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This paper presents energy reduction with anticontrol of chaos for nonholonomic mobile robot
system. Anticontrol of chaos is also called chaotification, meaning to chaotify an originally non-
chaotic system, and in this paper error of mobile robot system has been synchronized with chaotic
gyroscope for reducing energy and increasing performance. The benefits of chaos synchronization
with mechanical systems have led us to an innovation in this paper. The main purpose is that the
control system in the presence of chaos work with lower control cost and control effort has been
reduced. For comparison of proposed method, the feedback linearization controller has also been
designed for mobile robot with noise. Finally, the efficacies of the proposed method have been
illustrated by simulations, energy of control signals has been calculated, and effect of Alpha (α: a
constant coefficient is used beside of chaotic system) variations on the energy of control signals
has been checked.

1. Introduction

Wheeled mobile robots (WMRs) have been an active area of research and development over
the past three decades [1]. This long-term interest has been mainly fueled by the myriad of
practical applications that can be uniquely addressed by mobile robots due to their ability
to work in large domains. These WMRs are called nonholonomic mobile robots because of
their no-slip kinematic constraints. Nonholonomic behavior in robotic systems is particularly
interesting because it implies that the mechanism can be controlled with reduced number of
actuators [2].
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The tracking control approaches for the mobile robots are mainly divided into six
types: (1) feedback linearization [3–5]; (2) sliding-mode control [6, 7]; (3) backstepping
control [8–11]; (4) computed torque; (5) adaptive control [12, 13]; (6) intelligent control [14].

Tracking control by using synchronization of a mechanical system with a chaotic
system is presented in this paper and it is compared with error and with noise.

Many natural andman-made systems can be represented bymeans of a graph inmath-
ematical terms, and these graphs are called complex networks. Most real-world industrial
systems such as mobile robot are typical complex networks. Collective motions of complex
networks have recently been the subject of considerable interest within the science and tech-
nology communities. Especially, one of the interesting and significant phenomena in complex
dynamical networks is the synchronization of all dynamical nodes in a network [15, 16].
There are many papers which discuss the network synchronization problem, and there are
results reported in the literature on how to rigorously characterize the network synchroniz-
ability [17].

Dynamic chaos is a very interesting nonlinear effect which has been intensively
studied during the last three decades. Chaos control can be mainly divided into two
categories [18]: one is the suppression of the chaotic dynamical behavior and the other is
to generate or enhance chaos in nonlinear system. Because of features of chaos system such
as globally stable, we use it, such that the error system is synchronized with chaotic system
and state variables follow the reference path. Error synchronization is also called anti-control
of chaos or chaotification meaning to chaotify an originally non-chaotic system.

For common tracking control, error converges to zero, but, generally, there are three
choices for error: error converges to zero, error is synchronized with periodic signals, and
error is synchronized with chaotic system.

In this paper, error of mobile robot system is synchronized with chaotic gyroscope
for reducing energy and increasing performance. For comparison of proposed method,
the feedback linearization controller is also designed for mobile robot with Gaussian and
Rayleigh noises.

The paper is organized in the following manner. Nonholonomic mobile robot dynam-
ics and its state-space representation and the constraint equations of the mobile robot are
described in Section 2. In Section 3, generally, the feedback linearization controller for MIMO
(multi-input-multi-output) nonlinear systems is explained. Section 4 presents the feedback
linearization controller for mobile robot. In Section 5, anti-control of chaos and feedback
linearization controller for mobile robot by using chaotification are presented. In Section 6,
chaotic gyroscope system is described. Feedback linearization for mobile robot with noise is
presented in Section 7. In Section 8, simulation results for control of mobile robot, anti-control
of chaos for control mobile robot, control of the mobile robot with noise, comparison between
them, and effect of Alpha (α: a constant coefficient is used beside of chaotic system) variations
on the energy of control signals are presented, and the final section is conclusion.

2. Mobile Robot Kinematics

The kinematic model of the mobile robot is given as follows:

⎡
⎢⎣
ẋ
ẏ

θ̇

⎤
⎥⎦ =

⎡
⎣
cos θ 0
sin θ 0
0 1

⎤
⎦ ·

[
ν
ω

]
, (2.1)
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Figure 1: Illustration of the error transformationwhere the following vehicle follows the path of the leading
vehicle at distance L.

where ν andω are the forward and the angular velocities are considered as inputs, (following
vehicle in Figure 1). The no-slip condition, and, namely, no lateral velocity, imposes the
nonholonomic constraint:

ẋ sin θ + ẏ cos θ = 0. (2.2)

Assume that a feasible reference (xr, yr , νr , ωr)
T is given and satisfies the following

equations:

⎡
⎢⎣
ẋr

ẏr

θ̇r

⎤
⎥⎦ =

⎡
⎣
cos θr 0
sin θr 0
0 1

⎤
⎦ ·

[
νr
ωr

]
, (2.3)

where νr and ωr are considered as reference inputs and they can be derived as

νr =
√
ẋ2
r + ẏ2

r , ωr =
ẋr ÿr − ẏr ẍr

ẋ2
r + ẏ2

r

. (2.4)

In Figure 1 the reference vehicle is an imaginary vehicle that ideally follows the
reference path. In contrast, the real vehicle (when compared to the reference vehicle) has
some error when following the reference path. The trajectory tracking error, expressed in
terms of the following vehicle, as shown in Figure 1, is given by [19]

e =

⎡
⎣
ex
ey
eθ

⎤
⎦ =

⎡
⎣

cos θ sin 0 0
− sin θ cos 0 0

0 0 1

⎤
⎦ ·

⎡
⎣
xr − x
yr − y
θr − θ

⎤
⎦. (2.5)
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Differentiating (2.5)with respect to time and taking into account the kinematic model
given by (2.1), and the equivalent kinematic model of the reference vehicle given by (2.3), the
following nonlinear error model of the system is obtained:

⎡
⎣
ėx
ėy
ėθ

⎤
⎦ =

⎡
⎣
νr cos eθ
νr sin eθ

ωr

⎤
⎦ +

⎡
⎣
−1 ey
0 −ex
0 −1

⎤
⎦
[
ν
ω

]
. (2.6)

Here, the tracking control problem is to find appropriate control laws for ν andω such
that the tracking error (ex, ey, eθ)

T converges to zero.

3. Feedback Linearization for MIMO Nonlinear Systems

Consider a “square” system (where the number of inputs is equal to the number of outputs
=m):

ẋ = f(x) +
m∑
i=1

gi · ui,

y = [h1, . . . , hm]
T ,

ẏk = Lf(hk) +
m∑
i=1

Lgi(hk)ui.

(3.1)

Let rk, the relative degree, be defined as the relative degree of each output, that is, for some i,
Lgi(L

rk−1
f

(hk))/= 0.
Let J(x) be am ×m matrix such that:

J(x) =

⎡
⎢⎢⎣
Lgi

(
Lr1−1
f (h1)

)
· · · Lgm

(
Lr1−1
f (h1)

)

· · · · · · · · ·
Lgi

(
Lrm−1
f (hm)

)
· · · Lgm

(
Lrm−1
f (hm)

)

⎤
⎥⎥⎦, (3.2)

J(x) is called the decoupling matrix. We will assume that J(x) is nonsingular.
Let

yr =

⎡
⎢⎢⎢⎢⎢⎣

dr1y1

dtr1
...

drmym

dtrm

⎤
⎥⎥⎥⎥⎥⎦
, (3.3)
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Figure 2: Block diagram of control system.

where yr is an m × 1 vector:

l(x) =

⎡
⎢⎢⎣
Lr1
f (h1)
...

Lrm
f (hm)

⎤
⎥⎥⎦. (3.4)

Then we have

yr = l(x) + J(x) · u = ν, (3.5)

where ν is the synthetic input (ν ism × 1).
Now, we obtain a decoupled set of equations:

dr1y1

dtr1
= ν1

...
drmym

dtrm
= νm.

so y ⇐⇒ ν, (3.6)

To obtain the control u, design ν by using linear techniques:

u = J−1(ν − l). (3.7)

4. Feedback Linearization for Mobile Robot

Considering the kinematic model of mobile robot given by (2.1), as shown in Figure 2, the
feedback linearization controller will be designed.

y1 = x1 and y2 = x2 are defined as outputs:

[
ẏ1

ẏ2

]
=
[
cos θ 0
sin θ 0

][
ν
ω

]
. (4.1)

J(x) =
[
cos θ 0
sin θ 0

]
is clearly singular (has rank 1).

Let ν = x3, ν̇ = ẋ3 = u1, ω = u2.
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The state has been extended:

ẋ1 = x3 cos θ, (4.2)

ẋ2 = x3 sin θ, (4.3)

ẋ3 = ν̇ = u1, (4.4)

θ̇ = ω = u2. (4.5)

Take y1 = x1 and y2 = x2:

[
ÿ1

ÿ2

]
=
[
cos θ −x3 sin θ
sin θ x3 cos θ

][
u1

u2

]
. (4.6)

The relative degrees are 2, and the new J(x) matrix: J(x) =
[
cos θ −x3 sin θ
sin θ x3 cos θ

]
is nonsingular for

x3 /= 0:

ÿ1 = V1,

ÿ2 = V2.
(4.7)

To obtain the control, u:

[
u1

u2

]
= J−1(x)

[
V1

V2

]
=

⎡
⎢⎣

cos θ sin θ

−1
x3

sin θ
1
x3

cos θ

⎤
⎥⎦
[
V1

V2

]
, (4.8)

design (V1, V2)
T by using linear techniques and ν̇ = u1.

5. Feedback Linearization for Mobile Robot with Using Anticontrol of
Chaos (Chaotification)

In previous section, error signals are converged to zero but in this section the error signals
track the small ratio of amplitude of chaotic gyroscope system, as shown in Figure 3. For
making the small ratio of amplitude, a constant coefficient is used beside of chaotic system.
This coefficient is 10−10 ≤ α ≤ 1.
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Feedback linearization technique in previous section will be used for error system is
given by (2.6); y1 = ey and y2 = eθ are defined as outputs:

[
ẏ1

ẏ2

]
=
[
0 ex
0 −1

][
ν
ω

]
+
[
νr sin eθ

ωr

]
. (5.1)

J(x) =
[ 0 −ex
0 −1

]
is clearly singular (has rank 1).

Let = u1, ω = x4, ω̇ = ẋ4 = u2.
The state has been extended:

ėx = νr cos eθ − u1 + eyx4,

ėy = νr sin eθ + exx4,

ėθ = ωr − x4,

ẋ4 = ω̇ = u2.

(5.2)

Take y1 = ey and y2 = eθ:

[
ÿ1

ÿ2

]
=
[
x4 −ex
0 −1

][
u1

u2

]
+
[
(−2νrx4 + νrωr) cos eθ − eyx

2
4 + ν̇r sin eθ

ω̇r

]
. (5.3)

The relative degrees are 2, and the new J(x) matrix: J(x) =
[ x4 −ex

0 −1
]
is nonsingular for x4 /= 0,

and

l(x) =
[
(−2νrx4 + νrωr) cos eθ − eyx4

2 + ν̇r sin eθ
ω̇r

]
, (5.4)

ÿ1 = V1,

ÿ2 = V2.
(5.5)

To obtain the control, u:

[
u1

u2

]
= J−1(x)

([
V1

V2

]
+ l(x)

)

=

⎡
⎣

1
x4

(
V1 + (2νrx4 − νrωr) cos eθ + eyx

2
4 − ν̇r sin eθ − ex(V2 − ω̇r)

)

−(V2 − ω̇r)

⎤
⎦,

(5.6)

design (V1, V2)
T by using linear techniques and ω̇ = u2.
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Figure 4: A schematic diagram of a symmetric gyroscope.

6. Chaotic Gyroscope System

The symmetric gyroscope mounted on a vibrating base is shown in Figure 4. The dynamics
of a symmetrical gyro with linear-plus-cubic damping of angle θ can be expressed as [20]

θ̈ + α2
1
(1 − cos θ)2

sin3θ
− β1 sin θ + c1θ̇ + c2θ̇3 = f sinωt sin θ, (6.1)

where f sinωt is a parametric excitation, c1θ̇ and c2θ̇3 are linear and nonlinear damping
terms, respectively, and α1

2((1 − cos θ)2/sin3θ) − β1 sin θ is a nonlinear resilience force.
According to [20], in a symmetric gyro mounted on a vibrating base, the precession and the
spin angles have cyclic motions, and hence their momentum integrals are constant and equal
to each other. So the governing equations of motion depend only on the mutational angle θ.
Using Routh’s procedure and assuming a linear-plus-cubic form for dissipative force, (6.1)
is obtained [20]. Given the states x1 = θ, x2 = θ̇ and g(θ) = α1

2((1 − cos θ)2/sin3θ) − β1 sin θ,
(6.1) can be rewritten as follows:

ẋ1 = x2,

ẋ2 = g(x1) − c1x1 − c2x2
3 +

(
β1 + f sinωt

)
sin(x1).

(6.2)

This gyro system exhibits complex dynamics and has been studied by [20] for values
of f in the range 32 < f < 36 and constant values of α2

1 = 100, β1 = 1, c1 = 0.5, c2 = 0.05,
and ω = 2. Figure 5 illustrates the irregular motion exhibited by this system for f = 35.5 and
initial conditions of (x1, x2) = (1,−1).
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Figure 5: (a) Time series of x1 and x2, (b) phase portrait of gyroscope.

7. Feedback Linearization for Mobile Robot with Noise

As in previous section, instead of chaos system, noise is entered to control block diagram.
It means that error system instead of converging to zero, is faced with noise, as shown in
Figure 6.

System has two inputs and two outputs; in anti-control of chaos for desired references,
the two states gyroscope system is used, and for noise, Gaussian noise and Rayleigh noise are
the desired references for error system.

Equations are similar to Section 5, and for making the small ratio of amplitude, a
constant coefficient is used beside of noise. This coefficient is 10−10 ≤ a ≤ 1.

8. Simulation Results

8.1. Control of the Mobile Robot

Control of the mobile robot dynamic model is applied to system with circle feasible reference
(desired), and results are shown in Figure 7. In this figure reference path is circle (xr = cos t,
yr = sin t). In Figure 7(a), control signals (ν and ω) for controlling mobile robot and, in
Figure 7(b), path following by mobile robot are shown.
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Figure 7: (a) Control signals for circle reference and (b) path following.

8.2. Anticontrol of Chaos for Controlling Mobile Robot

Anti-control of chaos for the mobile robot dynamic model is applied to systemwith circle fea-
sible reference (desired), and results are shown in Figure 8. In this figure reference path is cir-
cle (xr = cos t, yr = sin t). In Figure 8(a), control signals (ν andω) for controlling mobile robot
and, in Figure 8(b), path following by mobile robot are shown. As shown in Figure 3, the
error system is synchronized with chaotic gyroscope systems and α = 10−4. Gyroscope system
has two states, and the error system has three states; for this problem, we synchronize second
state of error system with second state of gyroscope system and third state of error system
with first state of gyroscope system, and first state of error system commonly is tracked zero.
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Figure 8: (a) Control signals for circle reference for anti-control of chaos with α = 10−4 and (b) path
following.

8.3. Control of the Mobile Robot with Noise

Control of the mobile robot with noise is applied to system with circle feasible reference
(desired), and results are shown in Figure 9. In this figure reference path is circle (xr = cos t,
yr = sin t). In Figure 9(a), control signals (ν and ω) for controlling mobile robot and, in
Figure 9(b), path following by mobile robot are shown. As shown in Figure 6, the error
system is converging to zero with Gaussian noise and Rayleigh noise and a = 10−4.

8.4. Energy Comparison

The major purpose of this paper is energy comparison between control signals. These control
signals are for control of mobile robot and error system synchronization with chaos and
control of error system with noise. In this paper, energy means square of signals integral
(area under the curve); energy is calculated as follows:

energy =
∑(

ν2 +ω2
)
. (8.1)
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Figure 9: (a) Control signals for circle wave reference for noise with a = 10−4 and (b) path following.

Table 1: Energy comparison.

Control Feedback linearization control Anti-control of chaos Noise
Circle 15683 592.0880 674.5611

The comparison of energy is shown in Table 1, it can be seen that anticontrol of chaos
of error system synchronization with chaotic gyroscope and α = 10−4 improves energy even
better than error with noise.

8.5. Effect of Alpha (α) Variations on the Energy of Control Signals

In this section, we show the effect of Alpha (α) on energy of control signal with Figure 10.
When Alpha (α) is zero (it means to control mobile robot that error converges to zero), energy
value is more than energy values in 0 < α < 10−3. For α < 0, energy increases from minimum
value.
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9. Conclusion

In this paper, energy reduction with anti-control of chaos for nonholonomic mobile robot
system was checked, and the mobile robot system was, controlled with three different ways
and feedback linearization controller was used for controlling with circle feasible references.
Error of mobile robot system was synchronized with chaotic system instead of zero tracking
and was compared with noise instead of chaotic system. Energy improving for anti-control
of chaos is visible. Finally, this mobile robot control with chaos synchronization also provides
some new insights for controlling and the possible applications in the real-world engineering
systems.
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