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The exponential stabilizability of switched nonlinear systems with polytopic uncertainties is
explored by employing themethods of nonsmooth analysis and theminimum quadratic Lyapunov
function. The switchings among subsystems are dependent on the directional derivative along the
vertex directions of subsystems. In particular, a sufficient condition for exponential stabilizability
of the switched nonlinear systems is established considering the sliding modes and the directional
derivatives along sliding modes. Furthermore, the matrix conditions of exponential stabilizability
are derived for the case of switched linear system and the numerical example is given to show the
validity of the synthesis results.

1. Introduction

In the last two decades, there has been increasing research in stability analysis and
control design for switched systems and many results have been studied on stability and
stabilizability problems for various types of switched systems [1–9]. Many interesting results
for different kinds of problems of switched systems can be found in some books [10, 11]. The
motivation of studying the switched system is out of the fact that many practical systems
are inherently multimodal, and several dynamical subsystems are required to describe their
behavior which may depend on various environmental factors. Sometimes there are some
systems that cannot be asymptotically stabilized by a single continuous feedback control rule
but can be stabilized by switching rule [3].
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It is very important to investigate switched systems which contain uncertainties due
to modelling errors, aging disturbance, and complex environment in realistic problems. One
important type of uncertain systems are switched systems which are composed of polytopic
uncertainty subsystems. As pointed out in [12], polytopic uncertainties exist in many real
systems, and most of the uncertain control systems can be approximated by systems with
polytopic uncertainties. The polytopic uncertain systems are less conservative than systems
with norm bounded uncertainties [13]. Recently, the stability and stabilization problems for
both continuous-time and discrete-time switched systems with polytopic uncertainties are
investigated in [14, 15]. In particular, the paper [14] investigated the quadratic stabilizability
problem via state feedback, and provided sufficient conditions to be quadratically stabilized
for the switched systems which being composed of two subsystems. More recently, necessary
and sufficient conditions for continuous-time case via state feedback are proved in the paper
[16, 17].

Lyapunov theory is a very important approach to stability analysis or stabilization for
switched systems, and the construction of Lyapunov functions is one of the fundamental
problem in system theory. The most popular types of Lyapunov function are quadratic
functions, piecewise-linear functions, and piecewise affine functions [9, 18–20]. Furthermore,
there are some results for the systems with time-delay [21, 22]. Paper [22] investigates the
stability and stabilization properties of linear switched time delay dynamic systems subject
to; in general, multiple uncommensurate known internal point delays based on Lyapunovs
stability analysis via appropriate Krasovsky-Lyapunovs functionals and the related stability
study is performed to obtain both delay independent and delay dependent results. In [9],
the authors studied the exponential stabilization problem for discrete-time switched linear
systems based on a special control Lyapunov function which can make the hybrid-control
policy of the related switched system be derived analytically and computed efficiently. Hu
and Lin [23] proposed a composed quadratic Lyapunov function for constrained control
systems. The composite quadratic Lyapunov function turned out to be very effective in
dealing with some constrained control systems as well as a class of more general nonlinear
systems [4, 24–26].

Motivated by the methods in [4], we consider the exponential stabilizability problems
of switched nonlinear systems with polytopic uncertain subsystems using the composite
quadratic functions. We mainly use the minimum quadratic function. The contributions
in our work is that, the analysis of possible sliding modes in the switched systems and
employing the nonquadratic Lyapunov functions to reduce the conservatism in references
[14, 16, 17]. We extend the main result of [14] and establish the matrix conditions of
exponential stabilizability for the switched linear systems.

The remainder of this paper is organized as following. In Section 2, we briefly review
some conceptions especially the switched systems with polytopic uncertainties and the
minimum quadratic functions. Then, in Section 3, the exponential stabilizability results based
on the minimum functions are established, and the conditions as matrix inequalities are
derived for the switched linear system. Moreover an example is given to demonstrate the
effectiveness of our method. Finally, concluding remarks are given in Section 4 and some
definitions or conclusions from nonsmooth analysis are listed in the appendix.

Notations. We use I[k1, k2] to represent the set of integers {k1, k1 + 1, k1 +
2, . . . , k2}; ∇V (x) denotes the gradient of V at x and ∂V (x) the subdifferential of V at x;
V̇ (x; ζ) stands for the one-sided directional derivative of V at x along ζ; co{S} denotes the
convex hull of a set S.
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2. Switched Systems and the Minimum Quadratic Function

Switched system is a hybrid dynamical system composed by a family of continuous-time
or discrete-time subsystems with a rule orchestrating the switching between the subsystems
[1, 2]. In this paper, we consider the time-invariant switched nonlinear systems

ẋ(t) = fσ(x,t)(x(t)), (2.1)

where x(t) ∈ Rn is the state vector and σ(x, t) is the switching rule defined by σ(x, t) :
Rn × R+ → I[1,N], R+ denotes nonnegative real numbers. Therefore, the switched system is
composed of N continuous time subsystems which are expressed as

ẋ(t) = fi(x(t)), i ∈ I[1,N]. (2.2)

We assume that all subsystems are uncertain systems of polytopic type described as

fi =
Ni∑

j=1

λijfij , i ∈ I[1,N], (2.3)

where fij : Rn → Rn, j ∈ I[1,Ni] are known and in locally Lipschitzian. They are called
vertex directions of the subsystems. Ni, i ∈ I[1,N] are integers. λij ≥ 0, j ∈ I[1,Ni] are
polytopic uncertain parameters for i ∈ I[1,N] and satisfy

∑Ni

j=1 λij = 1.
Define the minimum function

Vmin(x) = min
{
Vj(x) | j ∈ I[1, J]

}
, (2.4)

where {V1, V2, . . . , VJ} is a set of differentiable, positive definite, and radially unbounded
functions, which are zero at x = 0.

The function Vmin(x) is positive definite and homogeneous of degree two [23]. It is
established from the theory of nonsmooth analysis that the function is not convex and not
differentiable everywhere even if the functions Vi(x) are all differentiable.

For a vector field ẋ = h(x), we have V (x(t + Δt)) ≈ V (x + h(x)Δt) for Δt > 0 small
enough. Thus directional derivative V̇ (x;h(x)) measures the time derivative of V at x along
the trajectory. For this reason the exponential stabilizability of the switched systems in our
paper can utilize the directional derivative of the minimum quadratic function.

3. Exponential Stabilizability of the Switched Systems

There are many methods to construct switching rule for the stabilizability of switched
systems [4, 14, 27]. Just as the paper [4], our switching rule is constructed by employing
the minimum function and its directional derivative. We select the minimum function (2.4),
which is constructed from J general functions Vj(x), where each Vj(x) is continuously
differentiable.

Now we consider the stability of a closed loop system ẋ = fσ(x,t)(x) by examining the
directional derivative of Vmin along its trajectories.
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Proposition 3.1. Consider the closed loop systems (2.1). Construct the switching rule as follows:

σ(x) = argmin
i∈I[1,N]

{
max

j∈I[1,Ni]
V̇min

(
x; fij(x)

)}
. (3.1)

Define

μ(x) := min
i∈I[1,N]

{
max

j∈I[1,Ni]
V̇min

(
x; fij(x)

)}
. (3.2)

When x is not in a sliding mode, V̇min(x; ẋ) = V̇min(x; fσ(x)(x)) ≤ μ(x).

Proof. When x is not in a sliding mode, then ẋ may equal to a fi(x). i is chosen by the
switching rule σ(x). Then

V̇min(x; ẋ) = V̇min

⎛

⎝x;
Ni∑

j=1

λijfij(x)

⎞

⎠

=
Ni∑

j=1

λij V̇min
(
x; fij(x)

)

≤ max
j∈I[1,Ni]

{
V̇min

(
x; fij(x)

)}

= min
i∈I[1,N]

{
max

j∈I[1,Ni]

{
V̇min

(
x; fij(x)

)}}

= μ(x).

(3.3)

The proof is completed.

From a practical point of view, a sliding mode is very important and it is often
unavoidable in the switched systems. Sowe need to pay particular attention to slidingmodes.
When there is a sliding mode, we assume that Ism be the set of indices of subsystems involved
in the sliding mode. Then ẋ may not equal to any of fi(x), instead x(t) stay on the switching
surface and ẋ is a convex combination of those fi(x)’s, that is,

ẋ =
∑

i∈Ism
αifi(x), i ∈ Ism, (3.4)

where αi ≥ 0,
∑

i∈Ism αi = 1 (see [28]).

Proposition 3.2. Consider the closed loop systems (2.1) with the switching rule (3.1). Assuming a
sliding mode involving subsystems ẋ = fi(x), i ∈ Ism, then for each x0 in this sliding mode,

V̇min
(
x0; fi(x0)

) ≤ μ(x0), ∀i ∈ Ism. (3.5)
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Moreover, along the sliding direction
∑

i∈Ism αifi(x0), one has

V̇min

(
x0;
∑

i∈Ism
αifi(x0)

)
≤ μ(x0), (3.6)

where αi ≥ 0,
∑

i∈Ism αi = 1.

Proof. If Vmin is differentiable at x0, then there is an integer k such that Vmin(x0) = Vk(x0) <
Vs(x0) for all s /= k, and V̇min(x0; fi(x0)) = V̇k(x0; fi(x0)). One has

V̇k

(
x0; fi(x0)

)
=

Ni∑

i=1

λij V̇k

(
x0; fij(x0)

) ≤ max
j∈[1,Ni]

{
V̇k

(
x0; fij(x0)

)}

= min
i∈[1,N]

{
max

j∈[1,Ni]

{
V̇k

(
x0; fij(x0)

)}}
= μ(x0), ∀i ∈ σ(x0), ∀s /∈ σ(x0).

(3.7)

For the structure of the switching rule (3.1), we have

max
j∈I[1,Ni]

{
V̇k

(
x0; fij(x0)

)}
< max

j∈I[1,Ns]

{
V̇k

(
x0; fsj(x0)

)}
, ∀i ∈ σ(x0), s /∈ σ(x0). (3.8)

Since Vk(x; fi(x)) is continuous in x0, maxj∈[1,Ni]{Vk(x; fij(x))} is continuous in x0 too.
There is a small neighborhood of x0, say U(x0), where

max
j∈I[1,Ni]

{
V̇k

(
x; fij(x)

)}
< max

j∈I[1,Ns]

{
V̇k

(
x; fsj(x)

)}
, ∀i ∈ σ(x0), s /∈ σ(x0), (3.9)

which implies σ(x) ⊂ σ(x0). We can conclude that if s /∈ σ(x0), fs(x) will not be chosen by
the switching rule for x ∈ U(x0), that is Ism ⊂ σ(x0), and (3.5) comes from (3.7).

Moreover, along the sliding direction
∑

i∈Ism αifi(x0) we have

V̇min

(
x0;
∑

i∈Ism
αifi(x0)

)
= (∇Vk(x0))T ·

∑

i∈Ism
αi

⎛

⎝
Ni∑

j=1

λijfij(x0)

⎞

⎠

=
∑

i∈Ism
αi

Ni∑

j=1

λij(∇Vk(x0))Tfij(x0)

=
∑

i∈Ism
αi

Ni∑

j=1

λij V̇k

(
x0; fij(x0)

)

≤
∑

i∈Ism
αiμ(x0)

= μ(x0).

(3.10)

Now we consider the case that Vmin is not differentiable at x0; that is, Jmin(x0) has two
or more integers. Suppose that Jmin(x0) = I[1, k], then V1(x0) = V2(x0) = · · · = Vk(x0) < Vs(x0)
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for all s > k. When k = 2, then V1(x0) = V2(x0) < Vj(x0), for all j > 0. Furthermore, there must
exist two fi’s, say, fi1 , and fi2 . In this situation Ism = {i1, i2}.

Defining

Φj =
{
x ∈ Rn | Vj(x) < Vk(x), ∀k /= j

}
, (3.11)

and within the vicinity of x0, we have two cases.

(a) If x ∈ Φ1, then i1 ∈ σ(x) and a trajectory of ẋ = fi1(x)would enter Φ2 from Φ1.

(b) If x ∈ Φ2, then i2 ∈ σ(x) and a trajectory of ẋ = fi2(x)would enter Φ1 from Φ2.

We interpreter cases (a) and (b) below. Case (a) implies that fi1(x) is chosen by the
switching law in Φ1, thus one has

max
j∈I[1,Ni1 ]

{
V̇1
(
x; fi1j(x)

)} ≤ max
j∈I[1,Ns]

{
V̇1
(
x; fsj(x)

)}
(3.12)

for all s ∈ I[1,N]. In particular, one has

max
j∈I[1,Ni1 ]

{
V̇1
(
x; fi1j(x)

)} ≤ max
j∈I[1,Ni2 ]

{
V̇1
(
x; fi2j(x)

)}
. (3.13)

Taking x → x0, then

max
j∈I[1,Ni1 ]

{
V̇1
(
x0; fi1j(x0)

)} ≤ max
j∈I[1,Ns]

{
V̇1
(
x0; fsj(x0)

)}
, ∀s. (3.14)

When s = i2, we have

max
j∈I[1,Ni1 ]

{
V̇1
(
x0; fi1j(x0)

)} ≤ max
j∈I[1,Ni2 ]

{
V̇1
(
x0; fi2j(x0)

)}
. (3.15)

To ensure that a trajectory of ẋ = fi1(x) would enter Φ2 from Φ1, we must have

max
j∈I[1,Ni1 ]

{
V̇2
(
x0; fi1j(x0)

)} ≤ max
j∈I[1,Ni1 ]

{
V̇1
(
x0; fi1j(x0)

)}
. (3.16)

Similarly, from case (b), we have

max
j∈I[1,Ni2 ]

{
V̇2
(
x0; fi2j(x0)

)} ≤ max
j∈I[1,Ns]

{
V̇2
(
x0; fsj(x0)

)}
, ∀s, (3.17)

max
j∈I[1,Ni2 ]

{
V̇2
(
x0; fi2j(x0)

)} ≤ max
j∈I[1,Ni1 ]

{
V̇2
(
x0; fi1j(x0)

)}
, (3.18)

max
j∈I[1,Ni2 ]

{
V̇1
(
x0; fi2j(x0)

)} ≤ max
j∈I[1,Ni2 ]

{
V̇2
(
x0; fi2j(x0)

)}
. (3.19)
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Combining the inequalities from (3.15) to (3.19), one has

max
j∈I[1,Ni1 ]

{
V̇1
(
x0; fi1j(x0)

)} ≤ max
j∈I[1,Ni2 ]

{
V̇1
(
x0; fi2j(x0)

)}

≤ max
j∈I[1,Ni2 ]

{
V̇2
(
x0; fi2j(x0)

)}

≤ max
j∈I[1,Ni1 ]

{
V̇2
(
x0; fi1j(x0)

)}

≤ max
j∈I[1,Ni1 ]

{
V̇1
(
x0; fi1j(x0)

)}
.

(3.20)

Thus, the following inequalities:

max
j∈I[1,Ni1 ]

{
V̇1
(
x0; fi1j(x0)

)}
= max

j∈I[1,Ni2 ]

{
V̇1
(
x0; fi2j(x0)

)}

= max
j∈I[1,Ni2 ]

{
V̇2
(
x0; fi2j(x0)

)}

= max
j∈I[1,Ni1 ]

{
V̇2
(
x0; fi1j(x0)

)}
,

(3.21)

are valid. They are all equal to μ(x0). So we have

V̇min
(
x0; fi1(x0)

)
= min

{
V̇1
(
x0; fi1(x0)

)
, V̇2
(
x0; fi1(x0)

)}

= min

⎧
⎨

⎩V̇1

⎛

⎝x0;
Ni1∑

j=1

λi1jfi1j(x0)

⎞

⎠, V̇2

⎛

⎝x0;
Ni1∑

j=1

λi1jfi1j(x0)

⎞

⎠

⎫
⎬

⎭

≤ min

{
max

j∈I[1,Ni1 ]

{
V̇1
(
x0; fi1j(x0)

)}
, max
j∈I[1,Ni1 ]

{
V̇2
(
x0; fi1j(x0)

)}
}

= μ(x0).

(3.22)

Similarly, we obtain V̇min(x0; fi2(x0)) ≤ μ(x0). Thus the relation (3.5) follows for Ism = {i1, i2}.
The above argument can be extended to the case k > 2. Then V1, V2, . . . , Vk are involved

in the sliding motion with corresponding indices i1, i2, . . . , ik, with fi1(x0) pointing fromΦ1 to
Φ2, . . . , fik(x0) pointing fromΦk toΦ1. Similar procedure can be used to derive the conclusion
extended from (3.21).

max
j∈I[1,Nis ]

{
V̇s

(
x0; fisj(x0)

)}
= max

j∈I[1,Nit ]

{
V̇l

(
x0; fitj(x0)

)}
= μ(x0), ∀s, t, l ∈ I[1, k]. (3.23)
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Thus we have

V̇min
(
x0; fi1(x0)

)
= min

{
V̇t

(
x0; fi1j(x0)

)
, t ∈ I[1, k]

}

= min

⎧
⎨

⎩

Ni1∑

j=1

μi1j V̇t

(
x0; fi1j(x0)

)
, t ∈ I[1, k]

⎫
⎬

⎭

≤ min

{
max

j∈I[1,Ni1 ]

{
V̇t

(
x0; fi1(x0)

)}
, t ∈ I[1, k]

}

= μ(x0).

(3.24)

Similarly, we have V̇min(x0; fi2(x0)) ≤ μ(x0), . . . , V̇min(x0; fik(x0)) ≤ μ(x0). Thus the relation
(3.5) is obtained for Ism = {i1, i2, . . . , ik}.

Now we consider there are three elements in the sliding direction. Let ν1, ν2, ν3 be
positive numbers, such that ν1 + ν2 + ν3 = 1. Define ξ = (ν1fi1 + ν2fi2 + ν3fi3)(x0). Since sliding
mode stays in the set where V1(x) = V2(x) = V3(x), we have

V̇1(x0; ξ) = V̇2(x0; ξ) = V̇3(x0; ξ) = V̇min(x0; ξ),

V1(x0) = V2(x0) = V3(x0) = Vmin(x0).
(3.25)

ForΔt > 0, let x1 = x0+Δtν1fi1(x0), x2 = x0+Δt(ν1fi1(x0)+ν2fi2(x0)), and x3 = x0+Δtξ. Due to
the sliding motion for Δt sufficient small, x1 ∈ Φ2, x2 ∈ Φ3 and by (3.25), Vj(x3) − Vmin(x3) =
o(Δt), j = 1, 2, 3:

V̇min(x0; ξ) = lim
Δt↓0

Vmin(x0 + Δtξ) − Vmin(x0)
Δt

= lim
Δt↓0

Vmin(x3) − Vmin(x0)
Δt

= lim
Δt↓0

Vmin(x3) − Vmin(x2)
Δt

+ lim
Δt↓0

Vmin(x2) − Vmin(x1)
Δt

+ lim
Δt↓0

Vmin(x1) − Vmin(x0)
Δt

≤ lim
Δt↓0

V3(x3) − V3(x2)
Δt

+ lim
Δt↓0

V2(x2) − V2(x1)
Δt

+ lim
Δt↓0

V1(x1) − V1(x0)
Δt

.

(3.26)
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Since each function Vj , j = 1, 2, 3 is continuously differentiable, then

V̇min
(
x0;
(
ν1fi1(x0) + ν2fi2(x0) + ν3fi3(x0)

))

= V̇min(x0; ξ)

≤ ν1V̇1
(
x0; fi1(x0)

)
+ ν2V̇2

(
x0; fi2(x0)

)
+ ν3V̇3

(
x0; fi3(x0)

)

= ν1V̇1

⎛

⎝x0;
Ni1∑

j=1

νi1jfi1j(x0)

⎞

⎠ + ν2V̇2

⎛

⎝x0;
Ni2∑

j=1

νi2jfi2j(x0)

⎞

⎠

+ ν3V̇3

⎛

⎝x0;
Ni3∑

j=1

νi3jfi3j(x0)

⎞

⎠

≤ ν1 max
i∈I[1,Ni1 ]

{
V̇1
(
x0; fi1j(x0)

)}
+ ν2 max

i∈I[1,Ni2 ]

{
V̇2
(
x0; fi2j(x0)

)}

+ ν3 max
j∈I[1,Ni3 ]

{
V̇3
(
x0; fi3j(x0)

)}
= μ(x0).

(3.27)

Above step can be extended to the case where Ism has more than three elements. Therefore,
the inequality (3.6) is satisfied and the proof is completed.

To summarize Propositions 3.1 and 3.2 we have the result that if x is not in a sliding
mode, then ẋ = fσ(x)(x) and V̇min(x; ẋ) = V̇min(x; fσ(x)(x)) ≤ μ(x). If x is in a sliding mode
involving subsystems ẋ = fi(x), i ∈ Ism, then there exist αi, i ∈ Ism, satisfying 0 ≤ αi ≤ 1,
and

∑
i∈Ism αi = 1, such that ẋ =

∑
i∈Ism αifi(x). We also have V̇min(x; ẋ) ≤ μ(x) from (3.6). In

view of these arguments, we can establish a sufficient condition of stability for the switched
systems in terms of μ(x).

Theorem 3.3. For the switched system (2.1) under the switching rule (3.1), if there exists an η ∈ R,
such that

min
i∈I[1,N]

{
max

j∈I[1,Ni]
V̇min

(
x; fij(x)

)}
= μ(x) ≤ ηVmin(x) (3.28)

for all x ∈ Rn \ {0}, then

Vmin(x(t)) ≤ Vmin(x(0))eηt (3.29)

for every solution x(·).

Remark 3.4. This theorem indicates that when a minimum function is used, it is sufficient
to use the directional derivatives along all vertex directions of subsystems to characterize
stability of the switched systems with polytopic uncertainties, and the existence of sliding
modes has no effect.
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When we consider the the case of the switched linear systems, then the systems (2.1)
turn to

ẋ(t) = Aσ(x,t)x(t), (3.30)

Ai =
Ni∑

j=1

λijAij , i ∈ I[1,N], (3.31)

where Aij , j ∈ I[1,Ni], i ∈ I[1,N] are constant matrices.
We can establish a matrix condition for exponential stabilizability of the systems.

Theorem 3.5. The switched linear system (3.30) is exponentially stabilizable via state switching if
there exist real matrices Pj = PT

j > 0, j ∈ I[1, J], and real number η, 0 ≤ μisij ≤ 1,
∑N

i=1 μisij = 1,
βjk ≥ 0, j, k ∈ I[1, J], si ∈ I[1,Ni], i ∈ I[1,N], such that

(
N∑

i=1

μisijAisi

)T

Pj + Pj

(
N∑

i=1

μisijAisi

)
≤

J∑

k=1

βjk
(
Pj − Pk

)
+ ηPj . (3.32)

Proof. Let Vmin(x) = min{xTPjx | j ∈ I[1, J]}. Consider x /= 0 and assume that Jmin(x) =
{1, 2, . . . , J0} for a certain integer J0 ≤ J . Then xTPkx = Vmin(x) for k ≤ J0 and xTPkx > Vmin(x)
for k > J0. Hence xT (Pj−Pk)x ≤ 0, for all j ≤ J0. According to (3.32), the following inequalities:

2xTPj

(
N∑

i=1

μisijAisi

)
x ≤

J∑

k=1

βjkx
T(Pj − Pk

)
x + ηxTPjx

≤ ηxTPjx = ηVmin(x), ∀j ≤ J0,

(3.33)

hold.
Since 0 ≤ μisij ≤ 1, we have

min
{
2xTPjAisix : si ∈ I[1,Ni], i ∈ I[1,N]

}
≤ ηVmin(x), ∀j ≤ J0. (3.34)

It follows that

min
i∈I[1,N]

{
max

si∈I[1,Ni]

{
2xTPjAisix

}}
≤ ηVmin(x), ∀j ≤ J0. (3.35)
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By Lemma A.1 in the appendix,

min
i∈I[1,N]

{
max

s∈I[1,Ni]
V̇min(x;Aisix)

}
= min

i∈I[1,N]

{
max

si∈I[1,Ni]
min
{
V̇j(x;Aisix), j ∈ Jmin(x)

}}

= min
i∈I[1,N]

{
max

si∈I[1,Ni]
min
{
2xTPjAisix, j ∈ Jmin(x)

}}

≤ min
i∈I[1,N]

{
max

si∈I[1,Ni]

{
2xTP1Aisix

}}
≤ ηVmin(x).

(3.36)

Define the switching rule as

σ(x) = arg min
i∈I[1,N]

{
max

j∈I[1,Ni]
V̇min

(
x;Aijx

)}
. (3.37)

Under this switching rule we have Vmin(x(t)) ≤ Vmin(x(0))eηt for every solution x(·) from
Theorem 3.3. The proof is completed.

Remark 3.6. If Pj = P for all j ∈ I[1, J] and N = 2, then Vmin can be reduced to a quadratic
function and (3.32) can be reduced to the matrix inequalities

[
μstA1s +

(
1 − μst

)
A2t
]T
P + P

[
μstA1s +

(
1 − μst

)
A2t
]
< η0P. (3.38)

If η0 = 0, then this corresponds to the stability condition given in [14]. In this sense,
Theorem 3.5 is the extension of the main result in [14].

Example 3.7. Consider the switched linear system (3.30) composed of two subsystems, where

A11 =
[
2 1
2 −4

]
, A12 =

[
2 1
1 −6

]
,

A21 =
[−4 −1
0 2.1

]
, A22 =

[−5 −1
0.1 2

]
.

(3.39)

The eigenvalues of A11, A12, A21, A22 are {2.3166, −4.3166}, {−6.1231, 2.1231}, {−4, 2.1},
and {−4.9857, 1.9857}, respectively. They are all unstable. Therefore, neither subsystems is
quadratically stable.

We turn to use Vmin composed of two quadratic functions and minimize η subject to
(3.32). The minimal η is given as −1.4752 when fix the parameters as following: μ11 = 0.5,
μ12 = 0.5, μ21 = 0.4, μ22 = 0.6. That is to say a unified convergence rate is guaranteed. For
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Figure 1: The state of the switched system in example.

verification, other parameters are provided as following:

P1 =
[
11.5608 0.4678
0.4678 2.1290

]
, P2 =

[
11.5591 0.4723
0.4723 2.1177

]
,

β12 = 8.9, β21 = 5.8.

(3.40)

Let us investigate the system state trajectory using the two special subsystems

A1 = 0.4A11 + 0.6A12 =
[
2 1
1.4 −5.2

]
,

A2 = 0.1A21 + 0.9A22 =
[−4.9 −1
0.09 2.01

]
.

(3.41)

They are both unstable.
We suppose that the initial state is x0 = [3, 4]T . According to the switched rule (3.37),

the dynamic system can exponential stabilizability and the typical result is plotted in Figure 1,
which show that the system state converge to zero very quickly.

4. Conclusion

In this paper, the exponential stabilizability of switched nonlinear systems with polytopic
uncertainties is considered employing the methods of nonsmooth analysis and nonquadratic
Lyapunov functions. The function is formed by taking the pointwise minimum of a family
of quadratic functions. We establish the switching rule to stabilize the switched systems by
utilizing the directional derivative along the vertex directions of subsystems. In this process,
we take a lot of effort in examining the case that the control systems involving sliding modes.
The matrix conditions for exponential stabilizability of the switched linear systems are also
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obtained. As numerical example demonstrate in this paper, our synthesis result is effective.
Future efforts will be devoted to the switched systems with time delay.

Appendix

For convenience we briefly list some definitions and conclusions from nonsmooth analysis.
One can refer to [29, 30] for more detail.

Suppose f is defined from Rn to R = R
⋃{−∞,+∞}, and f(x) is finite. The one-sided

directional derivative of f at x in direction ζ can be expressed by

ḟ(x; ζ) = lim
Δt↓0

f(x + ζΔt) − f(x)
Δt

. (A.1)

Suppose f is a convex function in Rn, and finite at x. The set

∂f(x) =
{
x∗ | f(z) ≥ f(x) + x∗T (z − x), ∀z ∈ Rn

}
(A.2)

is called the subdifferential of f at x and x∗ is a subgradient of f at x [30]. For a convex
function f in Rn, f is differential at x0 if and only if ∂f(x0) has only one vector. In this case
we have ∂f(x0) = ∇f(x0).

If f is locally Lipschitz near x and S is any set of Lebesgue measure 0 in Rn. The set of
points at which f fails to be differentiable is denoted byΩf . Then the generalized gradient of
f at x in the sense of Clarke denoted by ∂Cf(x) is defined as

∂Cf(x) = co
{
lim
xi →x

∇f(xi) | xi /∈ S, xi /∈ Ωf

}
. (A.3)

The following lemma can be obtained by combining some results from [29, 31].

Lemma A.1. Suppose x0 ∈ Rn. Then one has

(1) For ζ ∈ Rn, the directional derivative of Vmin at x0 along ζ is given by

V̇min(x0; ζ) = min
{
V̇j(x0; ζ) | j ∈ Jmin(x0)

}
, (A.4)

where the index set Jmin(x0) = {j ∈ I[1, J] | Vj(x0) = Vmin(x0)}.
(2) If Vj(x) = xTPjx, j ∈ I[1, J], then ∂CVmin(x0) = co{2Pjx0 | j ∈ Jmin(x0)}.
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