)

+ f(z)f
(

z1z
−1
)

+ s(z)s
(

z1z
−1
)

= 0, (3.7)

or

h
(

z−1
)

h(z1z) + g
(

z−1
)

g(z1z) + f
(

z−1
)

f(z1z) + s
(

z−1
)

s(z1z) = 0, (3.8)

where z1 = −1/2 + (
√
3/2)i or z1 = −1/2 − (

√
3/2)i. From the symmetric of h, g, f , s, we have

h
(

z−1
)

h(z1z) = (−1)Nh(z)h
(

z1z
−1
)

, g
(

z−1
)

g(z1z) = (−1)Kg(z)g
(

z1z
−1
)

,

f
(

z−1
)

f(z1z) = (−1)Sf(z)f
(

z1z
−1
)

, s
(

z−1
)

s(z1z) = (−1)Ts(z)s
(

z1z
−1
)

.

(3.9)

Further,

(−1)Nh(z)h
(

z1z
−1
)

+ (−1)Kg(z)g
(

z1z
−1
)

+ (−1)Sf(z)f
(

z1z
−1
)

+ (−1)Ts(z)s
(

z1z
−1
)

= 0.

(3.10)

Thus

(

1 − (−1)K−N
)

g(z)g
(

z1z
−1
)

+
(

1 − (−1)S−N
)

f(z)f
(

z1z
−1
)

+
(

1 − (−1)T−N
)

s(z)s
(

z1z
−1
)

= 0.

(3.11)

SinceN −K is even, hence

(

1 − (−1)S−N
)

f(z)f
(

z1z
−1
)

+
(

1 − (−1)T−N
)

s(z)s
(

z1z
−1
)

= 0. (3.12)

Obviously, T −N is even when S −N is even. Assume that T −N is even when S −N is odd,
then we have f(z)f(z1z−1) = 0, which is contradiction since f is nonzero filter.

Without loss of generality, we give two assumptions of the casual filters h, g, f, s:

(1) leng(h) ≡ leng(g) ≡ leng(f) ≡ leng(s)(mod3);

(2) leng(h) = leng(g) ≥ leng(f) ≥ leng(s).

Then we have the following Theorem.
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Theorem 3.3. Let

h(z) =
3γ−1
∑

k=0

hkz
−k, g(z) =

3γ−1
∑

k=0

gkz
−k, f(z) =

3m1−1
∑

k=0

fkz
−k, s(z) =

3m2−1
∑

k=0

skz
−k (3.13)

are the causal filters and satisfy h0 /= 0 and γ ≥ m1 ≥ m2, γ ∈ N. Suppose (3γ − 1)/2 is the center of
h(z) and g(z) = t0z

−(3γ−1)g(z−1), f(z) = t1z
−(3m1−1)f(z−1), s(z) = t2z

−(3m2−1)s(z−1), tj = ±1, j =
0, 1, 2, 3. IfM is a paraunitary matrix, then

(1) leng(h3k) + γ , leng(g3k) + γ , leng(f3k) +m1, and leng(s3k) +m2 are even;

(2) t0 + t1 + t2 + t0t1t2 = 0, 1 + t0 + (−1)γ−m1t1 + (−1)γ−m2t2 + (−1)γ(t0t1t2 − 1) = 0;

(3) AL(z) = AL0(z) defined by (3.1) with L0 = γ + (1/2)(m1 +m2)− 2 is causal, paraunitary,
and satisfies

AL(z) = z−(γ−1) diag
(

1, t0, t1z−(m1−γ), t2z−(m2−γ)
)

AL

(

z−1
)

diag(J3,−t0t1t2). (3.14)

Proof. By the symmetry of h, g, f , s, we have

z−(γ−1)h3k
(

z−1
)

= h3k+2(z), z−(γ−1)h3k+1
(

z−1
)

= h3k+1(z);

z−(γ−1)g3k
(

z−1
)

= t0g3k+2(z), z−(γ−1)g3k+1
(

z−1
)

= t0g3k+1(z);

z−(m1−1)f3k
(

z−1
)

= t1f3k+2(z), z−(m1−1)f3k+1
(

z−1
)

= t1f3k+1(z);

z−(m2−1)s3k
(

z−1
)

= t2s3k+2(z), z−(m2−1)s3k+1
(

z−1
)

= t2s3k+1(z).

(3.15)

Take them into hm defined by (3.2), we have

hm(z) = −z−L
⎡

⎣

g3k
(

z−1
)

g3k+1
(

z−1
)

g3k+2
(

z−1
)

f3k
(

z−1
)

f3k+1
(

z−1
)

f3k+2
(

z−1
)

s3k
(

z−1
)

s3k+1
(

z−1
)

s3k+2
(

z−1
)

⎤

⎦

= −z−L
⎡

⎣

zγ−1t0g3k+2(z) zγ−1t0g3k+1(z) zγ−1t0g3k(z)
zm1−1t1f3k+2(z) zm1−1t1f3k+1(z) zm1−1t1f3k(z)
zm2−1t2s3k+2(z) zm2−1t2s3k+1(z) zm2−1t2s3k(z)

⎤

⎦

= z−L · zγ−1 · zm1−1 · zm1−1t0t1t2

⎡

⎣

g3k(z) g3k+1(z) g3k+2(z)
f3k(z) f3k+1(z) f3k+2(z)
s3k+2(z) s3k+1(z) s3k+2(z)

⎤

⎦

= −t0t1t2z−(2L−γ−m1−m2+3)hm
(

z−1
)

.

(3.16)
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Similarly, for gm, fm, sm defined by (3.3)–(3.5), we also have

gm(z) = −t1t2z−(2L−γ−m1−m2+3)gm
(

z−1
)

,

fm(z) = −t0t2z−(2L−2γ−m2+3)fm
(

z−1
)

,

sm(z) = −t0t1z−(2L−2γ−m1+3)sm
(

z−1
)

.

(3.17)

Thus, AL(z) defined by (3.1) satisfies with

AL(z) = z−(γ−1) diag
(

1, t0, t1z−(m1−γ), t2z−(m2−γ)
)

AL

(

z−1
)

diag
(

J3,−t0t1t2z−(2L−2γ−m1−m2+4)
)

.

(3.18)

From the paraunitariness of AL(z), we obtain leng(hm) = leng(h3k). Assume that

hm(z) = alz−k + al+1z−(l+1) + · · · + (−t0t1t2)z−(l+ leng(h3k)−1), l ∈ Z, al /= 0. (3.19)

By symmetric of h, we have z−(l+ leng(h3k)−1)hm(z−1) = −t0t1t2hm(z), which together with (3.17)
leads to 2l+ leng(h3k) − 1 = 2L − γ −m1 −m2 + 3; thus, leng(h3k) + γ +m1 +m2 = 2L − 2l + 4
is even. Note that 3m1 and 3m2 have the same parity by Theorem 3.2, hencem1 +m2 is even,
leng(h3k)+γ is even. One can prove similarly that leng(g3k)+γ , leng(f3k)+m1 and leng(s3k)+
m2 are all even.

Let L0 = γ + (1/2)(m1 + m2) − 2. Then hm, gm, fm, sm defined by (3.2)–(3.5) with L0

satisfy

hm(z) = −t0t1t2z−(γ−1)hm
(

z−1
)

, gm(z) = −t1t2z−(γ−1)gm
(

z−1
)

,

fm(z) = −t0t2z−(m1−1)fm
(

z−1
)

, sm(z) = −t0t1z−(m2−1)sm
(

z−1
)

.

(3.20)

Note that

leng(hm) = leng(h3k) ≤ γ = γ − 1 + 1, leng
(

gm
)

= leng
(

g3k
) ≤ γ = γ − 1 + 1,

leng
(

fm
)

= leng
(

f3k
) ≤ m1 = m1 − 1 + 1, leng(sm) = leng(s3k) ≤ m2.

(3.21)

Thus, hm, gm, fm, sm are casual, A(z) = AL0(z) is casual, paraunitary, and satisfies (3.14).
Set z = 1 and z = −1 in (3.14), then we have

Tr
(

diag (1, t0, t1, t2)
)

= Tr
(

diag(J3,−t0t1t2)
)

,

Tr
(

(−1)−γ diag(1, t0, (−1)γ−m1t1, (−1)γ−m2t2
))

= Tr
(

diag(J3,−t0t1t2)
)

,
(3.22)

which imply (2.2).
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With similar arguments we can prove the others case and present the following two
theorems as follows.

Theorem 3.4. Let

h(z) =
3γ
∑

k=0

hkz
−k, g(z) =

3γ
∑

k=0

gkz
−k, f(z) =

3m1
∑

k=0

fkz
−k, s(z) =

3m2
∑

k=0

skz
−k, (3.23)

are the causal filters and satisfy h0 /= 0 and γ ≥ m1 ≥ m2, γ ∈N. Suppose (3γ)/2 is the center of h(z)
and g(z) = t0z−3γg(z−1), f(z) = t1z−3m1f(z−1), s(z) = t2z−3m2s(z−1), tj = ±1, j = 0, 1, 2, 3. IfM is
a paraunitary matrix, then

(1) γ +m1 and γ +m2 are even.

(2) t0 + t1 + t2 + t0t1t2 = 0, 1 + t0 + (−1)γ−m1t1 + (−1)γ−m2t2 + (−1)γ(t0t1t2 − 1) = 0.

(3) AL(z) = AL0(z) defined by (3.1) with L0 = γ + (1/2)(m1 +m2 − 2) is causal, paraunitary
and satisfies

AL(z) = z−γ diag
(

1, t0, t1z−(m1−γ), t2z−(m2−γ)
)

AL

(

z−1
)

diag(1, zJ2,−t0t1t2). (3.24)

Theorem 3.5. Let

h(z) =
3γ+1
∑

k=0

hkz
−k, g(z) =

3γ+1
∑

k=0

gkz
−k, f(z) =

3m1+1
∑

k=0

fkz
−k, s(z) =

3m2+1
∑

k=0

skz
−k (3.25)

are the causal filters and satisfy h0 /= 0 and γ ≥ m1 ≥ m2, γ ∈ N. Suppose (3γ + 1)/2 is the center
of h(z) and g(z) = t0z

−(3γ+1)g(z−1), f(z) = t1z
−(3m1+1)f(z−1), s(z) = t2z

−(3m2+1)s(z−1), tj = ±1,
j = 0, 1, 2, 3. IfM is a paraunitary matrix, then

(1) leng(h3k) + γ , leng(g3k) + γ , leng(f3k) +m1, and leng(s3k) +m2 are even;

(2) t0 + t1 + t2 + t0t1t2 = 0, 1 + t0 + (−1)γ−m1t1 + (−1)γ−m2t2 + (−1)γ(t0t1t2 − 1) = 0;

(3) AL(z) = AL0(z) defined by (3.1) with L0 = γ +(1/2)(m1 +m2) is causal, paraunitary and
satisfies

AL(z) = z−(γ+1) diag
(

1, t0, t1z−(m1−γ), t2z−(m2−γ)
)

AL

(

z−1
)

diag(J2, z,−t0t1t2). (3.26)

So far, we have completed the further extension of the our previous work in [22], that is, we
presented the several necessary constraints on the filter lengths and symmetric features of
wavelet frames. By using these properties,AL(z) defined by (3.1) can be divided into several
categories according to the different length of masks. Then we can improve the condition of
AL(z) in the following work and prepare for the parameterizations. This paper is devoted to
give the parameterizations of 3-band tight wavelet frames with 3N + 1 filter lengths.
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4. The Parameterizations for Combined MRA Masks with 3N + 1
Filter Lengths

For simplicity we give the following two assumptions:

(1) leng(h) = leng(g) = 3γ+1, leng(f) = leng(s) = 3m + 1;

(2) m ≡ 1(mod 3), 0 ≤ γ −m ≤ 2.

4.1. The Case of γ = 3n + 1

For AL(z) with L = 6n + 1 in (3.1), denote A(z) = AL(z), then (3.24) can be converted to

A(z) = z−(3n+1) diag(1, t0, t1, t2)A
(

z−1
)

diag
(

1,diag(z, z)J2,−t0t1t2
)

. (4.1)

While

t0 + t1 + t2 + t0t1t2 = 0, ti = ±1, i = 1, 2, 3 (4.2)

imply that

(i) The first case: one of ti is 1 and the other two are −1;

(ii) The second case: one of ti is −1 and the other two are 1.

Lemma 4.1. For A(z) in (4.1), let

B(z) = A(z)diag(1, R1, 1), (4.3)

where R1 = (
√
2/2)

[

1 −1
1 1

]

, then A(z) satisfies if and only if B(z) satisfies

B(z) = z−γ diag(1, t0, t1, t2)B
(

z−1
)

diag(1, z,−z,−t0t1t2). (4.4)

(i) For the first case, without loss of generality, suppose t0 = 1, t1 = t2 = −1, (4.4) is
converted to

z−(3n+1) diag(1, 1,−1,−1)B
(

z−1
)

diag(1, z,−z,−1) = B(z). (4.5)
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To give the parameterizations of B(z) satisfying (4.5), one defines

W0(z) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
√
2
4

−
√
2
4

√
2
4

√
2
4√

2
2

−
√
2
2

0 0

0 0
√
2
2

−
√
2
2

−
√
2
4

−
√
2
4

√
2
4

√
2
4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
√
2
4

−
√
2
4

−
√
2
4

−
√
2
4

0 0 0 0
0 0 0 0√
2
4

√
2
4

√
2
4

√
2
4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

z. (4.6)

One can check thatW0(z) is paraunitary and satisfies

W0(z) = z diag
(

1, z−1,−z−1,−1
)

W0

(

z−1
)

diag(1, 1,−1,−1). (4.7)

Lemma 4.2. For B(z) in (4.3), define

E(z) = B(z)W0(z). (4.8)

Then E(z) satisfies

E(z) = z−3n diag(1, 1,−1,−1)E
(

z−1
)

diag(1, 1,−1,−1). (4.9)

Lemma 4.3. Let a paraunitary matrix E(z) defined by (4.8), then for n = 0, E(z) have the form of

P0 =

⎡

⎢

⎢

⎣

cos θ1 ρ1 sin θ1 0 0
sin θ1 −ρ1 cos θ1 0 0
0 0 cos θ2 ρ2 sin θ2
0 0 sin θ2 −ρ2 cos θ2

⎤

⎥

⎥

⎦

, (4.10)

where θ ∈ [−π,π), ρj = ±1, j ∈ Z.

Proof. Let n = 0, (4.9) is converted to

E(z) = diag(1, 1,−1,−1)E(z)diag(1, 1,−1,−1). (4.11)

If set 4 × 4 matrix P0 = [aij], i, j = 1, 2, 3, 4, then we can obtain

a211 + a
2
12 = 1, a221 + a

2
22 = 1, a11a21 + a12a22 = 0,

a233 + a
2
34 = 1, a243 + a

2
44 = 1, a33a43 + a34a44 = 0,

a13 = a14 = a23 = a24 = a31 = a32 = a41 = a42 = 0.

(4.12)

Assume that a11 = cos θ1, a33 = cos θ2, then (4.10) is obtained immediately.
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Remark 4.4. For convenience, we only choose the following form of P0 in the following:

P0 =

⎡

⎢

⎢

⎣

cos θ sin θ 0 0
sin θ − cos θ 0 0
0 0 cos θ sin θ
0 0 sin θ − cos θ

⎤

⎥

⎥

⎦

. (4.13)

Lemma 4.5. Let a paraunitary matrix E(z) satisfies (4.8), then for n = 1, E(z) have the form of

V (z) =
1
2

⎡

⎢

⎢

⎣

0
1
1
0

⎤

⎥

⎥

⎦

[cosα1, sinα1, cosα2, sinα2]

+
1
2

⎡

⎢

⎢

⎣

1
0
0
1

⎤

⎥

⎥

⎦

[sinα1,− cosα1, sinα2,− cosα2]z−1

+
1
2

⎡

⎢

⎢

⎣

1
0
0
−1

⎤

⎥

⎥

⎦

[sinα1,− cosα1,− sinα2, cosα2]z−2

+
1
2

⎡

⎢

⎢

⎣

0
1
−1
0

⎤

⎥

⎥

⎦

[cosα1, sinα1,− cosα2,− sinα2]z−3,

(4.14)

where αj ∈ [−π,π), j = 1, 2.

Proof. When n = 1, (4.9) is converted to

E(z) = z−3 diag(1, 1,−1,−1)E
(

z−1
)

diag(1, 1,−1,−1). (4.15)

Suppose E(z) = A + Bz−1 + Cz−2 +Dz−3, here A, B, C, D are all 4 × 4 matrices. Let A = [aij]
then, from the paraunitariness of E(z), we have

A =
1
2

⎡

⎢

⎢

⎣

a
b
c
d

⎤

⎥

⎥

⎦

[cosα1, sinα1, cosα2, sinα2],

D =
1
2

⎡

⎢

⎢

⎣

e
f
g
h

⎤

⎥

⎥

⎦

[cosα1, sinα1,− cosα2,− sinα2],

(4.16)



Journal of Applied Mathematics 13

where b, c, f , g are all not zeros or a, d, e, h are all not zeros. Now suppose b, c, f , g are all
not zeros, then b = f = 1, c = −g = 1.

Similarly, B and C are given as follows:

B =
1
2

⎡

⎢

⎢

⎣

1
0
0
1

⎤

⎥

⎥

⎦

[sinα1,− cosα1, sinα2,− cosα2],

C =
1
2

⎡

⎢

⎢

⎣

a
b
c
d

⎤

⎥

⎥

⎦

[sinα1,− cosα1,− sinα2, cosα2].

(4.17)

Equation (4.14) is obtained.

Theorem 4.6. A causal paraunitary matrix filter E(z) defined by (4.8) for some n ∈N if and only if
it can be factorized in the form of

E(z) = P0V1(z) · · ·Vn(z), (4.18)

where P0 is defined by (4.13) with θ ∈ [−π,π) and Vj(z), j = 1, 2 are defined by (4.14) with
αj ∈ [−π,π), j = 1, 2.

Proof. If E(z) can be factorized as (4.18), then it is a causal paraunitary filter and satisfies (4.9).
Conversely, we set a paraunitary matrix En(z) = e0 + e1z−1 + · · · + enz−3n satisfies with (4.18),
where n ∈N. If n = 0, it is easy to get that E(z) is P0. For n ∈N \ {0}, define

En−1(z) = En(z)V T
(

z−1
)

, (4.19)

where V (z) is defined by (4.14). Now we prove that there exists α1, α2 such that En−1(z)
defined by (4.19) is causal. From V T (z−1), we only need to prove that there exists α1, α2 such
that

e0[sinα1,− cosα1, sinα2,− cosα2]T = 0, (4.20)

e0[sinα1,− cosα1,− sinα2, cosα2]T = 0, (4.21)

e0[cosα1, sinα1,− cosα2,− sinα2]T = 0, (4.22)

e1[sinα1,− cosα1,− sinα2, cosα2]T = 0, (4.23)

e1[cosα1, sinα1,− cosα2,− sinα2]
T = 0, (4.24)

e2[cosα1, sinα1,− cosα2,− sinα2]T = 0. (4.25)

Let us start by discussing the case e0 = 0. Then (4.20)–(4.22) hold. By the symmetry
of En(z), ej = diag(1, 1,−1,−1)e3n−j diag(1, 1,−1,−1), 0 ≤ j ≤ 3n. By the paraunitariness of
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En(z), e1eT3n−1 = 0. Then we have e1 diag(1, 1,−1,−1)eT1 = 0, rank(e1) ≤ 2. For simplicity, we
only consider the case rank(e1) = 1 in the following. Let e1 = u1[cos θ1, sin θ1, cos θ2, sin θ2],
u1 ∈ R4, θ1, θ2 ∈ [−π,π). Then for α1 = θ1, α2 = θ2, (4.23) and (4.24) hold. Let Q = e2
[cos θ1, sin θ1,− cos θ2,− sin θ2]

T , by the paraunitariness of En(z), e1eT3n−1 + e2e
T
3n = 0. Then we

have u1QT +QuT1 = 0. It is clear that Q = 0 since u1 /= 0. Then (4.25) holds for α1 = θ1, α2 = θ2.
If e0 /= 0, we have e0eT3n = 0 and e3n = diag(1, 1,−1,−1)e0 diag(1, 1,−1,−1). Let e0 = u1

[cos θ1, sin θ1, cos θ2, sin θ2], then (4.20)–(4.22) hold for α1 = θ1, α2 = θ2. Similarly, when
e1 = u2[− sin θ1, cos θ1,− sin θ2, cos θ2], (4.23), and (4.24) hold for α1 = θ1, α2 = θ2. Let
Q = e2[cosα1, sinα1,− cosα2,− sinα2]

T , from the paraunitariness of En(z), we have e1eT3n−1 +
e2e

T
3n = 0. Thus, u2QT +QuT2 = 0. It is clear that Q = 0 since u2 /= 0. So (4.25) holds for α1 = θ1,

α2 = θ2.
So En−1(z) is causal and En−1(z) can be factorized in the form of En−1(z) = P0V1(z) · · ·

Vn−1(z). Thus, En(z) can be factorized in the form of En(z) = P0V1(z) · · ·Vn−1(z) by induction
assumption. The proof of Theorem 4.6 is complete.

Therefore, we have the following corollary.

Corollary 4.7. Let h(z), g(z), f(z), s(z) is symmetric or antisymmetric. If M is a paraunitary
matrix, then h(z), g(z), f(z), s(z) can be factorized as

(1)

⎡

⎢

⎢

⎣

h(z)
g(z)
f(z)
s(z)

⎤

⎥

⎥

⎦

=
√
6

12
P0V1

(

z3
)

· · ·Vn
(

z3
)

⎡

⎢

⎢

⎢

⎣

−1 +√
2z−1 +

√
2z−2 − z−3

−1 − √
2z−1 − √

2z−2 − z−3
1 − √

2z−1 +
√
2z−2 − z−3

1 +
√
2z−1 − √

2z−2 − z−3

⎤

⎥

⎥

⎥

⎦

, (4.26)

for the case of t0 = 1, t1 = t2 = −1;

(2)

⎡

⎢

⎢

⎣

h(z)
g(z)
f(z)
s(z)

⎤

⎥

⎥

⎦

=
√
6

12
V0V1

(

z3
)

· · ·Vn
(

z3
)

⎡

⎢

⎢

⎢

⎣

−1 +√
2z−1 +

√
2z−2 − z−3

−1 − √
2z−1 − √

2z−2 − z−3
1 − √

2z−1 +
√
2z−2 − z−3

1 +
√
2z−1 − √

2z−2 − z−3

⎤

⎥

⎥

⎥

⎦

, (4.27)

for the case of t0 = −1, t1 = 1, t2 = −1, where V0 = diag(1, J2, 1)P0;

(3)

⎡

⎢

⎢

⎣

h(z)
g(z)
f(z)
s(z)

⎤

⎥

⎥

⎦

=
√
6

12
U0V1

(

z3
)

· · ·Vn
(

z3
)

⎡

⎢

⎢

⎢

⎣

−1 +√
2z−1 +

√
2z−2 − z−3

−1 − √
2z−1 − √

2z−2 − z−3
1 − √

2z−1 +
√
2z−2 − z−3

1 +
√
2z−1 − √

2z−2 − z−3

⎤

⎥

⎥

⎥

⎦

, (4.28)

for the case of t0 = t1 = −1, t2 = 1, whereU0 = diag(1, J3)P0.
Where P0 is defined by (4.13) with θ ∈ [−π,π) and Vj(z) are defined by (4.14) with αj ∈

[−π,π).
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(ii) For the second case, without loss of generality, suppose t0 = 1, t1 = 1, t2 = −1, then
E(z) defined by (4.8) satisfies

E(z) = z−3n diag(1, 1, 1,−1)E
(

z−1
)

diag(1, 1,−1, 1). (4.29)

Let n = 0 in (4.29), then one can get an orthogonal matrix Q0 as follows:

Q0 =

⎡

⎢

⎢

⎣

cos θ 0 0 −ρ1 sin θ
0 ρ2 0 0
0 0 ρ3 0

sin θ 0 0 ρ1 cos θ

⎤

⎥

⎥

⎦

. (4.30)

Then one has the following results.

Theorem 4.8. Let E(z) is a causal paraunitary matrix filter and satisfies (4.29) for some n ∈N, then
E(z) cannot be factorized in the form of

E(z) = Q0V1(z) · · ·Vn(z), (4.31)

for Q0 defined by (4.30) with θ ∈ [−π,π) and Vj(z), j = 1, 2 defined by (4.14) with αj ∈ [−π,π),
j = 1, 2.

Proof. Suppose E(z) can be factorized in the form of (4.31). Then when n = 1, we have

V1(z) = z−3 diag(1, 1, 1,−1)V1

(

z−1
)

diag(1, 1,−1, 1); (4.32)

when n = 2, we have

V2(z) = z−3 diag(1, 1,−1, 1)V2

(

z−1
)

diag(1, 1,−1, 1). (4.33)

However, (4.33) is in contradiction with (4.32).

4.2. The Case of γ = 3n + 2

We have the following results.

Theorem 4.9. E(z) is a causal paraunitary matrix filter defined by (4.8) for some n ∈ N if and only
if it can be factorized in the form of

E(z) = P1V2(z)V3(z) · · ·Vn(z), (4.34)
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where P1 is defined by the following with θj ∈ [−π,π), j = 1, 2

P1(z) =
1
2

⎡

⎢

⎢

⎣

cos θ1 sin θ1 cos θ2 sin θ2
cos θ1 sin θ1 cos θ2 sin θ2

−2 sin θ1 2 cos θ1 0 0
0 0 −2 sin θ2 2 cos θ2

⎤

⎥

⎥

⎦

+
1
2

⎡

⎢

⎢

⎣

cos θ1 sin θ1 − cos θ2 − sin θ2
− cos θ1 − sin θ1 cos θ2 sin θ2

0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

z−1,

(4.35)

and Vj(z) are defined by (4.14) with αj ∈ [−π,π).

Corollary 4.10. Let h(z), g(z), f(z), s(z) is symmetric or antisymmetric. If M is a paraunitary
matrix, then h(z), g(z), f(z), s(z) can be factorized as

(1)

⎡

⎢

⎢

⎣

h(z)
g(z)
f(z)
s(z)

⎤

⎥

⎥

⎦

=
√
6

12
P1(z)V2

(

z3
)

· · ·Vn
(

z3
)

⎡

⎢

⎢

⎢

⎣

−1 +√
2z−1 +

√
2z−2 − z−3

−1 − √
2z−1 − √

2z−2 − z−3
1 − √

2z−1 +
√
2z−2 − z−3

1 +
√
2z−1 − √

2z−2 − z−3

⎤

⎥

⎥

⎥

⎦

, (4.36)

for the case t0 = −1, t1 = 1, t2 = −1;

(2)

⎡

⎢

⎢

⎣

h(z)
g(z)
f(z)
s(z)

⎤

⎥

⎥

⎦

=
√
6

12
diag(1, 1, J2)P1(z)V2

(

z3
)

· · ·Vn
(

z3
)

⎡

⎢

⎢

⎢

⎣

−1 +√
2z−1 +

√
2z−2 − z−3

−1 − √
2z−1 − √

2z−2 − z−3
1 − √

2z−1 +
√
2z−2 − z−3

1 +
√
2z−1 − √

2z−2 − z−3

⎤

⎥

⎥

⎥

⎦

,

(4.37)

for the case of t0 = t1 = −1, t2 = 1. Where P1(z) is defined by (4.35) with θ ∈ [−π,π) and Vj(z) are
defined by (4.14) with αj ∈ [−π,π).

Remark 4.11. In the case of t0 = 1, t1 = t2 = −1, we cannot construct a paraunitary matrix P1(z).
The reason is similarly as Theorem 4.8 when t0 = 1, t1 = t2 = −1.

4.3. The Case of γ = 3n + 3

In this situation, we cannot also construct the corresponding paraunitary matrix.

5. Examples

In this section, we will construction some examples of 3-band wavelet frames with
symmetry/antisymmetry by applying the parameterizations of masks h, g, f , s provided
in Corollarys 4.7 and 4.10.
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Example 5.1. Let h, g, f , s be the filters given by (4.36) with n = 1. Then

h(z) =
√
6

24

[

(− cos θ1 − sin θ1 + cos θ2 + sin θ2) +
√
2(cos θ1 − sin θ1 − cos θ2 + sin θ2)z−1

+
√
2(cos θ1 − sin θ1 + cos θ2 − sin θ2)z−2 − 2(cos θ1 + sin θ1 + cos θ2 + sin θ2)z−3

+
√
2(cos θ1 − sin θ1 + cos θ2 − sin θ2)z−4 +

√
2(cos θ1 − sin θ1 − cos θ2 + sin θ2)z−5

+(− cos θ1 − sin θ1 + cos θ2 + sin θ2)z−6
]

,

g(z) =
√
6

24

[

(− cos θ1 − sin θ1 + cos θ2 + sin θ2) +
√
2(cos θ1 − sin θ1 − cos θ2 + sin θ2)z−1

+
√
2(cos θ1 − sin θ1 + cos θ2 − sin θ2)z−2 −

√
2(cos θ1 − sin θ1 + cos θ2 − sin θ2)z−4

+
√
2(cos θ1 − sin θ1 − cos θ2 + sin θ2)z−5 − (− cos θ1 − sin θ1 + cos θ2 + sin θ2)z−6

]

,

f(z) =
√
6

24

[

(2 sin θ1 − 2 cos θ1) +
√
2(−2 sin θ1 − 2 cos θ1)z−1 +

√
2(−2 sin θ1 − 2 cos θ1)z−2

]

+ (2 sin θ1 − 2 cos θ1)z−3,

s(z) =
√
6

24

[

(−2 sin θ1 + 2 cos θ1) +
√
2(2 sin θ1 + 2 cos θ1)z−1 +

√
2(−2 sin θ1 − 2 cos θ1)z−2

]

+ (2 sin θ1 − 2 cos θ1)z−3.
(5.1)

For h(1) = 1, g(1) = f(1) = s(1) = 0, h(k) = 0, k = −1/2 ± (
√
3/2)i, we have cos θ1 =

−√3/6(
√
2 − 2), sin θ1 = −√3/6(2 +

√
2), cos θ2 = σ, sin θ2 = ±

√
1 − σ2. Let h has sum rules of

order 2, such as h′(k) = 0, thenwe can get that sin θ2 = −√3/18(2+5
√
2), cos θ2 = −√3/18(−2+

5
√
2). Thus

h0 = − 1
18
, h1 =

1
9
, h2 =

2
9
, h3 =

4
9
, h4 = h2, h5 = h1, h6 = h0,

g0 = − 1
18
, g1 =

1
9
, g2 =

2
9
, g3 = 0, g4 = −g2, g5 = −g1, g6 = −g0,

f0 = −
√
2
6
, f1 =

√
2
6
, f2 = f1, f3 = f0,

s0 =

√
2

18
, s1 = −5

√
2

18
, s2 = −s1, s3 = −s0,

(5.2)

The resulting symmetric refinable function φ ∈ W0.8155(R). See Figure 1 for the graphs of φ,
ψ1, ψ2, and ψ3.
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Figure 1: (a) Refinable function φ ∈ W0.8155(R) with symmetry, (b) framelets ψ1 with antisymmetry, and
(c) and (d) ψ2 symmetry and ψ3 with antisymmetry, respectively.

Example 5.2. Let h, g, f , s be the filters given by (4.26) with n = 1. For h(1) = 1, g(1) = f(1) =
s(1) = 0, h(k) = 0, k = −1/2 ± (

√
3/2)i, let a1 = sin θ, a2 = cos θ, b1 = sin θ1, b2 = cos θ1,

c1 = sin θ2, c2 = cos θ2, then we have

a1 = − 1
6

[

−2
√
2b22 + 8

√
2b2

√

1 − b22 − 4b22 + 8b2
√

1 − b22 + 2 +
√
6

3b2
+
√

1 − b22 + 2
√
2b2

]

,

a2 = −
√
6
6

(

−b2 +
√

1 − b22 −
√
2b2 −

√

2 − 2b22

)

,

b1 =
√

1 − b22, b2 = b2,

c1 = ±
√

1 − c22, c2 = c2.

(5.3)

Let h has sum rules of order 2, such as h′(k) = 0, then we can get that sin θ = −0.8625,
cos θ = −0.5061, sinα1 = 0.7645, cosα1 = −0.6447, sinα2 = −0.5172, cosα2 = −0.8559.
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Figure 2: (a) Refinable function φ ∈ W0.3048(R) with symmetry, (b) framelets ψ1 with symmetry, and (c)
and (d) ψ2 symmetry and ψ3 with antisymmetry, respectively.

Thus

h0 = 0.1314, h1 = 0.1333, h2 = 0.2176, h3 = −0.0550, h4 = −0.1091,
h5 = 0.0915, h6 = 0.1806, h7 = h5, . . . , h12 = h0,

g0 = − 0.0771, g1 = −0.0782, g2 = −0.1277, g3 = 0.1590, g4 = −0.1858,
g5 = 0.1560, h6 = 0.3077, g7 = g5, . . . , g12 = g0,

f0 = 0.0771, f1 = 0.0782, f2 = 0.1277, f3 = 0.0295, f4 = −0.1058,
f5 = 0.1560, f6 = 0, f7 = −f5, . . . , f12 = −f0,
s0 = 0.1314, s1 = 0.1333, s2 = 0.2176, s3 = −0.1656, s4 = 0.1091,

s5 = − 0.0915, s6 = 0, s7 = −s5, . . . , s12 = −s0.

(5.4)

The resulting symmetric refinable function φ ∈ W0.3048(R). See Figure 2 for the graphs of φ,
ψ1, ψ2, and ψ3.
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