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A nonlinear partial differential equation containing the famous Camassa-Holm and Degasperis-
Procesi equations as special cases is investigated. The Kato theorem for abstract differential equa-
tions is applied to establish the local well-posedness of solutions for the equation in the Sobolev
spaceHs(R)with s > 3/2. Although theH1-norm of the solutions to the nonlinear model does not
remain constant, the existence of its weak solutions in the lower-order Sobolev space Hs with
1 ≤ s ≤ 3/2 is proved under the assumptions u0 ∈ Hs and ‖u0x‖L∞ < ∞.

1. Introduction

Constantin and Lannes [1] derived the shallow water equation

ut + ux +
3
2
ρuux + μ

(
αuxxx + βutxx

)
= ρμ

(
γuxuxx + δuuxxx

)
, (1.1)

where the constants α, β, γ, δ, ρ, and μ satisfy certain conditions. Under several restrictions on
the coefficients of model (1.1), the large time well-posedness was established on a time scale
O(|ρ|−1) provided that the initial value u0 belongs toHs(R)with s > 5/2, and the wave-break-
ing phenomenawere also discussed in [1]. As stated in [1], using suitablemathematical trans-
formations, one can turn (1.1) into the form

ut − utxx + 2kux +muux = auxuxx + buuxxx, (1.2)
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where a, b, k, and m are constants. Obviously, (1.2) is a generalization of both the Camassa-
Holm equation [2]

ut − utxx + 2kux + 3uux = 2uxuxx + uuxxx, k is a constant (1.3)

and the Degasperis-Procesi model [3]

ut − uxxt + 2kux + 4uux = 3uxuxx + uuxxx. (1.4)

Equations (1.3) and (1.4) are bi-Hamiltonian and arise in the modeling of shallow water
waves. These two equations pertain to waves of medium amplitude (cf. the discussions
in [1, 4]) and accommodate wave-breaking phenomena. Moreover, the Camassa-Holm and
Degasperis-Procesi models admit peaked (periodic as well as solitary) traveling waves cap-
turing the main feature of the exact traveling wave solutions of the greatest height of the
governing equations for water waves (cf. [5, 6]). For other dynamic properties about (1.3)
and (1.4), the reader is referred to [7–20].

Recently, Lai andWu [21] investigate (1.2) in the case where k = 0,m = a+b, a > 0, and
b > 0. The well-posedness of global solutions is established in [21] in Sobolev space Hs(R)
with s > 3/2 under certain assumptions on the initial value. The local strong and weak solu-
tions for (1.2) are discussed in [22] in the case where b > 0, a, k, andm are arbitrary constants.

Motivated by the desire to extend the work in [22], we investigate the following gene-
ralized model of (1.2):

ut − utxx + 2kux +muux = auxuxx + buuxxx + βun
x, (1.5)

where b > 0, a, k,m, and β are arbitrary constants, and n is a positive integer.
The aim of this paper is to investigate (1.5). Since a, b,m, and β are arbitrary constants,

we do not have the result that the H1 norm of the solution of (1.5) remains constant. We will
apply the Kato theorem [23] to prove the existence and uniqueness of local solutions for (1.5)
in the space C([0, T),Hs(R))

⋂
C1([0, T),Hs−1(R))(s > 3/2) provided that the initial value

u0(x) belongs to Hs(R)(s > 3/2). Moreover, it is shown that there exists a weak solution of
(1.5) in lower-order Sobolev space Hs(R)with 1 ≤ s ≤ 3/2.

The structure of this paper is as follows. The main results are given in Section 2. The
existence and uniqueness of the local strong solution for the Cauchy problem (1.5) are proved
in Section 3. The existence of weak solutions is established in Section 4.

2. Main Results

Firstly, we give some notations.
The space of all infinitely differentiable functions φ(t, x) with compact support in

[0,+∞) × R is denoted by C∞
0 . We let Lp = Lp(R)(1 ≤ p < +∞) be the space of all measurable

functions h such that ‖h‖pLp =
∫
R |h(t, x)|pdx < ∞. We define L∞ = L∞(R) with the standard

norm ‖h‖L∞ = infm(e)=0 supx∈R\e|h(t, x)|. For any real number s, we letHs = Hs(R) denote the
Sobolev space with the norm defined by

‖h‖Hs =
(∫

R

(
1 + |ξ|2

)s∣∣∣ĥ(t, ξ)
∣∣∣
2
dξ

)1/2

< ∞, (2.1)
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where ĥ(t, ξ) =
∫
R e

−ixξh(t, x)dx. Here, we note that the norms ‖ · ‖pLp , ‖ · ‖L∞ , and ‖ · ‖Hs depend
on variable t.

For T > 0 and nonnegative number s, letC([0, T);Hs(R)) denote the space of functions
u : [0, T)×R → Rwith the properties that u(t, ·) ∈ Hs(R) for each t ∈ [0, T], and the mapping
u : [0, T) → Hs(R) is continuous and bounded.

For simplicity, throughout this paper, we let c denote any positive constant which is
independent of parameter ε and set Λ = (1 − ∂2x)

1/2.
In order to study the existence of solutions for (1.5), we consider its Cauchy problem

in the form

ut − utxx = −∂x
(
2ku +

m

2
u2
)
+ auxuxx + buuxxx + βun

x,

u(0, x) = u0(x),
(2.2)

where b > 0, a, k,m, β, and n are arbitrary constants. Now, we give the theorem to describe the
local well-posedness of solutions for problem (2.2).

Theorem 2.1. Let u0(x) ∈ Hs(R)with s > 3/2, then the Cauchy problem (2.2) has a unique solution
u(t, x) ∈ C([0, T);Hs(R))

⋂
C1([0, T);Hs−1(R)) where T > 0 depends on ‖u0‖Hs(R).

For a real number swith s > 0, suppose that the function u0(x) is inHs(R), and let uε0

be the convolution uε0 = φε � u0 of the function φε(x) = ε−1/4φ(ε−1/4x) and u0 such that the
Fourier transform φ̂ of φ satisfies φ̂ ∈ C∞

0 , φ̂(ξ) ≥ 0, and φ̂(ξ) = 1 for any ξ ∈ (−1, 1). Thus one
has uε0(x) ∈ C∞. It follows from Theorem 2.1 that for each ε satisfying 0 < ε < 1/4, the
Cauchy problem

ut − utxx = −∂x
(
2ku +

m

2
u2
)
+ auxuxx + buuxxx + βun

x,

u(0, x) = uε0(x), x ∈ R

(2.3)

has a unique solution uε(t, x) ∈ C∞([0, Tε);H∞), in which Tε may depend on ε. However, one
will show that under certain assumptions, there exist two constants c and T > 0, both
independent of ε, such that the solution of problem (2.3) satisfies ‖uεx‖L∞ ≤ c for any t ∈
[0, T), and there exists a weak solution u(t, x) ∈ L2([0, T],Hs) for problem (2.2). These results
are summarized in the following two theorems.

Theorem 2.2. If u0(x) ∈ Hs(R) with s ∈ [1, 3/2] such that ‖u0x‖L∞ < ∞, let uε0 be defined as in
system (2.3), then there exist two constants c and T > 0, which are independent of ε, such that the
solution uε of problem (2.3) satisfies ‖uεx‖L∞ ≤ c for any t ∈ [0, T).

Theorem 2.3. Suppose that u0(x) ∈ Hs with 1 ≤ s ≤ 3/2 and ‖u0x‖L∞ < ∞, then there exists a T >
0 such that problem (2.2) has a weak solution u(t, x) ∈ L2([0, T],Hs(R)) in the sense of distribution
and ux ∈ L∞([0, T] × R).
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3. Proof of Theorem 2.1

Consider the abstract quasilinear evolution equation

dv

dt
+A(v)v = f(v), t ≥ 0, v(0) = v0. (3.1)

Let X and Y be Hilbert spaces such that Y is continuously and densely embedded in X, and
let Q : Y → X be a topological isomorphism. Let L(Y,X) be the space of all bounded linear
operators from Y to X. If X = Y , we denote this space by L(X). We state the following con-
ditions in which ρ1, ρ2, ρ3, and ρ4 are constants depending only on max{‖y‖Y , ‖z‖Y}:

(I) A(y) ∈ L(Y,X) for y ∈ X with

∥
∥(A
(
y
) −A(z)

)
w
∥
∥
X ≤ ρ1

∥
∥y − z

∥
∥
X‖w‖Y , y, z, w ∈ Y, (3.2)

and A(y) ∈ G(X, 1, β) (i.e., A(y) is quasi-m-accretive), uniformly on bounded sets
in Y .

(II) QA(y)Q−1 = A(y) + B(y), where B(y) ∈ L(X) is bounded, uniformly on bounded
sets in Y . Moreover,

∥∥(B
(
y
) − B(z)

)
w
∥∥
X ≤ ρ2

∥∥y − z
∥∥
Y‖w‖X, y, z ∈ Y, w ∈ X. (3.3)

(III) f : Y → Y extends to a map from X into X, is bounded on bounded sets in Y , and
satisfies

∥∥f
(
y
) − f(z)

∥∥
Y ≤ ρ3

∥∥y − z
∥∥
Y , y, z ∈ Y,

∥∥f
(
y
) − f(z)

∥∥
X ≤ ρ4

∥∥y − z
∥∥
X, y, z ∈ Y.

(3.4)

Kato Theorem (see [23])

Assume that (I), (II), and (III) hold. If v0 ∈ Y , there is a maximal T > 0 depending only on
‖v0‖Y and a unique solution v to problem (3.1) such that

v = v(·, v0) ∈ C([0, T);Y )
⋂

C1([0, T);X). (3.5)

Moreover, the map v0 → v(·, v0) is a continuous map from Y to the space

C([0, T);Y )
⋂

C1([0, T);X). (3.6)

In fact, problem (2.2) can be written as

ut − utxx = −
[
2ku +

m

2
u2
]

x
+
b

2
∂3x u

2 − 3b − a

2
∂x
(
u2
x

)
+ βun

x,

u(0, x) = u0(x),
(3.7)
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which is equivalent to

ut + buux = −Λ−2
[(

2ku +
m

2
u2
)

x
+ buux − 3b − a

2
∂x
(
u2
x

)
+ βun

x

]
,

u(0, x) = u0(x).
(3.8)

We set A(u) = bu∂x with constant b > 0, Y = Hs(R), X = Hs−1(R), Λ = (1 − ∂2x)
1/2,

f(u) = −Λ−2(2ku + (m/2)u2)x + bΛ−2(uux) − ((3b − a)/2)Λ−2∂x(u2
x) + βΛ−2un

x, and Q = Λs.
We know that Q is an isomorphism of Hs onto Hs−1. In order to prove Theorem 2.1, we only
need to check that A(u) and f(u) satisfy assumptions (I)–(III).

Lemma 3.1. The operator A(u) = u∂x with u ∈ Hs(R), s > 3/2 belongs to G(Hs−1, 1, β).

Lemma 3.2. Let A(u) = bu∂x with u ∈ Hs and s > 3/2, then A(u) ∈ L(Hs,Hs−1) for all u ∈ Hs.
Moreover,

‖(A(u) −A(z))w‖Hs−1 ≤ ρ1‖u − z‖Hs−1‖w‖Hs , u, z,w ∈ Hs(R). (3.9)

Lemma 3.3. For s > 3/2, u, z ∈ Hs, and w ∈ Hs−1, it holds that B(u) = [Λ, u∂x]Λ−1 ∈ L(Hs−1)
for u ∈ Hs and

‖(B(u) − B(z))w‖Hs−1 ≤ ρ2‖u − z‖Hs‖w‖Hs−1 . (3.10)

Proofs of the above Lemmas 3.1–3.3 can be found in [24] or [25].

Lemma 3.4 (see [23]). Let r and q be real numbers such that −r < q ≤ r, then

‖uv‖Hq ≤ c‖u‖Hr‖v‖Hq , if r >
1
2
,

‖uv‖Hr+q−1/2 ≤ c‖u‖Hr‖v‖Hq , if r <
1
2
.

(3.11)

Lemma 3.5. Let u, z ∈ Hs with s > 3/2 and f(u) = −Λ−2(2ku+(m/2)u2)x + bΛ−2(uux) − ((3b −
a)/2)Λ−2∂x(u2

x) + βΛ−2(un
x), then f is bounded inHs and satisfies

∥∥f(u) − f(z)
∥∥
Hs ≤ ρ3‖u − z‖Hs,

∥∥f(u) − f(z)
∥∥
Hs−1 ≤ ρ4‖u − z‖Hs−1 .

(3.12)
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Proof. Using the algebra property of the space Hs0 with s0 > 1/2 and s − 1 > 1/2, we have

∥
∥f(u) − f(z)

∥
∥
Hs

≤
∥
∥
∥
∥Λ

−2
((

2ku +
m

2
u2
)

x
−
(
2kz +

m

2
z2
)

x

)∥∥
∥
∥
Hs

+
∥
∥∥bΛ−2(uux − zzx)

∥
∥∥
Hs

+
∥
∥
∥
∥
3b − a

2
Λ−2∂x

(
u2
x − z2x

)∥∥
∥
∥
Hs

+
∥∥
∥βΛ−2(un

x − znx)
∥∥
∥
Hs

≤ c

⎛

⎝‖u − z‖Hs−1(1 + ‖u‖Hs−1 + ‖z‖Hs−1) +
∥
∥
∥Λ−2

(
u2 − z2

)

x

∥
∥
∥
Hs

+
∥
∥
∥u2

x − z2x

∥
∥
∥
Hs−1

+ ‖ux − zx‖Hs−1

n−1∑

j=0
‖ux‖n−jHs−1‖zx‖jHs−1

⎞

⎠

≤ c

⎛

⎝‖u − z‖Hs(1 + ‖u‖Hs + ‖z‖Hs) + ‖(u − z)(u + z)‖Hs−1

+
∥∥∥u2

x − z2x

∥∥∥
Hs−1

+ ‖ux − zx‖Hs−1

n−1∑

j=0
‖u‖n−jHs ‖z‖jHs

⎞

⎠

≤ c‖u − z‖Hs

⎛

⎝1 + ‖u‖Hs + ‖z‖Hs +
n−1∑

j=0
‖u‖n−jHs ‖z‖jHs

⎞

⎠

≤ cρ3‖u − z‖Hs,

(3.13)

from which we obtain (3.12).
Applying Lemma 3.4, uux = 1/2(u2)x, s > 3/2, we get

∥∥f(u) − f(z)
∥∥
Hs−1

≤ c

(∥∥
∥2ku +

m

2
u2 −

(
2kz +

m

2
z2
)∥∥∥

Hs−2
+
∥∥
∥u2 − z2

∥∥∥
Hs−2

+‖(ux − zx)(ux + zx)‖Hs−2 + ‖un
x − znx‖Hs−1

)

≤ c‖u − z‖Hs−2(1 + ‖u‖Hs−1 + ‖z‖Hs−1)

+ c‖ux − zx‖Hs−2(‖ux‖Hs−1 + ‖zx‖Hs−1)

+ c‖ux − zx‖Hs−2

n−1∑

j=0
‖ux‖n−jHs−1‖zx‖jHs−1

≤ c‖u − z‖Hs−1

⎛

⎝1 + ‖u‖Hs + ‖z‖Hs +
n−1∑

j=0
‖u‖n−jHs ‖z‖jHs

⎞

⎠,

(3.14)

which completes the proof of (3.12).
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Proof of Theorem 2.1. Using the Kato theorem, Lemmas 3.1, 3.2, 3.3, and 3.5, we know that sys-
tem (3.11) or problem (2.2) has a unique solution

u(t, x) ∈ C([0, T);Hs(R))
⋂

C1
(
[0, T);Hs−1

)
. (3.15)

4. Proofs of Theorems 2.2 and 2.3

Before establishing the proofs of Theorems 2.2 and 2.3, we give several lemmas.

Lemma 4.1 (Kato and Ponce [26]). If r ≥ 0, thenHr
⋂
L∞ is an algebra. Moreover,

‖uv‖Hr ≤ c(‖u‖L∞‖v‖Hr + ‖u‖Hr‖v‖L∞), (4.1)

where c is a constant depending only on r.

Lemma 4.2 (Kato and Ponce [26]). Let r > 0. If u ∈ Hr
⋂
W1,∞ and v ∈ Hr−1⋂L∞, then

‖[Λr , u]v‖L2 ≤ c
(
‖∂xu‖L∞

∥∥∥Λr−1v
∥∥∥
L2

+ ‖Λru‖L2‖v‖L∞

)
, (4.2)

where [Λr , u]v = Λr(uv) − uΛrv.
Using the first equation of problem (2.2) gives rise to

d

dt

[∫

R

(
u2 + u2

x

)
dx

]
+ (a − 2b)

∫

R

(ux)3dx = 2β
∫

R

uun
x dx, (4.3)

from which one has

∫

R

(
u2 + u2

x

)
dx +

∫ t

0

[∫

R

(
(a − 2b)u3

x − 2βuun
x

)
dx

]
dτ =

∫

R

(
u2
0 + u2

0x

)
dx. (4.4)

Lemma 4.3. Let s ≥ 3/2, and the function u(t, x) is a solution of the problem (2.2) and the initial data
u0(x) ∈ Hs, then it holds that

‖u‖L∞ ≤ c‖u‖H1 ≤ c‖u0‖H1ec0
∫ t
0(‖ux‖L∞+‖ux‖n−1L∞ )dτ , (4.5)

where c0 = 1/2max(|a − 2b|, |β|).
For q ∈ (0, s − 1], there is a constant c depending only on q such that

∫

R

(
Λq+1u

)2
dx ≤

∫

R

(
Λq+1u0

)2
dx + c

∫ t

0

(
‖ux‖L∞ + ‖ux‖n−1L∞

)
‖u‖2Hq+1 dτ. (4.6)

If q ∈ [0, s − 1], there is a constant c depending only on q such that

‖ut‖Hq ≤ c‖u‖Hq+1

(
1 + ‖u‖H1 + ‖ux‖n−1L∞

)
. (4.7)
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Proof. Using ‖u‖2
H1 ≤ c

∫
R(u

2 + u2
x)dx and (4.4) derives (4.5).

We write (1.5) in the equivalent form

ut − utxx = −
[
2ku +

m

2
u2
]

x
+
b

2
∂3xu

2 − 3b − a

2
∂x
(
u2
x

)
+ βun

x. (4.8)

Applying ∂2x = −Λ2 + 1 and the Parseval’s equality gives rise to

∫

R

ΛquΛq∂3x

(
u2
)
dx = −2

∫

R

(
Λq+1u

)
Λq+1(uux)dx + 2

∫

R

(Λqu)Λq(uux)dx. (4.9)

For q ∈ (0, s − 1], applying (Λqu)Λq on both sides of (4.8), noting the above equality,
and integrating the new equation with respect to x by parts, we obtain the equation

1
2
d

dt

[∫

R

(
(Λqu)2 + (Λqux)

2
)
dx

]

= −
∫

R

(Λqu)Λq
[
2ku +

m

2
u2
]

x
dx − b

∫

R

(
Λq+1u

)
Λq+1(uux)dx

+
3b − a

2

∫

R

(Λqux)Λq
(
u2
x

)
dx + b

∫

R

(Λqu)Λq(uux)dx + β

∫

R

ΛquΛqun
x dx.

(4.10)

Wewill estimate each of the terms on the right-hand side of (4.10). For the first and the
fourth terms, using integration by parts, the Cauchy-Schwartz inequality, and Lemmas 4.1-
4.2, we have

∫
R(Λ

qu)Λq(uux)dx =
∫

R

(Λqu)[Λq(uux) − uΛqux]dx +
∫

R

(Λqu)uΛqux dx

≤ c‖u‖Hq(‖ux‖L∞‖u‖Hq + ‖ux‖L∞‖u‖Hq)

+
1
2
‖ux‖L∞‖Λqu‖2L2

≤ c‖u‖2Hq‖ux‖L∞ ,

(4.11)

where c only depends on q. Using the above estimate to the second term yields

∫

R

(
Λq+1u

)
Λq+1(uux)dx ≤ c‖u‖2Hq+1‖ux‖L∞ . (4.12)
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For the third term, using Lemma 4.1 gives rise to

∫

R

(Λqux)Λq
(
u2
x

)
dx ≤ ‖Λqux‖L2

∥
∥
∥Λqu2

x

∥
∥
∥
L2

≤ c‖u‖Hq+1‖ux‖L∞‖ux‖Hq

≤ c‖u‖2Hq+1‖ux‖L∞ .

(4.13)

For the last term, using Lemma 4.1 repeatedly, we get

∣
∣
∣
∣

∫

R

(Λqu)Λq(ux)ndx
∣
∣
∣
∣ ≤ ‖u‖Hq‖un

x‖Hq ≤ c‖u‖2Hq+1‖ux‖n−1L∞ . (4.14)

It follows from (4.10)–(4.14) that

1
2

∫

R

[
(Λqu)2 + (Λqux)

2
]
dx − 1

2

∫

R

[
(Λqu0)

2 + (Λqu0x)
2
]
dx

≤ c

∫ t

0

(
‖ux‖L∞ + ‖ux‖n−1L∞

)
‖u‖2Hq+1dτ,

(4.15)

which results in (4.6). Applying the operator (1 − ∂2x)
−1 on both sides of (4.8) yields the equa-

tion

ut =
(
1 − ∂2x

)−1[−
[
2ku +

m

2
u2
]

x
+
b

2
∂3xu

2 − 3b − a

2
∂x
(
u2
x

)
+ βun

x

]
.

(4.16)

Multiplying both sides of (4.16) by (Λqut)Λq for q ∈ [0, s − 1] and integrating the resultant
equation by parts give rise to

∫

R

(Λqut)
2dx

=
∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq

[
−
[
2ku +

m

2
u2
]

x
+
b

2
∂3xu

2 − 3b − a

2
∂x
(
u2
x

)
+ βun

x

]
dx.

(4.17)

On the right-hand side of (4.17), we have

∣∣∣∣

∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq(−2kux)dx

∣∣∣∣ ≤ |2k|‖ut‖Hq‖u‖Hq , (4.18)
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∣
∣
∣
∣

∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq∂x

(
−m
2
u2 − 3b − a

2
u2
x

)
dx

∣
∣
∣
∣

≤‖ut‖Hq ×
(∫

R

(
1 + ξ2

)q−1
dξ

(∫

R

[
m

2
û
(
ξ − η

)
û
(
η
)
+
3b − a

2
ûx

(
ξ − η

)
ûx

(
η
)
]
dη

)2
)1/2

≤ c‖ut‖Hq

(∫

R

c(‖u‖Hq‖u‖L2 + ‖ux‖L2‖ux‖Hq)
1 + ξ2

dξ

)1/2

≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1 ,

(4.19)

in which we have used Lemma 4.1. As

∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq∂2x(uux)dx = −

∫

R

(Λqut)Λq(uux)dx

+
∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq(uux)dx,

(4.20)

by using ‖uux‖Hq ≤ c‖u2‖Hq+1 ≤ c‖u‖L∞‖u‖Hq+1 ≤ c‖u‖H1‖u‖Hq+1 , we have

∣∣∣∣

∫

R

(Λqut)Λq(uux)dx
∣∣∣∣ ≤ c‖ut‖Hq‖uux‖Hq ≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1 , (4.21)

∣∣∣∣

∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq(uux)dx

∣∣∣∣ ≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1 . (4.22)

Using the Cauchy-Schwartz inequality and Lemma 4.1 yields

∣∣∣∣

∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq(un

x)dx
∣∣∣∣ ≤ c‖ut‖Hq‖ux‖n−1L∞ ‖u‖Hq+1 . (4.23)

Applying (4.18)–(4.23) to (4.17) yields the inequality

‖ut‖Hq ≤ c‖u‖Hq+1

(
1 + ‖u‖H1 + ‖ux‖n−1

)
, (4.24)

for a constant c > 0.
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Lemma 4.4. For s > 0, u0 ∈ Hs(R), and uε0 = φε � u0, the following estimates hold for any ε with
ε ∈ (0, 1/4) :

‖uε0x‖L∞ ≤ c‖u0x‖L∞ , ‖uε0‖Hq ≤ c if q ≤ s,

‖uε0‖Hq ≤ cε(s−q)/4 if q > s,

‖uε0 − u0‖Hq ≤ cε(s−q)/4 if q ≤ s,

‖uε0 − u0‖Hs = o(1),

(4.25)

where c is a constant independent of ε.

The proof of this lemma can be found in [21].
Applying Lemmas 4.3 and 4.4, we can now state the following lemma, which plays an

important role in proving existence of weak solutions.

Lemma 4.5. For s ≥ 1 and u0 ∈ Hs(R), there exists a constant c independent of ε, such that the
solution uε of problem (2.3) satisfies

‖uε‖H1 ≤ cec0
∫ t
0(‖uεx‖L∞+‖uεx‖n−1L∞ )dτ for t ∈ [0, Tε), (4.26)

where c0 = 1/2max(|a − 2b|, |β|).

Proof. The proof can be directly obtained from Lemma 4.4 and inequality (4.5).

Proof of Theorem 2.2. Using notation u = uε and differentiating (4.16) with respect to x give
rise to

uxt + buuxx +
a − b

2
u2
x = 2ku +

m − b

2
u2

−Λ−2
[
2ku +

m − b

2
u2 +

3b − a

2
u2
x − β(un

x)x

]
.

(4.27)

Using

∫

R

uuxx(ux)2p+1dx =
∫

R

u(ux)2p+1dux

= −
∫

R

ux

[
(ux)2p+2 +

(
2p + 1

)
u(ux)2puxx

]
dx,

(4.28)

we get

∫

R

uuxx(ux)2p+1dx = − 1
2p + 2

∫

R

(ux)2p+3dx. (4.29)
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Letting p > 0 be an integer and multiplying (4.27) by (ux)
2p+1 and then integrating the

resulting equation with respect to x yield the equality

1
2p + 2

d

dt

∫

R

(ux)2p+2dx +
(a − b)p + a − 2b

2p + 2

∫

R

(ux)2p+3dx

=
∫

R

(ux)2p+1
(
2ku +

m − b

2
u2
)
dx

−
∫

R

(ux)2p+1Λ−2
[
2ku +

m − b

2
u2 +

3b − a

2
u2
x − β(un

x)x

]
dx.

(4.30)

Applying the Hölder’s inequality, we get

1
2p + 2

d

dt

∫

R

(ux)2p+2dx ≤
⎧
⎨

⎩

(∫

R

∣∣∣∣2ku +
m − b

2
u2
∣∣∣∣

2p+2

dx

)1/(2p+2)

+
(∫

R

|G|2p+2dx
)1/(2p+2)

}(∫

R

|ux|2p+2dx
) (2p+1)/(2p+2)

+
∣∣∣∣
(a − b)p + a − 2b

2p + 2

∣∣∣∣‖ux‖L∞

∫

R

|ux|2p+2dx,

(4.31)

or

d

dt

(∫

R

(ux)2p+2dx
) 1/(2p+2)

≤
⎧
⎨

⎩

(∫

R

∣∣∣∣2ku +
m − b

2
u2
∣∣∣∣

2p+2

dx

) 1/(2p+2)

+
(∫

R

|G|2p+2dx
)1/(2p+2)

⎫
⎬

⎭

+
∣∣∣∣
(a − b)p + a − 2b

2p + 2

∣∣∣∣‖ux‖L∞

(∫

R

|ux|2p+2dx
)1/(2p+2)

,

(4.32)

where

G = Λ−2
[
2ku +

m − b

2
u2 +

3b − a

2
u2
x − β(un

x)x

]
. (4.33)

Since ‖f‖Lp → ‖f‖L∞ as p → ∞ for any f ∈ L∞⋂L2, integrating (4.32) with respect to t and
taking the limit as p → ∞ result in the estimate

‖ux‖L∞ ≤ ‖u0x‖L∞ +
∫ t

0

[
c

(∥∥∥∥2ku +
m − b

2
u2
∥∥∥∥
L∞

+ ‖G‖L∞

)
+
a − b

2
‖ux‖2L∞

]
dτ. (4.34)
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Using the algebraic property of Hs0(R)with s0 > 1/2 and Lemma 4.5 leads to

∥
∥
∥
∥2ku +

m − b

2
u2
∥
∥
∥
∥
L∞

≤ c

∥
∥
∥
∥2ku +

m − b

2
u2
∥
∥
∥
∥
H1/2+

≤ c
(
‖u‖H1 + ‖u‖2H1

)

≤ ce2c0
∫ t
0(‖ux‖L∞+‖ux‖n−1L∞ )dτ ,

(4.35)

‖G‖L∞ =
∥
∥
∥
∥Λ

−2
[
2ku +

m − b

2
u2 +

3b − a

2
u2
x − β(un

x)x

]∥∥
∥
∥
L∞

≤ c

(∥∥
∥
∥Λ

−2
(
2ku +

m − b

2
u2
)∥∥
∥
∥
H1/2+

+
∥∥
∥Λ−2u2

x

∥∥
∥
H1/2+

+
∥∥
∥Λ−2(un

x)x
∥∥
∥
H1/2+

)

≤ c

(∥∥∥∥2ku +
m − b

2
u2
∥
∥∥∥
H1/2+

+ ‖u‖H1‖ux‖L∞ + ‖un
x‖H0

)

≤ c
(
‖u‖H1 + ‖u‖2H1 + ‖u‖H1‖ux‖L∞ + ‖u‖H1‖ux‖n−1L∞

)

≤ c
(
1 + ‖ux‖L∞ + ‖ux‖n−1L∞

)
e2c0

∫ t
0(‖ux‖L∞+‖ux‖n−1L∞ )dτ ,

(4.36)

where c is independent of ε, c0 = 1/2max(|a − 2b|, |β|) and H1/2+ means that there exists a
sufficiently small δ > 0 such that ‖uε‖H1/2+ = ‖uε‖H1/2+δ . From Lemma 4.5, we have

∫ t

0
‖G‖L∞dτ ≤ c

∫ t

0

(
1 + ‖ux‖L∞ + ‖ux‖n−1L∞

)
× e2c0

∫τ
0 (‖ux‖L∞+‖ux‖n−1L∞ )dξ dτ. (4.37)

Applying (4.25), (4.34), (4.35), and (4.37) and writing out the subscript ε of u, we
obtain

‖uεx‖L∞ ≤ c‖u0x‖L∞

+ c

∫ t

0

[(
1 + ‖uεx‖L∞ + ‖uεx‖n−1L∞

)
× e2c0

∫τ
0 (‖uεx‖L∞+‖uεx‖n−1L∞ )dξ + ‖uεx‖2L∞

]
dτ.

(4.38)

It follows from the contraction mapping principle that there is a T > 0 such that the
equation

‖W‖L∞ = c‖u0x‖L∞

+ c

∫ t

0

[(
1 + ‖W‖L∞ + ‖W‖n−1L∞

)
× e2c0

∫τ
0 (‖W‖L∞+‖W‖n−1L∞ )dξ + ‖W‖2L∞

]
dτ

(4.39)

has a unique solution W ∈ C[0, T]. From (4.39), we know that the variable T only depends
on c and ‖u0x‖L∞ . Using the theorem presented on page 51 in [16] or Theorem 2 in Section 1.1
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in [27] derives that there are constants T > 0 and c > 0 independent of ε such that ‖uεx‖L∞ ≤
W(t) for arbitrary t ∈ [0, T], which leads to the conclusion of Theorem 2.

Remark 4.6. Under the assumptions of Theorem 2.2, there exist two constants T and c, both
independent of ε, such that the solution uε of problem (2.3) satisfies ‖uεx‖L∞ ≤ c for any t ∈
[0, T]. This states that in Lemma 4.5, there exists a T independent of ε such that (4.26) holds.

Using Theorem 2.2, Lemma 4.5, (4.6), (4.7), notation uε = u, and Gronwall’s inequality
results in the inequalities

‖uε‖Hq ≤ c exp

[

c

∫ t

0

(
‖uεx‖L∞ + ‖uεx‖n−1L∞

)
dτ

]

≤ c,

‖uεt‖Hr ≤ ‖uε‖Hr+1

(
1 + ‖uε‖H1 + ‖uεx‖n−1L∞

)
≤ c,

(4.40)

where q ∈ (0, s], r ∈ (0, s − 1], and t ∈ [0, T). It follows from Aubin’s compactness theo-rem
that there is a subsequence of {uε}, denoted by {uεn1

}, such that {uεn1
} and their temporal

derivatives {uεn1 t
} are weakly convergent to a function u(t, x) and its derivative ut in L2([0, T],

Hs) and L2([0, T],Hs−1), respectively. Moreover, for any real number R1 > 0, {uεn1
} is con-

vergent to the function u strongly in the space L2([0, T],Hq(−R1, R1)) for q ∈ (0, s], and {uεn1 t
}

converges to ut strongly in the space L2([0, T],Hr(−R1, R1)) for r ∈ [0, s − 1].

Proof of Theorem 2.3. From Theorem 2.2, we know that {uεn1x
}(εn1 → 0) is bounded in the

space L∞. Thus, the sequences{uεn1
}, {uεn1x

}, {u2
εn1x

}, and {un
εn1x

} are weakly convergent to u,
ux, u2

x, and un
x in L2([0, T],Hr(−R1, R1)) for any r ∈ [0, s−1), separately. Hence, u satisfies the

equation

−
∫T

0

∫

R

u
(
gt − gxxt

)
dx dt =

∫T

0

∫

R

[(
2ku +

m

2
u2 +

3b − a

2
u2
x

)
gx − b

2
u2gxxx − βun

xg

]
dxdt,

(4.41)

with u(0, x) = u0(x) and g ∈ C∞
0 . Since X = L1([0, T] × R) is a separable Banach space and

{uεn1x
} is a bounded sequence in the dual space X∗ = L∞([0, T] × R) of X, there exists a

subsequence of {uεn1x
}, still denoted by {uεn1x

}, weakly star convergent to a function v in
L∞([0, T]×R). As {uεn1x

}weakly converges to ux in L2([0, T]×R), it results that ux = v almost
everywhere. Thus, we obtain ux ∈ L∞([0, T] × R).
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