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The first and second order of accuracy difference schemes for the approximate solution of the initial
boundary value problem for ultra-parabolic equations are presented. Stability of these difference
schemes is established. Theoretical results are supported by the result of numerical examples.

1. Introduction

Mathematical models that are formulated in terms of ultraparabolic equations are of great
importance in various problems for instance in age-dependent population model, in the
mathematical model of Brownian motion, in the theory of boundary layers, and so forth, see
[1-5]. We refer also to [6-9] and the references therein for existence and uniqueness results
and other properties of these models. On the other hand, Akrivis et al. [10] and Ashyralyev
and Yilmaz [11, 12] developed numerical methods for ultraparabolic equations. In this paper,
our interest is studying the stability of first- and second-order difference schemes for the
approximate solution of the initial boundary value problem for ultraparabolic equations

ou(t, s) N ou(t, s)
ot 0s

u(0,s) =¢(s), 0<s<T,

+Au(t,s) = f(t,s), 0<t,s<T,
(1.1)

u(t,0) =¢(t), 0<t<T,
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in an arbitrary Banach space E with a strongly positive operator A. For approximately solving
problem (1.1), the first-order of accuracy difference scheme

Uk,m — Uk-1,m " Uk-1,m — Uk-1,m-1
T T

fiom = f(te, 5m), te = kT, sm=mt, 1<k, m<N,Nt=1, (12)

+ Auk,m = fk,m/

Uom = Pm, 0<m<N, up=¢r, 0<k<N

and second-order of accuracy difference scheme

U,m — Uk-1,m + Uk-1,m — Uk-1,m-1

1
+ EA(uk,m + Uk-1,m-1) = fm,

T T
fk,m=f<tk—%,sm—%>, te = kT, sm=mt, 1<k, m<N, Nt=1, (1.3)
Uom = P, 0<m<N, uo= ¢x, 0<k<N

are presented. The stability estimates for the solution of difference schemes (1.2) and (1.3)
are established. In applications, the stability in maximum norm of difference shemes for
multidimensional ultraparabolic equations with Dirichlet condition is established. Applying
the difference schemes, the numerical methods are proposed for solving one-dimensional
ultraparabolic equations.

Theorem 1.1. For the solution of (1.2), we have the following stability inequality:

max max [[wenlle < C<Og}na<>§\,||<lfm||g + max [l + g}(‘iﬁlgg>§||fk,m||g>r (14)

where C is independent of T, ¢, @k, and fi m.

Proof. Using (1.2), we get

u — Uk-1,m-
e~ M+ Attim = fim. (1.5)

From that it follows

Ukm = Ruk—l,m—l + TRfk,m/ (16)

where R = (I + TA)™!. By the mathematical induction, we will prove that

n
Ukm = Rnuk—n,m—n + ZTRn7]+1fk—n+j,m—n+j (17)
j=1
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is true for all positive integers n. It is obvious that for n = 1,2 formula (1.7) is true. Assume
that forn = r

r
Ug,m = Rruk—r,m—r + ZTRT_]+1fk—r+j,m—r+j (18)
j=1

is true. In formula (1.6), replacing k and m with k — r and m — r, respectively, we have
Uk—rm—r = Ruk—r—l,m—r—l + TRfk—r,m—r- (19)

Then, using (1.8) and (1.9), we get

r
+1 +1 —j+1
Uk,m = R Uk—r-1,m-r-1 T TR’ fk—r,m—r + ZTRT / fk—r+j,m—r+j- (110)
j=1

From that it follows

r+l

1 —j+2
Uk,m = R™ Uk—r-1,m-r-1 7+ ZTRr I fk—r—1+j,m—r—1+j (111)
j=1

is true for n = r + 1. So, formula (1.7) is proved. For m > k, replacing n with k in formula
(1.7), we obtain that

k
Uk,m = Rk([’m—k + ZTRk_]+1fj,m—k+j- (112)
=1
Using estimate (see [13])
k
[#, ., < w0

and triangle inequality, we get

k
el < | RS, Nopmelly + o[ RT| L Ll fimoseille
j=1

(1.14)
< .
< M max_ llpa-i]| + max ma |
for any k and m. For k > m, replacing n with m in formula (1.7), we get
m .
e = R"iom + 2 TR fim . (1.15)

=1
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From estimate (1.13) and triangle inequality, it follows that

m
sl < IR pllpicmll + e R71"
j=1

o p M fiemiille

=M [og?ﬁ?w”‘/’k—m|| + Kﬁ}_zﬁlrsr}%)& I f].,m”]

for any k and m. Thus, Theorem 1.1 is proved.

Theorem 1.2. For the solution of (1.3), we have the following stability inequality:

Ukm + Uk-1,m
2

Ukm + Uk,m-1

maX max >

1<k<N1<m<N

+ max max
E  1<k<N1<m<N

E

< (gl + ol + g max ol )

where C is independent of T, (¢, @, and fi m.

The proof of Theorem 1.2 is based on the following formulas:

Ukm = Buk—l,mfl + TBka,mr

k
k k-j
uem = Bk + D TBYIC i mgrj, m>Kk,
=

m
Uem = B" Preem + ZTB”"]ka_erj,,-, k>m
=1

for the solution of difference scheme (1.3) and the following estimate [14]:
el o<

E—E

where B= (I -7A/2)(I+71A/2) " and C=(I +TA/2)".

2. Application

(1.16)

(1.17)

(1.18)

(1.19)

Let Q be the unit open cube in the n-dimensional Euclidean space R” (0 < xx <1, 1 <k <n)
with boundary S, Q = QU S.In [0,1] x [0,1] x Q, we consider the boundary-value problem

for the multidimensional parabolic equation

ou(t,s,x) 0Ou(t,s,x) z":a (x)azu(t,s,x)
r=1

ot s ox?

x=(x1,...,x,) €Q, 0<tss<],

u(0,s,x) = ¢(s,x), sel0,1], u(t,0,x) =(t,x), tel0,1], x€ Q,

u(t,s,x)=0, t,se€[0,1],x€S,

+6u(t,s, x) = f(t,s,x),

2.1)
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where a,(x) > a > 0 (x € Q) and f(t,s,x) (t,5 € (0,1), x € Q) are given smooth functions
and 6 > 0 is a sufficiently large number.

We introduce the Banach spaces Cgl(ﬁ) B=WB, P, 0<xx<1k=1,..,n)
of all continuous functions satisfying a Holder condition with the indicator g = (B1,..., ),

r € (0,1),1 < k < n, and with wei htxﬁ"(l—xk—hk)ﬂk,O <xp<xpk+he<1,1<k<mn,
g k
which is equipped with the norm

Iflce @ = Iflle@+  sup  |fGen. xn) = flxr+ iy, xn + b))
0<xp<xp+he<l
1<k<n

2.2)
x Hh;ﬂkxik(l - xx — hi)Px,
k=1

where C(Q) stands for the Banach space of all continuous functions defined on Q, equipped
with the norm

”f”c@ = Ii‘:gqf(x”- (2.3)

It is known that the differential expression

n 2
Av = —:E:ar(x)éz_géiigzjfz + 6?7(t,5,1j (2'4)
r=1

defines a positive operator A acting on Cgl (Q) with domain D(A%) ¢ C(Z)Iﬂ (Q) and satisfying

the conditionv =0 on S.
The discretization of problem (2.1) is carried out in two steps. In the first step, let us
define the grid sets
£~2h ={x=x,=(my,... hym,), m=(m,...,my,),

0<m,<N,, hyN, =L, r=1,...,n}, (2.5)

Q= §§h N, Sy = §§h17 S.

We introduce the Banach spaces Cj, = ch(fzh), Ci = Cgl (éh) of grid functions ¢"(x) =
{p(himy, ..., h,m,)} defined on £~2h, equipped with the norms

" (x)

7

[y = max
C(Qn) xeQy,

h h h
_ =l n __+ sup @' (x1,. .., xn) =@ (X1 + hy, ., X + hy)
(€2n) " C(Qn) 0<xp<xp+hi<l " ! " (2~6)
1<k<n

|
H(P cf

01

n
x [ Tr k(1 - = )P~
k=1



6 Abstract and Applied Analysis

To the differential operator A generated by problem (2.1), we assign the difference
operator Ay by the formula

n

At ==Y a0 (u'y) (2.7)

=1 Xr/]r

acting in the space of grid functions u"(x), satisfying the condition u"(x) = 0 for all x € S,
With the help of A7, we arrive at the initial boundary-value problem

h h
au (t/ S/ x) + au (t/ S/ x) + Azuh(t, S, x) — fh(t, S, x), O < t,S < 1, X 6 Qh/
ot 0s (2.8)

u"(0,5,x) = ¢"(s,x), 0<s<1,  ul'(t,0,x)=¢"(tx), 0<t<1, xeQy

for an infinite system of ordinary differential equations.

In the second step, we replace problem (2.8) by difference scheme(1.2)

h h h h

ul —u u -u
k,m = k-1,m " k—1,m . k—1,m—1 ukm _ fkm(x) xe Qh/
h h 5 (2.9)
fim(®) = f'(te,smx), tk=kt, sm=mr, 1<k,m< N, x €€y,
:q;,’,’l, 0<m<N, uk0 gok, 0<k<N
and by difference scheme(1.3)
h h h h
Uy~ Uy W g~ Wpima 1
km h km 1,m i klmd EA;,‘(uk,m“‘uk—Lm—l) =f£m(x), xeQ,
(2.10)

fem@) fh<tk o7 5m = ;,x>, te =k7, sy=mt, 1<k, m<N, x €Qy,
=¢m, 0<m<N, uly =9y, 0<k<N.

It is known that A} is a positive operator in C (@h) and Cgl (Qn). Let us give a number
of corollaries of Theorems 1.1 and 1.2.

Theorem 2.1. For the solution of difference scheme (2.9), we have the following stability inequality:

max max
1<k<N1<m<N

< Ci( max
0<m<N

|uk/m||c(§2h) 1)
2.11

|(p2|| .+ max max
C(Qp) 1<k<N1<m<N

h
|fk'm ”c@h))’

max
|(Pm HC(Q;,) 0<k<N

where Cy is independent of T, ¢, @}, and f! .
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Theorem 2.2. For the solution of difference scheme (2.10), we have the following stability inequality:

h h

uk,m + uk—l,m—l
max maX ||——————
1<k<N1<m<N 2 -
Cn) (2.12)
< Cp| max |([f,’111“ -+ max |(pZ|| _ + max max |f,i’ ” ~ ),
0<m<N C(Qn)  0<k<N C(Qn)  1<k<N1<meN I SIC(Qy)

where Cy does not depend on T, ¢l th, and f,i’m.

3. Numerical Analysis
In this section, the initial boundary value problem

ou(s,t,x) . Ou(s,t,x) 0%u(s,t,x)
ot 0s 0x?

f(t,s,x)=e singx, 0<st<1, 0<x<l,

+2u(t,s,x) = f(t,s,x),

u(0,t,x) =e'sinrx, 0<t<1, 0<x<l, (31)
u(s,0,x) =e’sinrx, 0<s<1,0<x<l,
u(s,t,0) =u(s,t,r) =0, 0<s,t<1
for one-dimensional ultraparabolic equations is considered.
The exact solution of problem (3.1) is
u(t,s,x) = e sin rx. (3.2)

Using the first order of accuracy in t and s implicit difference scheme (2.9), we obtain
the difference scheme first order of accuracy in t and s and second-order of accuracy in x

k,m k-1,m k-1,m k-1,m-1 km _ ~ km k,m
Uy  — Uy Uy — Uy U 2”" + Uy 2 km _ rh
B - 2 teuy = fk m’
T T h ;

f,’:m = f(tk,Sm xn) = e B sinx,, 1<k,m<N,1<n<M-1,

um = emsinx, 0<m<N,0<n<M,

3.3
uﬁ’oze_tksinxnr OSkSN/ OSnSM’ ( )

ulg’m=u§;}"=0, 0<k,m<N,
tx=kt, su,=mr, 1<km<N,Nt=1,

x,=nh, 1<n<M, Mh=uo
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for approximate solutions of initial boundary value problem (3.3). It can be written in the
matrix form

Aup +Bu, +Cupy=¢,, 1<n<M-1,

’ ) (3.4)
up =0, up = 0.
Here

0 0 07
00 - 0

A=[0-- 0 a 0 0 '
00 -0 a O
[0 --r oee e e e A (N+1)2x(N+1)?
1 0 - - «ev -c.. 0 0 O]

1 0 +++ «ev «vv = 0 O

| ST T e e e , (3.5)
Ob 0 - c d 0 ---0
00 b 0 c d 0
[0 0 -+ -ee b 0 - ¢ d_(N+1)2x(N+1)2
0 0 07
00 - 0

C=f0o-0 a0 0 '
00 - a 0
_0 R R i (N+1)2X(N+1)2

where
= IR VO DY
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- 0,0 ~

Pn
o’

N,0
Pn

0,1

Pn

1,1

¥n
. k,m —(t+Sm) w3

Pn : ;" = f(te, S ) = e sinx,,,

N1
Pn

0,N
Yn

1,N

Yn

NN
LPn " N1y

U, =

W

<4 (N+1)%x1

(3.6)
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This type system was used by Samarskii and Nikolaev [15] for difference equations. For the
solution of matrix equation (3.4), we will use the modified Gauss elimination method. We
seek a solution of the matrix equation by the following form:

un = “n+1un+1 + ﬂn+1/ n= M - 1/- .. /2/ 1/ (37)

where up; =0, aj(j=1,...,M-1)are (N + 1)2 x (N + 1)2 square matrices, ;(j =1,..., M-1)
are (N + 1)2 x 1 coloumn matrices, a;, 1 are zero matrices, and

a1 =—(B+ Can)ilA/
(3.8)

ﬂn+1 = (B+Clxn)_1((,0n_cﬁn), n=1,2,3,...,(M—1).

Using the second-order of accuracy in t and s implicit difference scheme (2.10), we
obtain the difference scheme second-order of accuracy in t and s and second-order of accuracy
inx

km k-1,m k-1,m k-1,m-1

u,;" —u, Uy
T T
k,m k,m k,m k-1,m-1 k-1,m-1 k-1,m-1
_ 1 un+1 B zu" + unfl + Zuk,m + un+1 - 2”" + unfl + zuk 1,m-1 h
2 h? " h2 = Jkmr

f,’;m = f(tx, Sm,xn) = e B Dsiny,, 1<k,m<N, 1<n<M-1,
W™ = emsinx, 0<m<N,0<n<M,

P = e sinx,, 0<k<N,0<n<M,

ug’m:ulf\;[m:O, 0<k,m<N,

tx=kt, sy,=mr, 1<km<N, Nrtr=1,

x,=nh, 1<n<M, Mh=uo
(3.9)
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for approximate solutions of initial boundary value problem (3.9). The matrix form (3.4) can
be written. Here,

0 c e 00 0]
00 - 0
A — a 0 a 0 0 !
0Oa 0 --a 0
_0 ...... a 0 - a d (N+1)2x(N+1)2(N+1)>x(N +1)?
10 - 0 0 07
01 0 0 0
00 1 0 0
B= ’
b 0 0 1 ¢ 0 0
0b 0 0 1 ¢ 0
0 0 --- b 0 0 --- 1 ¢ 4 (N+1)2x(N+1)?
0 -0 0]
00 - 0
C’ — a 0 a 0 O 4
0Oa 0 - a 0
_0 ...... a 0 - a d (N+1)2x(N+1)?

(3.10)



¥n =

Uy =

- 0,0 T
Pn

1,0

Pn

N,0

Pn

0,1
Pn

1,1
Pn

N,1
Yn

0N
Pn

1,N
Pn

NN
[P

r 0,0

J (N+1)2x1

J (N+1)2x1

k,m
7 (Pn

—+1,

Abstract and Applied Analysis

c=—+—+1,
T

T
= f(tk ~5Sm = E,xn) = e ) sinx,,

(3.11)
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Table 1
Difference schemes N=M-=10 N=M=20 N=M=40 N=M-=80
Difference scheme (3.3) 0.028100 0.014400 0.006811 0.003225
Difference scheme (3.9) 0.000511 0.000121 0.000028 0.000006

We seek a solution of the matrix equation by the same algorithm (3.7) and (3.8).

4. Error Analysis

The errors are computed by

K,M
ESM -

km
= max U(ti, S, Xn) — Uy,
N 1<k,m<N,1<n<M-1 (b Sms Xn) = Un (4.1)

of the numerical solutions, where u(ty, s, x,) represents the exact solution and uﬁ’m
represents the numerical solution at (¢, s, x,), and the results are given in Table 1.

It may be noted from Table 1 that as N, M increase, the value of the errors associated
with difference scheme (3.3) decreases by a factor of approximately 1/2 and the errors
associated with difference scheme (3.9) decrease by a factor of approximately 1/4. This
confirms that difference scheme (3.3) is first order and difference scheme (3.9) is second-order
as stated in Section 1. Moreover, the results show that the second-order of accuracy difference

scheme (3.9) are more accurate comparing with the first order of accuracy difference scheme
(3.3).
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