
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 879073, 26 pages
doi:10.1155/2012/879073

Research Article
Generalized Carleson Measure Spaces
and Their Applications

Chin-Cheng Lin1 and Kunchuan Wang2

1 Department of Mathematics, National Central University, Chung-Li 320, Taiwan
2 Department of Applied Mathematics, National Dong Hwa University, Hualien 970, Taiwan

Correspondence should be addressed to Chin-Cheng Lin, clin@math.ncu.edu.tw

Received 10 October 2011; Revised 20 February 2012; Accepted 12 March 2012

Academic Editor: Stevo Stevic

Copyright q 2012 C.-C. Lin and K. Wang. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We introduce the generalized Carleson measure spaces CMOα,q
r that extend BMO. Using Frazier

and Jawerth’s ϕ-transform and sequence spaces, we show that, for α ∈ R and 0 < p ≤ 1, the duals
of homogeneous Triebel-Lizorkin spaces Ḟα,qp for 1 < q < ∞ and 0 < q ≤ 1 are CMO−α,q′

(q′/p)−(q′/q)
and CMO−α+(n/p)−n,∞

r (for any r ∈ R), respectively. As applications, we give the necessary and
sufficient conditions for the boundedness of wavelet multipliers and paraproduct operators acting
on homogeneous Triebel-Lizorkin spaces.

1. Introduction

In 1972, Fefferman and Stein [1] proved that the dual of H1 is the BMO space. In 1990,
Frazier and Jawerth [2, Theorem 5.13] generalized the above duality to homogeneous Triebel-
Lizorkin spaces Ḟα,qp . More precisely, they showed that the dual of Ḟα,q1 is Ḟ−α,q′

∞ for α ∈ R and
0 < q < ∞, where q′ is the conjugate index of q. Throughout the paper, q′ is interpreted as
q′ = ∞ whenever 0 < q ≤ 1, and q′ = q/(q − 1) for 1 < q ≤ ∞. Note that Ḟ0,2

1 = H1 and
BMO = Ḟ0,2

∞ . For α ∈ R, 0 < p < 1, and 0 < q <∞, it is known (cf. [2–4]) that the dual of Ḟα,qp is

Ḟ
−α+(n/p)−n,∞
∞ . Here, we will give another characterization for the duals of Ḟα,qp in terms of the

generalized Carleson measure spaces for α ∈ R, 0 < p ≤ 1, and 0 < q <∞.
We say that a cubeQ ⊆ R

n is dyadic ifQ = Qjk = {x = (x1, x2, . . . , xn) ∈ R
n : 2−jki ≤ xi <

2−j(ki+1), i = 1, 2, . . . , n} for some j ∈ Z and k = (k1, k2, . . . , kn) ∈ Z
n. Denote by �(Q) = 2−j the

side length of Q and by xQ = 2−jk the “left lower corner” of Q when Q = Qjk. We use supP
and

∑
P to express the supremum and summation taken over all dyadic cubes P , respectively.

Also, denote the summation taken over all dyadic cubes Q contained in P by
∑

Q⊆P . For any
dyadic cubes P and Q, either P and Q are nonoverlapping or one contains the other. For any
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function f defined on R
n, j ∈ Z, and dyadic cube Q = Qjk, set

fQ(x) = |Q|−1/2f
(
x − xQ
�(Q)

)

= 2jn/2f
(
2jx − k

)
,

fj(x) = 2jnf
(
2jx

)
,

f̃(x) = f(−x).

(1.1)

It is clear that g̃j ∗ f(xQ) = |Q|−1/2〈f, gQ〉, where 〈f, g〉 denotes the paring in the usual sense
for g in a Fréchet space X and f in the dual of X.

Choose a fixed function ϕ in Schwartz class S = S(Rn), the collection of rapidly
decreasing C∞ functions on R

n, satisfying

supp
(
ϕ̂
) ⊆

{

ξ :
1
2
≤ |ξ| ≤ 2

}

,

∣
∣ϕ̂(ξ)

∣
∣ ≥ c > 0 if

3
5
≤ |ξ| ≤ 5

3
.

(1.2)

For α ∈ R and 0 < p, q ≤ +∞, we say that f belongs to the homogeneous Triebel-Lizorkin
space Ḟα,qp if f ∈ S′/P, the tempered distributions modulo polynomials, satisfies

∥
∥f

∥
∥
Ḟ
α,q
p

:=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥
∥
∥
∥

{
∑

k∈Z

(
2kα

∣
∣ϕk ∗ f

∣
∣
)q
}1/q

∥
∥
∥
∥
∥
∥
Lp

<∞ for 0 < p <∞,

sup
P

⎧
⎨

⎩
|P |−1

∫

P

∞∑

k=−log2�(P)

(
2kα

∣
∣ϕk ∗ f(x)

∣
∣
)q
dx

⎫
⎬

⎭

1/q

<∞ for p = ∞.

(1.3)

When 0 < p < ∞ and q = ∞, the above �q-norm is modified to be the supremum norm as
usual, and Ḟα,∞∞ is defined to be Ḃα,∞∞ , which is

∥
∥f

∥
∥
Ḟα,∞∞

:= sup
k∈Z

sup
x∈Q

�(Q)=2−k

2kα
∣
∣ϕk ∗ f(x)

∣
∣ ≈ sup

Q

|Q|−(α/n)−(1/2)∣∣〈f, ϕQ
〉∣
∣ <∞.

(1.4)

We now introduce a new space CMOα,q
r as follows.

Definition 1.1. Let ϕ ∈ S satisfy (1.2). For α, r ∈ R and 0 < q ≤ ∞, the generalized Carleson
measure spaces CMOα,q

r is the collection of all f ∈ S′/P satisfying ‖f‖CMOα,q
r
<∞, where

∥
∥f

∥
∥
CMOα,q

r
:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sup
P

{

|P |−r
∫

P

∑

Q⊆P

(
|Q|−(α/n)−(1/2) ∣∣〈f, ϕQ

〉∣
∣χQ(x)

)q
dx

}1/q

, 0 < q <∞,

sup
P

sup
Q⊆P

|Q|−(α/n)−(1/2)∣∣〈f, ϕ Q

〉∣
∣ = sup

Q

|Q|−(α/n)−(1/2)∣∣〈f, ϕ Q

〉∣
∣, q = ∞,

(1.5)

and χQ denotes the characteristic function of Q.
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Remark 1.2. By definition, we immediately have CMOα,∞
r = Ḟα,∞∞ for α, r ∈ R, and it is easy to

check CMOα,q
r = {0} for r < 0 and 0 < q < ∞. Note that the zero element in CMOα,q

r means
the class of polynomials. Also note that CMOα,q

0 = Ḟ
α,q
q with equivalent norms for α ∈ R and

0 < q < ∞. It follows from Proposition 3.3 that CMOα,q

1 = Ḟ
α,q
∞ for α ∈ R and 0 < q < ∞. In

particular, CMO0,2
1 = BMO, and hence the spaces CMOα,q

r generalize BMO.

Remark 1.3. For a dyadic cube P , denote by kP = −log2�(P); that is, kP is the integer so that
�(P) = 2−kP . In [5, 6], Yang and Yuan introduced the so-called “unified and generalized”
Triebel-Lizorkin-type spaces Ḟα,τp,q with four parameters by

∥
∥f

∥
∥
Ḟα,τp,q

:= sup
P

|P |−τ
⎧
⎨

⎩

∫

P

[
∑

k≥kP

(
2kα

∣
∣ϕk ∗ f(x)

∣
∣
)q
]p/q

dx

⎫
⎬

⎭

1/p

<∞, (1.6)

for α, τ ∈ R, p ∈ (0,∞), q ∈ (0,∞], and f ∈ S′/P. Note that in [5] the space Ḟα,τp,q was defined
for τ ∈ [0,∞), p ∈ (1,∞), and q ∈ (1,∞]. It follows from [6, Theorem 3.1] that

∥
∥f

∥
∥
Ḟα,τp,q

≈ sup
P

|P |−τ
⎧
⎨

⎩

∫

P

[
∑

Q⊂P

(
|Q|(−α/n)−(1/2)∣∣〈f, ϕQ

〉∣
∣χQ(x)

)q
]p/q

dx

⎫
⎬

⎭

1/p

. (1.7)

It is clear that CMOα,q
r = Ḟ

α,r/q
q,q for 0 < q < ∞, and hence CMOα,q

r “looks like” a special
case of Ḟα,τp,q . In fact, it was proved in [7, 8] that the space Ḟα,τp,q is the “same” as the space
CMOα,q

τq+1−q/p.

The definition of CMOα,q
r is independent of the choice of ϕ ∈ S satisfying (1.2). To

show that, we need the following Plancherel-Pôlya inequalities.

Theorem 1.4 (Plancherel-Pôlya inequality for 0 < q <∞). Let ϕ, φ ∈ S satisfy (1.2). For α, r ∈ R

and 0 < q <∞, if f ∈ S′/P satisfies

sup
P

⎧
⎪⎪⎨

⎪⎪⎩
|P |−r

∞∑

k=−log2�(P)

∑

Q⊆P
�(Q)=2−k

(

2kαsup
u∈Q

∣
∣ϕ̃k ∗ f(u)

∣
∣

)q

|Q|

⎫
⎪⎪⎬

⎪⎪⎭

1/q

<∞, (1.8)

then

sup
P

⎧
⎪⎪⎨

⎪⎪⎩
|P |−r

∞∑

k=−log2�(P)

∑

Q⊆P
�(Q)=2−k

(

2kαsup
u∈Q

∣
∣
∣φ̃k ∗ f(u)

∣
∣
∣

)q

|Q|

⎫
⎪⎪⎬

⎪⎪⎭

1/q

≈ sup
P

⎧
⎪⎪⎨

⎪⎪⎩
|P |−r

∞∑

k=−log2�(P)

∑

Q⊆P
�(Q)=2−k

(

2kα inf
u∈Q

∣
∣ϕ̃k ∗ f(u)

∣
∣
)q

|Q|

⎫
⎪⎪⎬

⎪⎪⎭

1/q

.

(1.9)
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Theorem 1.5 (Plancherel-Pôlya inequality for q = ∞). Let ϕ, φ ∈ S satisfy (1.2). For α, r ∈ R, if
f ∈ S′/P satisfies

sup
Q

(

|Q|−(α/n)−rsup
u∈Q

∣
∣ϕ̃kQ ∗ f(u)∣∣

)

<∞, (1.10)

then

sup
Q

(

|Q|−(α/n)−rsup
u∈Q

∣
∣
∣φ̃kQ ∗ f(u)

∣
∣
∣

)

≈ sup
Q

(

|Q|−(α/n)−r inf
u∈Q

∣
∣ϕ̃kQ ∗ f(u)∣∣

)

. (1.11)

Remark 1.6. Let ϕ, φ ∈ S satisfy (1.2). Denote by CMOα,q
r (ϕ) the collection of all f ∈ S′/P

satisfying ‖f‖CMOα,q
r (ϕ) <∞ defined in Definition 1.1 with respect to ϕ. Then, by Theorem 1.4,

∥
∥f

∥
∥
CMOα,q

r (φ) ≤ sup
P

⎧
⎪⎪⎨

⎪⎪⎩
|P |−r

∞∑

k=−log2�(P)

∑

Q⊆P
�(Q)=2−k

(

2kαsup
u∈Q

∣
∣
∣φ̃k ∗ f(u)

∣
∣
∣

)q

|Q|

⎫
⎪⎪⎬

⎪⎪⎭

1/q

≤ C sup
P

⎧
⎪⎪⎨

⎪⎪⎩
|P |−r

∞∑

k=−log2�(P)

∑

Q⊆P
�(Q)=2−k

(

2kα inf
u∈Q

∣
∣ϕ̃k ∗ f(u)

∣
∣
)q

|Q|

⎫
⎪⎪⎬

⎪⎪⎭

1/q

≤ C∥∥f∥∥CMOα,q
r (ϕ) for 0 < q <∞.

(1.12)

Similarly, ‖f‖CMO
α,q
r (ϕ) ≤ C‖f‖CMOα,q

r (φ) by interchanging the roles of ϕ and φ. Hence, the

definition of CMOα,q
r (ϕ) is independent of the choice of ϕ and, for short, denoted by CMOα,q

r .
Also, Theorem 1.5 shows that CMOα,∞

r is independent of the choice of ϕ satisfying (1.2) in the
same argument.

Remark 1.7. The classical Plancherel-Pôlya inequality [9] concludes that if {xk} is an
appropriate set of points in R

n, for example, lattice points, where the length of the mesh
is sufficiently small, then

( ∞∑

k=1

∣
∣f(xk)

∣
∣p
)1/p

≈ ∥
∥f

∥
∥
p (1.13)

for all 0 < p ≤ ∞with a modification if p = ∞.

Using the Calderón reproducing formula (either continuous or discrete version),
several authors obtain the variant Plancherel-Pôlya inequalities [10–13]. These inequalities
give characterizations of the Besov spaces and the Triebel-Lizorkin spaces. Moreover, using
these inequalities, one can show that the Littlewood-Paley g-function and Lusin area S-
function are equivalent in Lp-norm.
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Define a linear map Sϕ from S′/P into the family of complex sequences by

Sϕ
(
f
)
=
{〈
f, ϕQ

〉}
Q. (1.14)

Let S0 denote the family of f ∈ S satisfying
∫
xkf(x)dx = 0 for all k ∈ (N ∪ {0})n. For

g ∈ CMO−α,q′
p , define a linear functional Lg by

Lg
(
f
)
=
〈
Sψ

(
g
)
, Sϕ

(
f
)〉

=
∑

Q

〈
g, ψQ

〉〈
f, ϕQ

〉
for f ∈ S0. (1.15)

We now state our first main result as follows.

Theorem 1.8 (duality for Ḟα,qp ). Suppose that α ∈ R, 0 < p ≤ 1, and 0 < q <∞.

(a) For 1 < q <∞, the dual of Ḟα,qp is CMO−α,q′
(q′/p)−(q′/q) in the following sense.

(i) For g ∈ CMO−α,q′
(q′/p)−(q′/q), the linear functional Lg given by (1.15), defined initially on

S0, extends to a continuous linear functional on Ḟ
α,q
p with ‖Lg‖ ≤ C‖g‖

CMO−α,q′
(q′/p)−(q′/q)

.

(ii) Conversely, every continuous linear functional L on Ḟα,qp satisfies L = Lg for some

g ∈ CMO−α,q′
(q′/p)−(q′/q) with ‖g‖CMO−α,q′

(q′/p)−(q′/q)
≤ C‖L‖.

(b) For 0 < q ≤ 1, the dual of Ḟα,qp is CMO−α+(n/p)−n,∞
r (any r ∈ R) in the following sense.

(i) For g ∈ CMO−α+(n/p)−n,∞
r , the linear functional Lg given by (1.15), defined

initially on S0, extends to a continuous linear functional on Ḟ
α,q
p with ‖Lg‖ ≤

C‖g‖CMO−α+(n/p)−n,∞
r

.

(ii) Conversely, every continuous linear functional L on Ḟα,qp satisfies L = Lg for some

g ∈ CMO−α+(n/p)−n,∞
r with ‖g‖CMO−α+(n/p)−n,∞

r
≤ C‖L‖.

Remark 1.9. For 0 < p < 1 and 0 < q ≤ 1, it follows immediately from [2, 3] (Verbitsky [4]
corrected a gap of the proof) and definition that (Ḟα,qp )′ = Ḟ

−α+(n/p)−n,∞
∞ = CMO−α+(n/p)−n,∞

r

(any r ∈ R). Theorem 1.8 (b) shows a different approach to the duality and includes the case
of p = 1.

For p = 1 < q < ∞, we have CMO−α,q′
q′−(q′/q) = (Ḟα,q1 )′ = Ḟ

−α,q′
∞ . For 0 < p < 1 < q < ∞,

CMO−α,q′
(q′/p)−(q′/q) = (Ḟα,qp )′ = Ḟ

−α+(n/p)−n,∞
∞ , and hence CMO−α,q′

(q′/p)−(q′/q) = CMO−α+(n/p)−n,∞
r . That

is, each CMOα,q

(q/p)−(q/q′) coincides with CMOα+(n/p)−n,∞
r for α, r ∈ R and 0 < p < 1 < q <∞.

Remark 1.10. In Remark 1.2 we are aware that CMOα,q
r generalize BMO by the viewpoint of

spaces directly. Choosing α = 0 and q = 2 in Theorem 1.8, we immediately have (Hp)′ =
(Ḟ0,2

p )′ = CMO0,2
(2/p)−1 for 0 < p ≤ 1. In particular, BMO = CMO0,2

1 . Once again, we obtain

that CMOα,q
r generalize BMO by the viewpoint of duality. It was also proved in [14] that the

dual of the multiparameter product Hardy space is the generalized multiparameter Carleson
measure space (cf. [14] for more details).
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Remark 1.11. For α, r ∈ R, in order to make each index works, we defined CMOα,∞
r to be

supP |P |−rsupQ⊆P |Q|−(α/n)−(1/2)|〈f, ϕQ〉| in our earlier version and in [7]. In such a situation,
for 0 < p, q ≤ 1, the dual of Ḟα,qp would be CMO−α,∞

(1/p)−1. In this paper, however, we follow
the referee’s suggestion and adopt a more “natural” definition of CMOα,∞

r in Definition 1.1,
that is, the limit of CMOα,q

r as q → ∞. The sequence space cα,∞r given in Definition 2.1 has a
similar story as well.

As applications, we first recall the Haar multipliers introduced in [15, 16]. Given a
sequence t = {tI}I , where the I’s are dyadic intervals in R, a Haar multiplier on L2(R) is a
linear operator of the form

Htf(x) :=
∑

I

tI
〈
f, hI

〉
hI(x), f ∈ L2(R), (1.16)

where hI are the Haar functions corresponding to I.
Using Meyer’s wavelets, we may generalize the above Haar multiplier to R

n and
obtain a necessary and sufficient condition for the boundedness on Triebel-Lizorkin spaces.
Let {ψi} for i ∈ E := {1, 2, . . . 2n − 1} be Meyer’s wavelets (cf. [17], [18, pages 71–109]).
Then, {ψiQ}, where i ∈ E and Q′s are dyadic cubes in R

n, is a frame for Ḟα,qp for α ∈ R and
0 < p, q ≤ ∞; that is, ‖f‖Ḟα,qp ≈ ∑

i∈E ‖{〈f, ψiQ〉}Q‖ḟα,qp

for f ∈ Ḟα,qp . For t = {tQ}Q, define a wavelet
multiplier T̃t on R

n by

T̃t
(
f
)
=
∑

i∈E

∑

Q

|Q|−1/2tQ
〈
f, ψiQ

〉
ψiQ (1.17)

for f ∈ S′/P such that the above summation is well defined.

Theorem 1.12. Suppose that α, β ∈ R, 0 < p ≤ 1 and 0 < q <∞. Then,

(a) for 1 < q <∞, T̃t is bounded from Ḟ
α,q
p into Ḟα+β,11 if and only if t ∈ cβ,q′(q′/p)−(q′/q);

(b) for 0 < q ≤ 1 and r ∈ R, T̃t is bounded from Ḟ
α,q
p into Ḟα+β,11 if and only if t ∈ cβ+(n/p)−n,∞r ,

where cα,qr is given in Definition 2.1.

We consider another application. Let ϕ and ψ in S satisfy (1.2) and (3.1). Choose a
function Φ ∈ S supported on [0, 1]n and

∫
Φ = 1. For α ∈ R and g ∈ Ḟα,∞∞ , define the

paraproduct operator Πg by

Πg

(
f
)
=
∑

Q

〈
g, ϕQ

〉|Q|−1/2〈f,ΦQ

〉
ψQ. (1.18)

Thus, the adjoint operator Π∗
g is

Π∗
g

(
f
)
=
∑

Q

〈
g, ϕQ

〉|Q|−1/2〈f, ψQ〉 ΦQ. (1.19)

Then, Πg1 = g and Π∗
g1 = 0 since 〈1,ΦQ〉 = |Q|1/2 and 〈1, ψQ〉 = 0. Also, if g ∈ Ḟ0,∞

∞ , then
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both Πg and Π∗
g are singular integral operators satisfying the weak boundedness property.

Moreover,Πg is a Calderón-Zygmund operator (i.e.,Πg is bounded on L2(Rn)) if and only if
g ∈ Ḟ0,2

∞ by David-Journé’s T1 theorem [19] (also see [12, Theorems 5.4 and 5.8]). The authors
showed a more general type of paraproduct operators in [12, page 688], which were derived
from the discrete Calderón reproducing formula.

Theorem 1.13. Suppose that β ∈ R, 0 < r ≤ 1 and 0 < p ≤ r < q < r/(1 − r).

(i) For α < 0, Πg is bounded from Ḟ
α,q
p into Ḟα+β,rr if and only if g ∈ CMOβ,qr/(q−r)

r(q−p)/p(q−r).

(ii) If α ∈ R with α + β > 0 and g ∈ CMOβ,qr/(q−r)
r(q−p)/p(q−r), then Π∗

g is bounded from Ḟ
α,q
p into

Ḟ
α+β,r
r .

Remark 1.14. When r = 1, 0 < p ≤ 1 < q <∞, and β ∈ R, Theorem 1.13 says thatΠg is bounded

from Ḟ
α,q
p into Ḟα+β,11 if and only if g ∈ CMOβ,q′

(q′/p)−(q′/q) for α < 0, and Π∗
g is bounded from Ḟ

α,q
p

into Ḟα+β,11 for α > −β provided g ∈ CMOβ,q′

(q′/p)−(q′/q). In 1995, Youssfi [20] showed that, for

β ∈ R, 1 < p < ∞, 1 ≤ q ≤ 2, and g ∈ Ḟ
β,∞
∞ , Πg is bounded from Ḟ

0,q
p into Ḟβ,pp if and only if

g ∈ Ḟ
β,p
∞ . The special case of Theorem 1.13(i), p = r, generalizes Youssfi’s result to 0 < p ≤ 1.

More precisely, for α < 0, β ∈ R, 0 < p ≤ 1, and p < q < p/(1 − p), Πg is bounded from Ḟ
α,q
p to

Ḟ
α+β,p
p if and only if g ∈ CMOβ,pq/(q−p)

1 = Ḟβ,pq/(q−p)∞ .

The paper is organized as follows. In Section 2, we introduce the discrete version of
the generalized Carleson measure spaces cα,qr and show that the duals of sequence Triebel-
Lizorkin spaces ḟα,qp for 1 < q < ∞ and 0 < q ≤ 1 are c−α,q

′

(q′/p)−(q′/q) and c
−α+(n/p)−n,∞
r (for any

r ∈ R), respectively. In Section 3, we prove the duals of homogeneous Triebel-Lizorkin spaces
Ḟ
α,q
p for 1 < q <∞ and 0 < q ≤ 1 to be the generalized Carlesonmeasure spaces CMO−α,q′

(q′/p)−(q′/q)
and CMO−α+(n/p)−n,∞

r (for any r ∈ R), respectively. In Section 4, we prove the Plancherel-
Pôlya inequalities that give us the independence of the choice of ϕ for the definition of
the generalized Carleson measure spaces. In the last section, we show the boundedness of
wavelet multipliers and paraproduct operators. Throughout, we use C to denote a universal
constant that does not depend on the main variables but may differ from line to line. Also,
Q and P always mean the dyadic cubes in R

n, and, for r > 0, we denote by rQ the cube
concentric with Q whose each edge is r times as long.

2. Sequence Spaces

In this section, we introduce sequence spaces cα,qr and then characterize the duals of ḟα,qp by
means of cα,qr . Let us recall the definition of these sequence spaces ḟα,qp defined in [2]. For
α ∈ R and 0 < p, q ≤ ∞, the space ḟα,qp consists all such sequences s = {sQ}Q satisfying

‖s‖ḟα,qp
:=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∥
∥
∥
∥
∥
∥

{
∑

Q

(
|Q|−(α/n)−(1/2)∣∣sQ

∣
∣χQ

)q
}1/q

∥
∥
∥
∥
∥
∥
Lp

<∞ if 0 < p <∞,

sup
P

{

|P |−1
∫

P

∑

Q⊆P

(
|Q|(−α/n)−(1/2) ∣∣sQ

∣
∣χQ(x)

)q
dx

}1/q

<∞ if p = ∞.

(2.1)
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As before, the previous �q-norm is modified to the supremum norm for 0 < p <∞ and q = ∞.
For p = q = ∞, we adopt the norm

‖s‖ḟα,∞∞ := sup
Q

|Q|−(α/n)−(1/2)∣∣sQ
∣
∣. (2.2)

Note that ‖s‖q
ḟ
α,q
∞

is equivalent to the Carleson norm of the measure

∑

Q

(
|Q|−(α/n)−(1/2)∣∣sQ

∣
∣
)q

|Q|δ(xQ,�(Q)), (2.3)

where δ(x,t) is the point mass at (x, t) ∈ R
n+1
+ . See [2] for the details.

To study the duals of ḟα,qp , we introduce a discrete version of the generalized Carleson
measure spaces cα,qr .

Definition 2.1. For α, r ∈ R and 0 < q ≤ ∞, the space cα,qr is the collection of all sequences
t = {tQ}Q satisfying ‖t‖cα,qr <∞, where

‖t‖cα,qr :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sup
P

|P |−r
∫

P

∑

Q⊆P

(
|Q|−(α/n)−(1/2)∣∣tQ

∣
∣χQ(x)

)q
dx for 0 < q <∞,

sup
P

sup
Q⊆P

|Q|−(α/n)−(1/2)∣∣tQ
∣
∣ = sup

Q

|Q|−(α/n)−(1/2)∣∣tQ
∣
∣ for q = ∞.

(2.4)

It is obvious that

‖t‖cα,qr = sup
P

{

|P |−r
∑

Q⊆P

(
|Q|−(α/n)−(1/2)+(1/q)∣∣tQ

∣
∣
)q
}1/q

for 0 < q <∞ (2.5)

and ‖t‖cα,∞r = ‖t‖ḟα,∞∞ for α, r ∈ R. Using embedding theorem, Frazier and Jawerth
[2, equation (5.14) and Theorem 5.9] obtained that, for α ∈ R and 0 < q < ∞, the dual of
ḟ
α,q
p is ḟ−α+(n/p)−n,∞

∞ when 0 < p < 1, and the dual of ḟα,q1 is ḟ−α,q′
∞ . Note that cα,qr = {0} for r < 0

and 0 < q <∞. Here we give the dual relationship between sequence spaces ḟα,qp and cα,qr .

Theorem 2.2 (duality for ḟα,qp ). Suppose that α ∈ R, 0 < p ≤ 1, and 0 < q <∞.

(a) For 1 < q <∞, the dual of ḟα,qp is c−α,q
′

(q′/p)−(q′/q) in the following sense.

(i) For t = {tQ}Q ∈ c
−α,q′
(q′/p)−(q′/q), the linear functional �t on ḟ

α,q
p given by �t(s) =

∑
Q sQtQ is continuous with ‖�t‖ ≤ C‖t‖

c
−α,q′
(q′/p)−(q′/q)

for s = {sQ}Q ∈ ḟα,qp .

(ii) Conversely, every continuous linear functional � on ḟ
α,q
p satisfies � = �t for some

t ∈ c−α,q′(q′/p)−(q′/q) with ‖t‖c−α,q′
(q′/p)−(q′/q)

≤ C‖�‖.

(b) For 0 < q ≤ 1, the dual of ḟα,qp is c−α+(n/p)−n,∞r (any r ∈ R) in the following sense.
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(i) For t = {tQ}Q ∈ c
−α+(n/p)−n,∞
r , the linear functional �t on ḟ

α,q
p given by �t(s) =

∑
Q sQtQ is continuous with ‖�t‖ ≤ C‖t‖

c
−α+(n/p)−n,∞
r

for s = {sQ}Q ∈ ḟα,qp .

(ii) Conversely, every continuous linear functional � on ḟ
α,q
p satisfies � = �t for some

t ∈ c−α+(n/p)−n,∞r with ‖t‖
c
−α+(n/p)−n,∞
r

≤ C‖�‖.

Remark 2.3. For α ∈ R and 0 < q < ∞, sequence spaces cα,q1 = ḟ
α,q
∞ and cα,∞r = ḟα,∞∞ (for any

r ∈ R) by definitions. Theorem 2.2 shows that (ḟα,q1 )′ = ḟ
−α,q′
∞ , which gives a different but

simpler proof of Frazier-Jawerth’s result for the duality of ḟα,q1 (cf. [2, Theorem 5.9]).

Proof of Theorem 2.2. For s = {sQ}Q ∈ ḟα,qp and t = {tQ}Q ∈ c−α,q′r , set s̃ = {s̃Q}Q and t̃ = {t̃Q}Q to
be

s̃Q = |Q|−α/nsQ, t̃Q = |Q|α/ntQ. (2.6)

Then, �t̃(s̃) = �t(s). Also,

‖s̃‖
ḟ
0,q
p

= ‖s‖ḟα,qp
,

∥
∥
∥t̃
∥
∥
∥
c0,q

′
r

= ‖t‖
c
−α,q′
r

. (2.7)

Without loss of generality, we may assume that α = 0.
We first consider the case 1 < q < ∞. Let t ∈ c

0,q′

(q′/p)−(q′/q) and define a linear functional

�t on ḟ
0,q
p by

�t(s) =
∑

Q

sQtQ for s ∈ ḟ0,q
p . (2.8)

For s = {sQ}Q ∈ ḟ0,q
p , let

Vq(x) :=

(
∑

Q

(
|Q|−1/2∣∣sQ

∣
∣χQ(x)

)q
)1/q

. (2.9)

For k ∈ Z, let

Ωk : =
{
x ∈ R

n : 2k < Vq(x) ≤ 2k+1
}
,

Ω̃k : =
{

x ∈ R
n :MχΩk(x) >

1
2

}

,

Bk :=
{

dyadic Q :
∣
∣Q ∩Ωj

∣
∣ >

|Q|
2
,
∣
∣Q ∩Ωj+1

∣
∣ ≤ |Q|

2
for some j ≥ k

}

,

(2.10)

where M is the Hardy-Littlewood maximal function. Then, for each dyadic cube Q, there
exists exactly a k ∈ Z such that Q ∈ Bk. For every Q ∈ Bk, let Q̃ denote the maximal
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dyadic cube in Bk containing Q. Then all of such Q̃’s are pairwise disjoint. Thus, by Hölder’s
inequality for q and the inequality (a + b)p ≤ ap + bp for 0 < p ≤ 1,

∣
∣
∣
∣
∣

∑

Q

sQtQ

∣
∣
∣
∣
∣
≤
∑

k∈Z

∑

Q̃∈Bk

∑

Q⊆Q̃
Q∈Bk

(
|Q|−(1/2)+(1/q)∣∣sQ

∣
∣
)(

|Q|(1/2)−(1/q)∣∣tQ
∣
∣
)

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

k∈Z

∑

Q̃∈Bk

⎛

⎜
⎜
⎝

∑

Q⊆Q̃
Q∈Bk

(
|Q|−(1/2)+(1/q)∣∣sQ

∣
∣
)q

⎞

⎟
⎟
⎠

p/q⎛

⎜
⎜
⎝

∑

Q⊆Q̃
Q∈Bk

(
|Q|−(1/2)+(1/q′)∣∣tQ

∣
∣
)q′

⎞

⎟
⎟
⎠

p/q′
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

1/p

≤ ‖t‖
c
0,q′
(q′/p)−(q′/q)

⎧
⎪⎪⎨

⎪⎪⎩

∑

k∈Z

∑

Q̃∈Bk

⎛

⎜
⎜
⎝

∑

Q⊆Q̃
Q∈Bk

(
|Q|−(1/2)+(1/q)∣∣sQ

∣
∣
)q

⎞

⎟
⎟
⎠

p/q

∣
∣
∣Q̃

∣
∣
∣
1−(p/q)

⎫
⎪⎪⎬

⎪⎪⎭

1/p

.

(2.11)

Since Q̃ ∈ Bk implies Q̃ ⊆ Ω̃k, the disjointness of Q̃’s and Hölder’s inequality yield

∣
∣
∣
∣
∣

∑

Q

sQtQ

∣
∣
∣
∣
∣
≤ ‖t‖

c
0,q′
(q′/p)−(q′/q)

⎧
⎨

⎩

∑

k∈Z

∣
∣
∣Ω̃k

∣
∣
∣
1−(p/q)

(
∑

Q∈Bk

(
|Q|−(1/2)+(1/q)∣∣sQ

∣
∣
)q
)p/q 1/p

. (2.12)

We claim that
∑

Q∈Bk (|Q|−(1/2)+(1/q)|sQ|)q ≤ C2kq|Ω̃k| for k ∈ Z and 0 < q < ∞. Assume the
claim for the moment. The weak (1, 1) boundedness ofM gives |Ω̃k| ≤ C|Ωk|, and hence

∣
∣
∣
∣
∣

∑

Q

sQtQ

∣
∣
∣
∣
∣
≤ C‖t‖

c
0,q′
(q′/p)−(q′/q)

(
∑

k∈Z

∣
∣
∣Ω̃k

∣
∣
∣
1−(p/q)(

2kq
∣
∣
∣Ω̃k

∣
∣
∣
)p/q

)1/p

≤ C‖t‖
c
0,q′
(q′/p)−(q′/q)

(
∑

k∈Z

2kp|Ωk|
)1/p

≤ C‖t‖
c
0,q′
(q′/p)−(q′/q)

∥
∥Vq

∥
∥
Lp

= C‖t‖
c
0,q′
(q′/p)−(q′/q)

‖s‖
ḟ
0,q
p
.

(2.13)

To prove the claim, we note that, for k ∈ Z and 0 < q <∞,

2q(k+1)
∣
∣
∣Ω̃k

∣
∣
∣ ≥

∫

Ω̃k\
⋃∞
j=k+1 Ωj

(
Vq(x)

)q
dx

=
∫

Ω̃k\
⋃∞
j=k+1 Ωj

∑

Q

(
|Q|−1/2∣∣sQ

∣
∣χQ(x)

)q
dx

≥
∑

Q∈Bk

(
|Q|−1/2|sQ|

)q∣∣
∣
(
Ω̃k \Ωj

)
∩Q

∣
∣
∣ for some j ≥ k + 1,

(2.14)
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which implies

2q(k+1)
∣
∣
∣Ω̃k

∣
∣
∣ ≥ 1

2

∑

Q∈Bk

(
|Q|−(1/2)+(1/q)∣∣sQ

∣
∣
)q
. (2.15)

For 0 < q ≤ 1, with a modification, we have

∣
∣
∣
∣
∣

∑

Q

sQtQ

∣
∣
∣
∣
∣
≤
∑

k∈Z

∑

Q̃∈Bk

∑

Q⊆Q̃
Q∈Bk

(
|Q|1/2∣∣sQ

∣
∣
)(

|Q|−(1/p)+(1/2)∣∣tQ
∣
∣
)
⎛

⎝ |Q|
∣
∣
∣Q̃

∣
∣
∣

⎞

⎠

(1/p)−1
∣
∣
∣Q̃

∣
∣
∣
(1/p)−1

≤ ‖t‖
c
(n/p)−n,∞
r

⎧
⎪⎪⎨

⎪⎪⎩

∑

k∈Z

∑

Q̃∈Bk

⎛

⎜
⎜
⎝

∑

Q⊆Q̃
Q∈Bk

|Q|1/2∣∣sQ
∣
∣

⎞

⎟
⎟
⎠

p

∣
∣
∣Q̃

∣
∣
∣
1−p

⎫
⎪⎪⎬

⎪⎪⎭

1/p

≤ C‖t‖
c
(n/p)−n,∞
r

(
∑

k∈Z

∣
∣
∣Ω̃k

∣
∣
∣
1−p(

2k
∣
∣
∣Ω̃k

∣
∣
∣
)p
)1/p

≤ C‖t‖
c
(n/p)−n,∞
r

∥
∥Vq

∥
∥
Lp

≤ C‖t‖
c
(n/p)−n,∞
r

‖s‖
ḟ
0,q
p
.

(2.16)

On the other hand, suppose that � is a continuous linear functional on ḟ0,q
p . For each

dyadic cube P , write eP = {(eP )Q}Q to be the sequence defined by

(
eP

)

Q
=

{
1 if Q = P,
0 if Q/=P.

(2.17)

Let tP = �(eP ) and t = {tP}P . Then, for s = {sQ}Q ∈ ḟ0,q
p ,

�(s) =
∑

Q

sQtQ = �t(s). (2.18)

Fix a dyadic cube P . For 1 < q < ∞, let X be the sequence space consisting of s = {sQ}Q⊆P ,
and define a counting measure on dyadic cubes Q ⊆ P by dσ(Q) = |Q|/|P |(q′/p)−(q′/q). Then,

(
1

|P |(q′/p)−(q′/q)
∑

Q⊆P

(
|Q|−(1/2)+(1/q′ )∣∣tQ

∣
∣
)q′

)1/q′

= sup
‖s‖�q(X,dσ)≤1

∣
∣
∣
∣
∣

1

|P |(q′/p)−(q′/q)
∑

Q⊆P |Q| sQ|Q|−1/2|tQ|

∣
∣
∣
∣
∣

≤ ‖�‖ sup
‖s‖�q(X,dσ)≤1

∥
∥
∥
∥
∥
∥

{
sQ|Q|1/2

|P |(q′/p)−(q′/q)
}

Q⊆P

∥
∥
∥
∥
∥
∥
ḟ
0,q
p

.

(2.19)
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Note that

∥
∥
∥
∥
∥
∥

{
sQ|Q|1/2

|P |(q′/p)−(q′/q)
}

Q⊆P

∥
∥
∥
∥
∥
∥
ḟ
0,q
p

≤ 1

|P |(q′/p)−(q′/q)

⎧
⎨

⎩

(
∑

Q⊆P
|Q|∣∣sQ

∣
∣q
)p/q

· |P |1−(p/q)
⎫
⎬

⎭

1/p

≤ C‖s‖�q(X,dσ).

(2.20)

Thus,

(
1

|P |(q′/p)−(q′/q)
∑

Q⊆P

(
|Q|(−1/2)+(1/q′)∣∣tQ

∣
∣
)q′

)1/q′

≤ C‖�‖, (2.21)

and hence t ∈ c
0,q′

(q′/p)−(q′/q). For 0 < q ≤ 1, consider eP defined before. Then, ‖eP‖
ḟ
0,q
p

=

|P |−(1/2)+(1/p ) and

(
|P |(1/2)−(1/p)|tP |

)∥
∥
∥eP

∥
∥
∥
ḟ
0,q
p

= |tP | =
∣
∣
∣�
(
eP

)∣
∣
∣ ≤ ‖�‖

∥
∥
∥eP

∥
∥
∥
ḟ
0,q
p

. (2.22)

Hence, ‖t‖
c
(n/p)−n,∞
r

= supP |P |(1/2)−(1/p)|tP | ≤ ‖�‖. This completes the proof.

3. Proof of the Main Theorem

Let us recall the ϕ-transform identity given by Frazier and Jawerth [2]. Choose a function
ϕ ∈ S satisfying (1.2). Then there exists a function ψ ∈ S satisfying the same conditions as ϕ
such that

∑
j∈Z

ϕ̂(2−j ξ)ψ̂(2−j ξ) = 1 for ξ /= 0. The ϕ-transform identity is given by

f =
∑

Q

〈
f, ϕQ

〉
ψQ, (3.1)

where the identity holds in the sense of S′/P, S0, and Ḟ
α,q
p -norm.

Define a linear map Sϕ from S′/P into the family of complex sequences by

Sϕ
(
f
)
=
{〈
f, ϕQ

〉}
Q, (3.2)

and another linear map Tψ from the family of complex sequences into S′/P by

Tψ
({
sQ

}
Q

)
=
∑

Q

sQψQ. (3.3)

Then, Tψ ◦ Sϕ|Ḟα,qp is the identity on Ḟα,qp by [2, Theorem 2.2].

Proposition 3.1. Suppose that α ∈ R and, 0 < p, q ≤ +∞, and ϕ, ψ in S satisfy (1.2) and (3.1). The
linear operators Sϕ : Ḟα,qp �→ ḟ

α,q
p and Tψ : ḟα,qp �→ Ḟ

α,q
p defined by (3.2) and (3.3), respectively, are
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(q ′/p)−(q ′/q)

(q ′/p)−(q ′/q)ḟ
α,q
p

Sϕ SϕTψ Tψ

Dual relation by Theorem 2.2

Ḟ
α,q
p

Dual relation by Theorem 1.8 CMO−α,q′

c
−α,q′(a)

(a)

Figure 1: Diagram for spaces and maps for 1 < q <∞.

−α+(n/p)−n,∞

ḟ
α,q
p

Sϕ SϕTψ Tψ

Dual relation by Theorem 2.2

Ḟ
α,q
p

Dual relation by Theorem 1.8

(b)

(b)
CMOr

c
−α+(n/p)−n,∞
r

Figure 2: Diagram for spaces and maps for 0 < q ≤ 1.

bounded. Furthermore, Tψ ◦ Sϕ is the identity on Ḟα,qp . In particular, ‖f‖Ḟα,qp ≈ ‖Sϕ(f)‖ḟα,qp
and Ḟα,qp

can be identified with a complemented subspace of ḟα,qp .

Figures 1 and 2 illustrate the relationship among Ḟα,qp , ḟα,qp , CMOα,q
r , and cα,qr .

One recalls the almost diagonality given by Frazier and Jawerth [2]. For α ∈ R and
0 < p, q ≤ ∞, let J = n/(min{1, p, q}). One says that a matrix A = {aQP}Q,P is (α, p, q)-almost
diagonal if there exists ε > 0 such that

sup
Q,P

∣
∣aQP

∣
∣

wQP (ε)
< +∞, (3.4)

where

wQP (ε) =
(
�(Q)
�(P)

)α(

1 +
|xQ − xP |

max(�(P), �(Q))

)−J−ε
·min

{(
�(Q)
�(P)

)(n+ε)/2

,

(
�(P)
�(Q)

)((n+ε)/2)+J−n}

.

(3.5)

Lemma 3.2. For α, r ∈ R and 0 < q < ∞, an (α + nr, q, q)-almost diagonal matrix is bounded on
c
α,q
r . Furthermore, when r ≥ 0, an (α + nr,∞,∞)-almost diagonal matrix is bounded on cα,∞r .

We postpone the proof of Lemma 3.2 until the end of Section 4.
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Let α, r ∈ R. For q = ∞, we have cα,∞r = ḟα,∞∞ and CMOα,∞
r = Ḟα,∞∞ . Thus, Sϕ : CMOα,∞

r �→
cα,∞r and Tψ : cα,∞r �→ CMOα,∞

r are bounded by Proposition 3.1. For 0 < q <∞ and f ∈ CMOα,q
r ,

let s = {sQ}Q = Sϕ(f). Then, the ϕ-transform identity (3.1) shows that f =
∑

Q sQψQ and
‖f‖CMOα,q

r
= ‖Sϕ(f)‖cα,qr = ‖s‖cα,qr . In particular, ‖f‖CMOα,q

1
= ‖Sϕ(f)‖cα,q1

= ‖Sϕ(f)‖ḟα,q∞
≈ ‖f‖Ḟα,q∞

.

Furthermore, for s ∈ cα,qr ,

∥
∥Tψ(s)

∥
∥
CMOα,q

r
=

∥
∥
∥
∥
∥

∑

P

sPψP

∥
∥
∥
∥
∥
CMOα,q

r

=

∥
∥
∥
∥
∥
∥

{〈
∑

P

sPψP , ϕQ

〉}

Q

∥
∥
∥
∥
∥
∥
c
α,q
r

= ‖As‖cα,qr , (3.6)

where A := {〈ψP , ϕQ〉}Q,P is (α + nr, q, q)-almost diagonal (cf. [2, Lemma 3.6]) and hence A
is bounded on c

α,q
r by Lemma 3.2. Therefore, Sϕ is bounded from CMOα,q

r to cα,qr and Tψ is
bounded from c

α,q
r to CMOα,q

r .
We summarize that Tψ ◦ Sϕ|CMOα,q

r
is also the identity on CMOα,q

r .

Proposition 3.3. For (α, r, q) ∈ R × R × (0,∞) or (α, r, q) ∈ R × R × {∞}, the linear operators
Sϕ : CMOα,q

r �→ c
α,q
r and Tψ : cα,qr �→ CMOα,q

r are bounded. Furthermore, Tψ ◦ Sϕ is the identity on
CMOα,q

r and ‖f‖CMOα,q
r

= ‖Sϕf‖cα,qr . In particular, ‖f‖CMOα,q

1
= ‖Sϕ(f)‖cα,q1

= ‖Sϕ(f)‖ḟα,q∞
≈ ‖f‖Ḟα,q∞

for α ∈ R and 0 < q <∞, and ‖f‖CMOα,∞
r

= ‖Sϕ(f)‖cα,∞r = ‖Sϕ(f)‖ḟα,∞∞
≈ ‖f‖Ḟα,∞∞

for α, r ∈ R.

Theorem 1.8 can be proved as a consequence of Propositions 3.1–3.3 and a duality
result between two sequence spaces.

Proof of Theorem 1.8. First let us consider the case for 1 < q <∞. Let g ∈ CMO−α,q′
(q′/p)−(q′/q). Then,

by Proposition 3.3, ‖g‖
CMO−α,q′

(q′/p)−(q′/q)
= ‖Sψ(g)‖c−α,q′

(q′/p)−(q′/q)
. It follows from Theorem 2.2 that �Sψ(g)

is a continuous linear functional on ḟα,qp and ‖�Sψ(g)‖ ≈ ‖Sψ(g)‖c−α,q′
(q′/p)−(q′/q)

. Hence, for f ∈ S0,

∣
∣Lg

(
f
)∣
∣ ≤ C∥∥Sψ(g)

∥
∥
c
−α,q′
(q′/p)−(q′/q)

∥
∥Sϕ

(
f
)∥
∥
ḟ
α,q
p

≤ C∥∥g∥∥
CMO−α,q′

(q′/p)−(q′/q)

∥
∥f

∥
∥
Ḟ
α,q
p
. (3.7)

Since S0 is dense in Ḟ
α,q
p , the functional Lg can be extended to a continuous linear functional

on Ḟα,qp satisfying ‖Lg‖ ≤ C‖g‖
CMO−α,q′

(q′/p)−(q′/q)
.

Conversely, let L ∈ (Ḟα,qp )′, and set � = L ◦ Tψ on ḟα,qp . By Proposition 3.1, � ∈ (ḟα,qp )′.

Thus, by Theorem 2.2, there exists t = {tQ}Q ∈ c−α,q′(q′/p)−(q′/q) such that

�
({
sQ

}
Q

)
=
∑

Q

sQtQ for
{
sQ

}
Q ∈ ḟα,qp , (3.8)

and ‖t‖
c
−α,q′
(q′/p)−(q′/q)

≈ ‖�‖ ≤ C‖L‖. For f ∈ Ḟα,qp , we have

� ◦ Sϕ
(
f
)
= L ◦ Tψ ◦ Sϕ

(
f
)
= L

(
f
)
. (3.9)
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So, for f ∈ S0 and letting g = Tψ(t) =
∑

Q tQψQ,

L
(
f
)
= � ◦ Sϕ

(
f
)
=
∑

Q

〈
f, ϕQ

〉
tQ =

〈
t, Sϕ

(
f
)〉
. (3.10)

It follows from [2, equations (2.7)-(2.8)] that 〈g, f〉 = 〈Sψ(g), Sϕ(f)〉 and 〈t, Sϕ(f)〉 =
〈Tψ(t), f〉 for f ∈ S0 and g ∈ S′/P. This shows that L(f) = 〈Tψ(t), f〉 = Lg(f) for f ∈ S0.
Proposition 3.3 and Theorem 2.2 give

∥
∥g

∥
∥
CMO−α,q′

(q′/p)−(q′/q)
≤ C‖t‖

c
−α,q′
(q′/p)−(q′/q)

≤ C‖L‖. (3.11)

A similar argument gives the desired result for 0 < q ≤ 1 with a slight modification,
and hence the proof is finished.

Remark 3.4. As pointed out by one of the referees, Yang and Yuan [8, Theorem 1] show that
if τ > 1/p and 0 < p, q < ∞, then Ḟα,τp,q = Ḟ

α+nτ−(n/p),∞
∞ , where the definition of Ḟα,τp,q is given in

Remark 1.3. Thus, for 0 < p < 1 and 1 < q <∞,

(
Ḟ
α,q
p

)′
= Ḟ−α+(n/p)−n,∞

∞ = Ḟ−α,(1/p)−(1/q)
q′,q′ = CMO−α,q′

(q′/p)−(q′/q), (3.12)

which demonstrates a different approach to the duality.

4. Proofs of the Plancherel-Pôlya Inequalities

In this section we demonstrate the Plancherel-Pôlya inequalities.

Proof of Theorem 1.4. Without loss of generality, we may assume that α = 0. By (3.1), we
rewrite φ̃j ∗ f(u) as

φ̃j ∗ f(u) =
∑

Q

〈
f, ϕQ

〉
∫

φ̃j(u − x)ψQ(x)dx

=
∑

k∈Z

∑

Q
�(Q)=2−k

|Q|〈f, ϕk
(· − xQ

)〉
∫

φ̃j(u − x)ψk
(
x − xQ

)
dx.

(4.1)

Using the inequality [2, page 151, equation (B.5)]

∣
∣
∣
∣

∫

φ̃j(u − x)ψk
(
x − xQ

)
dx

∣
∣
∣
∣ ≤ C2−K|j−k| 2−(j∧k)

(
2−(j∧k) +

∣
∣u − xQ

∣
∣
)n+1 , (4.2)
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where j ∧ k = min{j, k} and K > 1 + nr, we obtain

∣
∣
∣φ̃j ∗ f(u)

∣
∣
∣ ≤ C

∑

k∈Z

∑

Q
�(Q)=2−k

2−K|j−k||Q| 2−(j∧k)
(
2−(j∧k) +

∣
∣u − xQ

∣
∣
)n+1

∣
∣ϕ̃k ∗ f

(
xQ

)∣
∣. (4.3)

Thus, for �(Q′) = 2−j ,

(

sup
u∈Q′

∣
∣
∣φ̃j ∗ f(u)

∣
∣
∣

)q

≤ C

⎛

⎜
⎜
⎝

∑

k∈Z

∑

Q
�(Q)=2−k

2−K|j−k||Q| 2−(j∧k)
(
2−(j∧k) +

∣
∣xQ′ − xQ

∣
∣
)n+1

∣
∣ϕ̃k ∗ f

(
xQ

)∣
∣

⎞

⎟
⎟
⎠

q

≤ C
∑

k∈Z

∑

Q
�(Q)=2−k

2−K|j−k||Q| 2−(j∧k)
(
2−(j∧k) +

∣
∣xQ′ − xQ

∣
∣
)n+1

∣
∣ϕ̃k ∗ f

(
xQ

)∣
∣q,

(4.4)

where the last inequality is followed by Hölder’s inequality and

∑

Q
�(Q)=2−k

|Q| 2−(j∧k)
(
2−(j∧k) +

∣
∣xQ′ − xQ

∣
∣
)n+1 ≤ C

. (4.5)

Denote TQ by

TQ := inf
u∈Q

∣
∣ϕ̃k ∗ f(u)

∣
∣q. (4.6)

Since xQ can be replaced by any point in Q in the last inequality,

(

sup
u∈Q′

∣
∣
∣φ̃j ∗ f(u)

∣
∣
∣

)q

≤ C
∑

k∈Z

∑

Q
�(Q)=2−k

2−K|j−k||Q| 2−(j∧k)
(
2−(j∧k) +

∣
∣xQ′ − xQ

∣
∣
)n+1 TQ. (4.7)

Given a dyadic cube P with �(P) = 2−k0 , the above estimates yield

∞∑

j=k0

∑

Q′⊆P
�(Q′)=2−j

(

sup
u∈Q′

∣
∣
∣φ̃j ∗ f(u)

∣
∣
∣

)q
∣
∣Q′∣∣

≤ C
∞∑

j=k0

∑

Q′⊆P
�(Q′)=2−j

∑

k∈Z

∑

Q
�(Q)=2−k

2−K|j−k|∣∣Q′∣∣ 2−(j∧k)
(
2−(j∧k) +

∣
∣xQ′ − xQ

∣
∣
)n+1 TQ|Q|

:= CA1 + CA2,

(4.8)
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where

A1 =
∞∑

j=k0

∑

Q′⊆P
�(Q′)=2−j

∑

k≥k0

∑

Q
�(Q)=2−k

2−K|j−k|∣∣Q′∣∣ 2−(j∧k)
(
2−(j∧k) +

∣
∣xQ′ − xQ

∣
∣
)n+1 TQ|Q|,

A2 =
∞∑

j=k0

∑

Q′⊆P
�(Q′)=2−j

∑

k<k0

∑

Q
�(Q)=2−k

2−K|j−k|∣∣Q′∣∣ 2−(j∧k)
(
2−(j∧k) +

∣
∣xQ′ − xQ

∣
∣
)n+1 TQ|Q|.

(4.9)

Then, A1 can be further decomposed as

A1 =
∞∑

j=k0

∑

Q′⊆P
�(Q′)=2−j

∑

k≥k0

∑

Q⊆3P
�(Q)=2−k

2−K|j−k|∣∣Q′∣∣ 2−(j∧k)
(
2−(j∧k) +

∣
∣xQ′ − xQ

∣
∣
)n+1 TQ|Q|

+
∞∑

j=k0

∑

Q′⊆P
�(Q′)=2−j

∑

k≥k0

∑

Q∩3P=∅
�(Q)=2−k

2−K|j−k|∣∣Q′∣∣ 2−(j∧k)
(
2−(j∧k) +

∣
∣xQ′ − xQ

∣
∣
)n+1 TQ|Q|

:= A11 +A12.

(4.10)

There are 3n dyadic cubes in 3P with the same side length as P , so

∑

Q⊆3P
�(Q)≤�(P)

TQ|Q| ≤ 3n sup
P ′⊆3P

�(P ′)=�(P)

∑

Q⊆P ′
�(Q)≤�(P ′)

TQ|Q|.
(4.11)

Thus,

|P |−rA11 ≤ C|P |−r
∞∑

j=k0

∑

Q′⊆P
�(Q′)=2−j

∑

k≥k0

∑

Q⊆3P
�(Q)=2−k

2−K|j−k|∣∣Q′∣∣ 2−(j∧k)
(
2−(j∧k) +

∣
∣xQ′ − xP

∣
∣
)n+1 TQ|Q|

≤ C sup
P ′

∣
∣P ′∣∣−r

∞∑

k=−log2�(P ′)

∑

Q⊆P ′
�(Q)=2−k

inf
u∈Q

∣
∣ϕ̃k ∗ f(u)

∣
∣q|Q|.

(4.12)

Next we decompose the set of dyadic cubes {Q : Q∩3P = ∅, �(Q) = �(P)} into {Bi}i∈N

according to the distance between each Q and P . Namely, for each i ∈ N,

Bi :=
{
P ′ : P ′ ∩ 3P = ∅, �(P) = �(P ′), 2i−k0 ≤ ∣

∣yP ′ − yP
∣
∣ < 2i−k0+1

}
, (4.13)
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where yQ denotes the center of Q. Then, we obtain

|P |−rA12 ≤ C
∞∑

i=1

∑

P ′∈Bi

∣
∣P ′∣∣−r

∞∑

j=k0

∑

Q′⊆P
�(Q′)=2−j

∑

k≥k0

∑

Q⊆P ′
�(Q)=2−k

2−K|j−k|∣∣Q′∣∣

× 2−(j∧k)
(
2−(j∧k) + |xP ′ − xP |

)n+1 TQ|Q|.
(4.14)

Since
∑

Q′⊆P
�(Q′)=2−j

|Q′| = |P | for each j ≥ k0 and |xP ′ − xP | ≈ 2i−k0 for P ′ ∈ Bi, the right-hand side of

(4.14) is dominated by

C
∞∑

i=1

∑

P ′∈Bi
|P | 2−k0

2(i−k0)(n+1)
∑

k≥k0

⎛

⎝
∞∑

j=k0

2k0−(j∧k)−|k−j|
⎞

⎠

⎛

⎜
⎜
⎝

∣
∣P ′∣∣−r

∑

Q⊆P ′
�(Q)=2−k

TQ|Q|

⎞

⎟
⎟
⎠. (4.15)

There are at most 2(i+2)n cubes in Bi, and hence

|P |−rA12 ≤ C

⎧
⎪⎪⎨

⎪⎪⎩
sup
P ′

∣
∣P ′∣∣−r

∑

k≥k0

∑

Q⊆P ′
�(Q)=2−k

TQ|Q|

⎫
⎪⎪⎬

⎪⎪⎭

∞∑

i=1

|P | 2−k0

2(i−k0)(n+1)
2in

= C sup
P ′

∣
∣P ′∣∣−r

∞∑

k=−log2�(P ′)

∑

Q⊆P ′
�(Q)=2−k

inf
u∈Q

∣
∣ϕ̃k ∗ f(u)

∣
∣q|Q|.

(4.16)

To estimate A2, for i ∈ N and k < k0, set

Ei,k :=
{
Q : �(Q) = 2−k, xQ ∈ 2iP \ 2i−1P

}
. (4.17)

Then, |xQ − xP | ≈ 2i−k0 for Q ∈ Ei,k and

A2 =
∞∑

j=k0

∑

k<k0

∞∑

i=1

∑

Q∈Ei,k

2−K|j−k||P |
|Q|−r

2−(j∧k)
(
2−(j∧k) +

∣
∣xQ − xP

∣
∣
)n+1 |Q|−rTQ|Q|. (4.18)

Since, for Q ∈ Ei,k,

|Q|−rTQ|Q| ≤ sup
P ′

∣
∣P ′∣∣−r

∞∑

m=−log2�(P ′)

∑

Q′⊆P ′
�(Q′)=2−m

TQ′
∣
∣Q′∣∣ (4.19)
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and the number of dyadic cubes contained in Ei,k is at most 2(i+k−k0)n,

|P |−rA2 ≤ C

⎧
⎪⎪⎨

⎪⎪⎩
sup
P ′

∣
∣P ′∣∣−r

∞∑

m=−log2�(P ′)

∑

Q′⊆P ′
�(Q′)=2−m

TQ′
∣
∣Q′∣∣

⎫
⎪⎪⎬

⎪⎪⎭

×
∞∑

j=k0

∑

k<k0

∞∑

i=1

2(k0−k)nr2K(k−j) 2−k(n+1)

2(i−k0)(n+1)
2(i+k−k0)n

= C sup
P ′

∣
∣P ′∣∣−r

∞∑

m=−log2�(P ′)

∑

Q′⊆P ′
�(Q′)=2−m

inf
u∈Q′

∣
∣ϕ̃m ∗ f(u)∣∣q∣∣Q′∣∣,

(4.20)

where the conditionK > 1+nr is used in the last equality. Combining the estimates ofA1 and
A2, we prove Theorem 1.4.

Bymodifying the proof above, wemay easily show Theorem 1.5. Detailed verifications
are left to the reader.

We now return to show Lemma 3.2.

Proof of Lemma 3.2. For r < 0, cα,qr = {0}, and hence the result holds. For r = 0, cα,q0 = ḟ
α,q
q , and

so the matrix is bounded by [2, Theorem 3.3]. To complete the proof, it suffices to show the
boundedness of (α + nr, q, q)-almost diagonal matrices for the case r > 0.

We may assume that α = 0 since the case implies the general case. The proof is similar
to the proof of Theorem 1.4. Here, we only outline the proof. First let us consider the case for
q > 1. Let A = {aQP}Q,P be an (nr, q, q)-almost diagonal matrix. Then, for �(Q) = 2−k,

∣
∣
∣(As)Q

∣
∣
∣ ≤ C

∑

j∈Z

∑

�(P)=2−j
2(j−k)(nr+((n+ε)/2))

(
1 + 2j

∣
∣xQ − xP

∣
∣
)−n−ε

|sP |,
(
|Q|−1/2

∣
∣
∣(As)Q

∣
∣
∣
)q ≤ C

∑

j∈Z

∑

�(P)=2−j
2(j−k)(nr+(ε/2))

(
1 + 2j

∣
∣xQ − xP

∣
∣
)−n−ε(

|P |−1/2|sP |
)q (4.21)

due to Hölder’s inequality. Given a dyadic cube Rwith �(R) = 2−δ,

∑

k≥δ

∑

Q⊆R
�(Q)=2−k

(
|Q|−1/2

∣
∣
∣(As)Q

∣
∣
∣
)q

|Q| ≤ CI + CII, (4.22)

where

I =
∑

k≥δ

∑

Q⊆R
�(Q)=2−k

∑

j≥δ

∑

�(P)=2−j
2(j−k)(nr+n+(ε/2))

(
1 + 2j

∣
∣xQ − xP

∣
∣
)−n−ε(

|P |−1/2|sP |
)q

|P |,

II =
∑

k≥δ

∑

Q⊆R
�(Q)=2−k

∑

j<δ

∑

�(P)=2−j
2(j−k)(nr+n+(ε/2))

(
1 + 2j

∣
∣xQ − xP

∣
∣
)−n−ε(

|P |−1/2|sP |
)q

|P |.
(4.23)
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Then, I can be further decomposed as

I =
∑

k≥δ

∑

Q⊆R
�(Q)=2−k

∑

j≥δ

∑

P⊆3R
�(P)=2−j

2(j−k)(nr+n+(ε/2))
(
1 + 2j

∣
∣xQ − xP

∣
∣
)−n−ε(

|P |−1/2|sP |
)q

|P |

+
∑

k≥δ

∑

Q⊆R
�(Q)=2−k

∑

j≥δ

∑

P∩3R=∅
�(P)=2−j

2(j−k)(nr+n+(ε/2))
(
1 + 2j

∣
∣xQ − xP

∣
∣
)−n−ε(

|P |−1/2|sP |
)q

|P |

:= I11 + I12.

(4.24)

The same argument showed in the proof of Theorem 1.4 for the term A1 gives us

|R|−rI ≤ C‖s‖q
c
0,q
r

. (4.25)

To estimate II, for i ∈ N and j < δ, let

Ei,j :=
{
Q : �(Q) = 2−j , xQ ∈ 2iR \ 2i−1R

}
. (4.26)

Then, using the same argument as Theorem 1.4 for A2, we have

|R|−rII ≤ C‖s‖q
c
0,q
r

. (4.27)

Both estimates for I and II show the desired result for q > 1.
When q ≤ 1, we modify the previous proof by replacing Hölder’s inequality with q-

triangle inequality to get the result.
When q = ∞ and r ≥ 0, the space cα,∞r = ḟα,∞∞ , and hence an (α + nr,∞,∞)-almost

diagonal matrix is bounded on cα,∞r by Proposition 5.3.

Remark 4.1. Note that cα,q1 = ḟ
α,q
∞ . By a duality argument and [2, Theorem 3.3 and page 81],

one can show that the (α + n, q, q)-almost diagonal matrix is bounded on ḟ
α,q
∞ . When q > 1

and r > 1, we can prove Lemma 3.2 by duality in Theorem 2.2. Let A = {aQP}Q,P be an
(nr, q, q)-almost diagonal matrix. Also define the transpose of A by A′ = {aPQ}Q,P . For q > 1
and r > 1, let p = (q + q′)/(q′r + q). Then, p < 1. Since A is (nr, q, q)-almost diagonal, A′ is
(0, p, q′)-almost diagonal by a calculation for a different value of ε. Thus, by Theorem 2.2 (a)
and Proposition 5.3, A′ is bounded on c0,qr .

5. Applications

We define another wavelet multiplier on R
n by using ϕ-transform identity as follows. Let ϕ

and ψ in S satisfy (1.2) and (3.1). For a sequence t = {tQ}Q, where theQ′s are dyadic cubes in
R
n, define the wavelet multiplier Tt by

Tt
(
f
)
=
∑

Q

|Q|−1/2tQ
〈
f, ϕQ

〉
ψQ (5.1)
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for f ∈ S′/P such that the above summation is well defined. Thus, we have the following
characterization.

Theorem 5.1. Suppose that α, β ∈ R, 0 < p ≤ 1, and 0 < q <∞. Then,

(a) for 1 < q <∞, Tt is bounded from Ḟ
α,q
p into Ḟα+β,11 if t ∈ cβ,q′(q′/p)−(q′/q),

(b) for 0 < q ≤ 1 and r ∈ R, Tt is bounded from Ḟ
α,q
p into Ḟα+β,11 if t ∈ cβ+(n/p)−n,∞r .

Proof. We show the case α = 0 only, which implies the general case by (2.7). For β ∈ R,
0 < p ≤ 1, and 1 < q < ∞, let f ∈ Ḟ

0,q
p and t ∈ c

β,q′

(q′/p)−(q′/q). It follows from Theorem 2.2 and
Proposition 3.1 that

∥
∥Tt

(
f
)∥
∥
Ḟ
β,1
1

≤ C
∥
∥
∥
∥

{
|Q|−1/2tQ

〈
f, ϕQ

〉}

Q

∥
∥
∥
∥
ḟ
β,1
1

= C
∑

Q

(
|Q|−β/n∣∣tQ

∣
∣
)∣
∣
〈
f, ϕQ

〉∣
∣

≤ C
∥
∥
∥
{〈
f, ϕQ

〉}
Q

∥
∥
∥
ḟ
0,q
p

∥
∥
∥
∥

{
|Q|−β/ntQ

}

Q

∥
∥
∥
∥
c
0,q′
(q′/p)−(q′/q)

≤ C∥∥f∥∥
Ḟ
0,q
p
‖t‖

c
β,q′
(q′/p)−(q′/q)

.

(5.2)

This shows that Tt is bounded from Ḟ
0,q
p into Ḟβ,11 and ‖Tt‖ ≤ C‖t‖

c
β,q′
(q′/p)−(q′/q)

. A similar argument

yields the boundedness of Tt for the case 0 < q ≤ 1.

In order to prove Theorem 1.12, we demonstrate a similar result in sequence spaces
first. For a sequence t = {tQ}Q, define Dt by

Dt(s) =
{
|Q|−1/2tQsQ

}

Q
for s =

{
sQ

}
Q with finitely many nonzero terms. (5.3)

Theorem 5.2. Suppose that α, β ∈ R, 0 < p ≤ 1, and 0 < q <∞. Then,

(a) for 1 < q < ∞, Dt is extendible to be bounded from ḟ
α,q
p into ḟα+β,11 if and only if t ∈

c
β,q′

(q′/p)−(q′/q),

(b) for 0 < q ≤ 1 and r ∈ R, Dt is extendible to be bounded from ḟ
α,q
p into ḟα+β,11 if and only if

t ∈ cβ+(n/p)−n,∞r .
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Proof. We still assume that α = 0. For β ∈ R, 0 < p ≤ 1, and 1 < q < ∞, let s = {sQ}Q ∈ ḟ0,q
p and

t = {tQ}Q ∈ cβ,q′(q′/p)−(q′/q). It follows from Theorem 2.2 that

‖Dt(s)‖ḟ β,11
=
∑

Q

(
|Q|−β/n∣∣tQ

∣
∣
)∣
∣sQ

∣
∣

≤ C‖s‖
ḟ
0,q
p

∥
∥
∥
∥

{
|Q|−β/ntQ

}

Q

∥
∥
∥
∥
c
0,q′
(q′/p)−(q′/q)

= C‖s‖
ḟ
0,q
p
‖t‖

c
β,q′
(q′/p)−(q′/q)

.

(5.4)

Conversely, suppose that Dt maps from ḟ
0,q
p into ḟ

β,1
1 boundedly. For t = {tQ}Q, let

t̃ = {|Q|−β/ntQ}Q. Define a linear functional �t̃ by

�t̃(s) =
∑

Q

sQt̃Q for s =
{
sQ

}
Q with finitely many nonzero terms. (5.5)

Then,

|�t̃(s)| ≤
∑

Q

(
|Q|−β/n∣∣tQ

∣
∣
)∣
∣sQ

∣
∣ = ‖Dt(s)‖ḟ β,11

. (5.6)

The assumption shows that �t̃ is a continuous linear functional on ḟ0,q
p . Using Theorem 2.2,

we have t̃ ∈ c0,q′(q′/p)−(q′/q), and hence t ∈ cβ,q′(q′/p)−(q′/q).
For 0 < q ≤ 1, a similar argument gives the desired result of (b).

Proof of Theorem 1.12. The “if” part follows from Theorem 5.1. To show the “only if” part,
define T̃ it by

T̃ it
(
f
)
=
∑

Q

|Q|−1/2tQ
〈
f, ψiQ

〉
ψiQ. (5.7)

The boundedness of T̃t says that T̃ it is bounded from Ḟ
α,q
p into Ḟα+β,11 . Clearly,

Sψi ◦ T̃ it ◦ Tψi(s) = Dt(s) for s ∈ ḟα,qp . (5.8)

It follows from Proposition 3.1 that Dt is bounded from ḟ
α,q
p into ḟ

α+β,1
1 , and hence t ∈

c
β,q′

(q′/p)−(q′/q) for 1 < q <∞ and t ∈ cβ+(n/p)−n,∞r for 0 < q ≤ 1 and r ∈ R by Theorem 5.2.

In order to study the boundedness of the paraproduct operators acting on Triebel-
Lizorkin spaces, we need more results described as follows.

Proposition 5.3 ([2, pages 54 and 81]). For α ∈ R and 0 < p, q ≤ ∞, an (α, p, q)-almost diagonal
matrix is bounded on ḟα,qp .
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Lemma 5.4. Define a matrix by G = {〈ψP ,ΦQ〉}Q,P . Then, for α < 0 and 0 < p, q ≤ +∞, G is
(α, p, q)-almost diagonal and hence is bounded on ḟα,qp .

Proof. For �(P) ≤ �(Q), since
∫
xγψP (x)dx = 0 for all γ , by [2, page 150, Lemma B.1], we have

∣
∣〈ψP ,ΦQ〉

∣
∣ ≤ C

(
�(Q)
�(P)

)α
(

1 +

∣
∣xQ − xP

∣
∣

�(Q)

)−J−ε(
�(P)
�(Q)

)((n+ε)/2)+J−n
(5.9)

for ε > 0 and α < J − n + (ε/2), where J = n/min{1, p, q} and C is independent of P and Q.
For �(Q) < �(P), by [2, page 152, Lemma B.2], we obtain

∣
∣
〈
ψP ,ΦQ

〉∣
∣ ≤ C

(

1 +

∣
∣xQ − xP

∣
∣

�(P)

)−J−ε(
�(Q)
�(P)

)n/2

= C
(
�(Q)
�(P)

)α
(

1 +

∣
∣xQ − xP

∣
∣

�(P)

)−J−ε(
�(Q)
�(P)

)(n−2α)/2
.

(5.10)

Choosing ε = −2α, we obtain the result.

We now can prove Theorem 1.13.

Proof of Theorem 1.13. To simplify notations, let q0 = qr/(q − r) and (1/p0) = (1/p) − (1/q) +
(1/q′0) . The requirement p ≤ r < q < r/(1 − r) guarantees that p0 ≤ 1 ≤ q0. Now assume that

g ∈ CMOβ,q0
(q0/p0)−(q0/q′0)

and f ∈ Ḟα,qp . To prove part (i), by (3.1) we rewrite Πg(f) as

Πg

(
f
)
=
∑

Q

〈
g, ϕQ

〉|Q|−1/2
〈
∑

P

〈
f, ϕP

〉
ψP ,ΦQ

〉

ψQ

=
∑

Q

〈g, ϕQ〉|Q|−1/2(Gs)QψQ,
(5.11)

where s = {〈f, ϕp〉}P . Proposition 3.1 and Theorem 2.2 give

∥
∥Πg(f)

∥
∥r
Ḟ
α+β,r
r

≤ C
∥
∥
∥
∥

{
|Q|−1/2 〈

g, ϕQ
〉
(Gs)Q

}

Q

∥
∥
∥
∥

r

ḟ
α+β,r
r

= C
∑

Q

(
|Q|−(β/n)−(1/2)+(1/2r)∣∣〈g, ϕQ

〉∣
∣
)r ·

(
|Q|−(α/n)−(1/2)+(1/2r)

∣
∣
∣(Gs)Q

∣
∣
∣
)r

≤ C
∥
∥
∥
∥

{(
|Q|−(β/n)−(1/2)+(1/2r)∣∣〈g, ϕQ

〉∣
∣
)r}

Q

∥
∥
∥
∥
c
0,(q/r)′
((q/r)′/(p/r))−((q/r)′/(q/r))

×
∥
∥
∥
∥

{(
|Q|−(α/n)−(1/2)+(1/2r)

∣
∣
∣(Gs)Q

∣
∣
∣
)r}

Q

∥
∥
∥
∥
ḟ
0,q/r
p/r

.

(5.12)
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It is clear that

∥
∥
∥
∥

{(
|Q|−(β/n)−(1/2)+(1/2r)∣∣〈g, ϕQ

〉∣
∣
)r}

Q

∥
∥
∥
∥
c
0,(q/r)′
((q/r)′/(p/r))−((q/r)′/(q/r))

= sup
P

{

|P |−r(q/r)′((1/p)−(1/q))
∫

P

∑

Q⊆P

(
|Q|−(β/n)−(1/2)∣∣〈g, ϕQ

〉∣
∣χQ(x)

)r(q/r)′
dx

}1/(q/r)′

=
∥
∥
∥
{〈
g, ϕQ

〉}
Q

∥
∥
∥
r

c
β,q0

(q0/p0) −(q0/p′0)
(5.13)

and

∥
∥
∥
∥

{(
|Q|−(α/n)−(1/2)+(1/2r)(Gs)Q

)r}

Q

∥
∥
∥
∥
ḟ
0,(q/r)
p/r

=

∥
∥
∥
∥
∥
∥

(
∑

Q

(
|Q|−(α/n)−(1/2)

∣
∣
∣(Gs)Q

∣
∣
∣
)q
χQ(x)

)r/q
∥
∥
∥
∥
∥
∥
Lp/r

= ‖Gs‖r
ḟ
α,q
p
.

(5.14)

Hence, by Propositions 3.1 and 3.3, and Lemma 5.4,

∥
∥Πg(f)

∥
∥
Ḟ
α+β,r
r

≤ C
∥
∥
∥
{〈
g, ϕQ

〉}
Q

∥
∥
∥
c
β,q0
(q0/p0)−(q0/q′0)

‖Gs‖ḟα,qp

≤ C∥∥g∥∥CMO
β,q0
(q0/p0)−(q0/q′0)

‖s‖ḟα,qp

≤ C∥∥g∥∥CMO
β,q0
(q0/p0)−(q0/q′0)

∥
∥f

∥
∥
Ḟ
α,q
p
.

(5.15)

Next suppose that Πg is bounded from Ḟ
α,q
p into Ḟα+β,rr . Without lost of generality, we

may assume that α = 0. A computation yields

(

|P |−q0((1/p0)+(1/q0) −1)
∫

P

∑

Q⊆P

(
|Q|−(β/n)−(1/2)∣∣〈g, ϕQ

〉∣
∣χQ(x)

)q0
dx

)1/q0

= |P |−(1/p)+(1/q)
(∫

P

∑

Q⊆P

(
|Q|−(β/n)−(1/2)∣∣〈g, ϕQ

〉∣
∣χQ(x)

)qr/(q−r)
dx

)(q−r)/qr

≤ C|P |−(1/p)
(∫

P

∑

Q⊆P

(
|Q|−(β/n)−(1/2)∣∣〈g, ϕQ

〉∣
∣χQ(x)

)r
dx

)1/r

.

(5.16)
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Fix an integer N > (n/p) − n. Choose a function θ ∈ S(Rn) satisfying θ(x) = 1 on [0, 1]n,
θ(x) = 0 if x /∈ 3[0, 1]n and

∫
xγθ(x)dx = 0 for all multi-indices γ with |γ | ≤ N. By the

molecular theory [2, page 56], it follows that θ ∈ Ḟ0,q
p . For each dyadic cube P , define θP by

θP (x) = θ
(
x − xP
�(P)

)

. (5.17)

Then, 〈θP ,ΦQ〉 =
∫
ΦQ(x)dx = |Q|1/2 for all dyadic cubes Q ⊆ P and ‖θP‖

Ḟ
0,q
p

= C|P |1/p by the

translation invariance and the dilation properties of Ḟ0,q
p . By Proposition 3.1,

∥
∥
∥Πg(θP )

∥
∥
∥
Ḟ
β,r
r

≈
∥
∥
∥
∥

{〈
g, ϕQ

〉|Q|−1/2
〈
θP ,ΦQ

〉}

Q

∥
∥
∥
∥
ḟ
β,r
r

≥
(∫

P

∑

Q⊆P

(
|Q|−(β/n)−(1/2)∣∣〈g, ϕQ

〉∣
∣χQ(x)

)r
dx

)1/r

,

(5.18)

and hence, by the boundedness of Πg ,

(

|P |−q0((1/p0)+(1/q0)−1)
∫

P

∑

Q⊆P

(
|Q|−(β/n)−(1/2)∣∣〈g, ϕQ

〉∣
∣χQ(x)

)q0
dx

)1/q0

≤ C. (5.19)

Taking the supremum on P , we show that g ∈ CMOβ,q0
(q0/p0)−(q0/q′0)

.

To prove part (ii), assume that g ∈ CMOβ,q0
(q0/p0)−(q0/q′0)

and f ∈ Ḟ
α,q
p . Let t = {〈g, ϕQ〉}Q

and s = {〈f, ψQ〉}Q. By Proposition 3.1,

∥
∥
∥Π∗

g

(
f
)∥∥
∥
Ḟ
α+β,r
r

≈
∥
∥
∥
∥
∥
∥

{
∑

P

|P |−1/2〈g, ϕP
〉〈
ΦP , ϕQ

〉〈
f, ψP

〉
}

Q

∥
∥
∥
∥
∥
∥
ḟ
α+β,r
r

=
∥
∥
∥G̃Dts

∥
∥
∥
ḟ
α+β,r
r

, (5.20)

where G̃ := {〈ΦP , ϕQ〉}Q,P is the transpose of {〈ϕP ,ΦQ〉}Q,P . Since α + β > 0, by Lemma 5.4, G̃

is (α + β, r, r)-almost diagonal and hence is bounded on ḟα+β,rr . Following the same argument
as the proof of part (i), we get

∥
∥
∥Π∗

g(f)
∥
∥
∥
r

Ḟ
α+β,r
r

≤ C‖Dts‖r
ḟ
α+β,r
r

= C
∑

Q

(
|Q|−(β/n)−(1/2)+(1/2r)∣∣〈g, ϕQ

〉∣
∣
)r ·

(
|Q|−(α/n)−(1/2)+(1/2r)∣∣〈f, ψQ

〉∣
∣
)r

≤ C∥∥g∥∥r
CMO

β,q0

(q0/p0)−(q0/q′0)

∥
∥f

∥
∥r
ḟ
α,q
p
,

(5.21)

which completes the proof.
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